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Abstract. In this paper, we discussed a Tuberculosis model by incorporating monitored treatment intervention

and applying optimal control theory to analyze the optimal intervention for TB. Optimal control strategy aims to

minimize both the disease burden and the intervention cost. The optimal control problem is derived analytically

using the Pontryagin Maximum Principle. Analysis of the model shows that disease-free equilibrium is globally

asymptotically stable if the controlled reproduction number is smaller than one and unstable if it is larger than one.

Our numerical experiments show that implementation of monitored treatment should be given in the early spread

of TB to avoid high cost of intervention. Furthermore, a better quality of treatment will give a lower cost for TB

prevention.
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1. INTRODUCTION

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. It can

attack the human organs including the lungs, kidney, spine, and brain. This infection is mainly
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transmitted through the air when individuals with active TB cough, sneeze, speak, or sing.

People who breathe air that has been contaminated by the bacteria will be infected with TB

[10].

TB holds the thirteenth position in deadliest diseases and the second leading infectious killer

after COVID-19 (above HIV and AIDS) in the world. Globally, in 2021, 10.6 million people

are infected by TB which causes an average death rate of 1.4 million people with HIV-negative

and 187,000 people co-infected with HIV. In 2021, the top three countries of TB patients are

India, Indonesia, and Filipina [23].

If someone is infected by TB bacteria, the bacteria may not directly active and without mak-

ing you sick. In these people, they do not show any symptoms and can not transmit TB to other

individuals. It is called latent TB. If they have weak immune system and not receiving effective

treatment, latent TB can develop into active TB. The symptoms of active TB are cough with

blood for three weeks or more, weight loss, easy fatigue, fever, and night sweats [2].

One of the factors causing the high number of TB cases in the world is treatment failure due

to non-compliance of TB patients in completing the treatment given and the lack of knowledge

of TB patients. If they do not get treatment with the good procedure, it inhibits the healing

process and also increases the potential for drug resistence [10]. In 1993, WHO launched the

DOT (Directly Observed Treatment) program as TB disease treatment. DOT is face-to-face

or online monitoring of TB patients while taking antituberculosis drugs. This strategy ensures

that the drug consumption is carried out with the right combination and dose. Patients will

be monitored daily by health workers or individuals who are trained when taking drugs. DOT

strategy can reduce the rate of spread of TB with a more effective cost [22].

Mathematical modeling has been studied by many researchers to understand the spread of

many diseases [3, 4, 5, 6, 7, 8, 9], including TB. Research by authos in [14] analyzed the spread

of tuberculosis with recovery time delay. Wangari and Stone [21] analyzed the effect of TB

recurrence through the SEIR mathematical model using a linear infection function. A simple

SEIR model to discuss the local and global stability of TB transmisison model discussed by

authors in [13]. Authors in [11] developed their TB model by considering the impact of media
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awareness on the population. Multiple re-infection on TB discussed by authors in [12]. Re-

cently, authors in [1] proposed a mathematical model to assess the potention of new TB vaccine

in controlling TB transmission. To control the spread of TB disease, several mathematical mod-

els implement it as an optimal control problem such as research conducted by D.Aldila et al.

[29] that discussed about optimal control problem from tuberculosis and MDR-TB model.

Based on above description and the urgency of monitored treatment, it is necessary to un-

derstand the impact of monitored treatment for TB controlling scenario for long run interven-

tion. Hence, we construct an optimal control problem model for TB transmission in this ar-

ticle considering monitored treatment as a single intervention for TB control. We modify the

model by authors in [13] by adding a proportion of treated individual into the model as a time-

dependent parameter. Mathematical analysis such as local and global stability analysis for the

autonomous model conducted to see the possible final condition of the population. Character-

ization of the optimal control problem using Pontryagin Maximum Principle used, and solved

using the forward-backward sweep algorithm.

The layout of this article is as follows. In the next section, model construction and it prelimi-

nary analysis conducted. In Section 3, mathematical analysis of the model related to equilibrium

points and the basic reproduction number is given. We conduct optimal control problems using

monitored treatment as control variable in Section 4. Finally, some conclusions are given in

Section 5.

2. THE MODEL

2.1. Model Construction. The population is assumed to be closed and constant over time. In

other words, influxes/outfluxes coming from migrations or emigrations are considered inessen-

tial. Also, the recruitment rate and natural death rates are assumed to be equal. We divided the

human population into four compartments, which are the susceptible (S), the exposed or latent

TB (E), the infected or active TB (I), and recovered (R).

• Susceptible. The susceptible compartment contains healthy individuals who have never

been infected by TB before, including newborns.
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• Exposed. This exposed compartment classifies the individuals who have already been

infected by TB but are not yet infective. The individuals in this compartment do not

feel sick and the disease cannot be detected unless they get a TB skin test or TB blood

test. The TB bacteria’s status in this compartment is dormant residing in human lungs,

constrained by host immune responses. It is known as latent TB infection/LTBI.

• Infected. Latent TB individuals can progress to active TB depending on their immune

system. Active TB individuals may get sick and can spread the bacteria to susceptible

individuals. Active TB individuals develop symptoms such as coughing for more than

three weeks (often with blood), fever, chest pain, and loss of appetite.

• Recovered. This compartment contains individuals who have recovered from TB dis-

ease, both with monitored care and unmonitored care. We assume that recovered indi-

vidual have permanent immunity.

FIGURE 1. Transmission Diagram of Tuberculosis Spread

TABLE 1. Description of Parameters

Parameter Description Value Ref

µ1 Recruitment rate 0.012 [13]

µ2 Natural death rate 0.012 [13]

β Succesful infection rate [0.0868, 0.2568] [13]

ε Transition rate from TB-passive to TB-active 0.148 [13]

γ1 Recovery rate based on monitored treatment 0.104 [13]

γ0 Recovery rate based on unmonitored treatment 0.416 [13]

u Proportion of human who get monitored treatment [0,1] Assumed

1−u Proportion of human who do not get monitored treatment [0,1] Assumed
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We use transmission diagram in Figure 1 for model construction. Description of the param-

eters that are used could be seen in Table 1. Susceptible increase due to a new born with a

constant rate Λ. We assume that only individuals in I compartment can spread TB to the sus-

ceptible individuals with a constant rate β . Assuming a ratio dependent contact rate for the

infection term, we have the rate of new infection is given by βSI
N . After period of incubation,

denoted by ε−1, exposed individual in E progress to I individuals. We assume that only pro-

portion of u of I who get a monitored treatment by the hospital. Infected individuals who get

monitored treatment can recovered with a rate of γ1, while who do not will recovered with a

rate of γ0. Note that γ0 < γ1. Each compartment can decreases due to natural death rate µ .

Based on the assumptions and transmission diagram in Figure 1, the model for TB transmis-

sion with the impact of monitored treatment is given by:

dS
dt

= Λ−µS−βS
I
N
,

dE
dt

= βS
I
N
−µE− εE,

dI
dt

= εE−µI− γ1uI− γ0(1−u)I,

dR
dt

= γ1uI + γ0(1−u)I−µR,

(1)

where N = S+E + I+R is the total human population. We assumed that the human population

is constant, which gives us Λ= µN. With this assumption, we scale the human sub-populations.

Let s = S
N , e = E

N , i = I
N , and r = R

N represents the fraction of each compartment in the popula-

tion. Hence, the non-dimensional form of model variables of system (1) is given by:

ds
dt

= µ−µs−β si = 0,

de
dt

= β si−µe− εe = 0,

di
dt

= εe−µi− γ1ui− γ0(1−u)i = 0,

dr
dt

= γ1ui+ γ0(1−u)i−µr = 0,

(2)

where

s+ e+ i+ r = 1,
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and with the initial condition

s(0) = s0 > 0,e(0) = e0 > 0, i(0) = i0 > 0, and r(0) = r0 > 0.

2.2. Preliminary analysis. Since the non-dimensional model in equation (2) presents the hu-

man population, then the solutions must be positive and bounded in a feasible region. In this

section, we will verify that all the solutions of the model will always be positive and bounded

for all t > 0. To assure these, we have the following theorem

Theorem 1. Model (2) with the initial condition s(0) = s0 > 0,e(0) = e0 ≥ 0, i(0) = i0 ≥

0,r(0) = r0 ≥ 0, always has positive solutions for all t > 0.

Proof. We use an integrating factor to solve this theorem. Under the given initial conditions,

from the first equation of the TB model (2) we have

ds
dt

= µ−µs−β si.

Equation (3) can be written as
ds
dt

+A(t)s = B(t).

where

A(t) = µ +β i,

B(t) = µ.

Define integrating factor C(t) = e
∫ t

0 A(x)dx. Multiply equation (3) with the integrating factor.

Hence, we have

e
∫ t

0 A(x)dx ds
dt

+ e
∫ t

0 A(x)dxA(t)s = e
∫ t

0 A(x)dxB(t).

The equation (3) can be expressed as follows

d
dt

(
s(t)e

∫ t
0 A(x)dx

)
= e

∫ t
0 A(x)dxB(t),

d
(

s(t)e
∫ t

0 A(x)dx
)
= e

∫ t
0 A(x)dxB(t)dt.

By integrating both sides of the equation (3) in interval [0, t], we obtain

s(t)e
∫ t

0 A(x)dx− s(0) =
∫ t

0
e
∫ x

0 A(p)d pB(x)dx,
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s(t)e
∫ t

0 A(x)dx =
∫ t

0
e
∫ x

0 A(p)d pB(x)dx+ s(0),

therefore

s(t) = e−
∫ t

0 A(x)dx
(∫ t

0
e
∫ x

0 A(p)d pB(x)dx+ s(0)
)
> 0.

Hence, it can be shown that s(t) > 0 for all t > 0. In a similar way, e(t), i(t),r(t) also can

be shown positive under the given initial condition s(0) = s0 > 0,e(0) = e0 ≥ 0, i(0) = i0 ≥

0,r(0) = r0 ≥ 0. Thus, the solutions s(t),e(t), i(t),r(t) of the model (2) are positive for all

t > 0. �

Since the total population is assumed always be constant and all solutions of the model (2)

are proven always positive, then we have that each compartment s(t),e(t), i(t),r(t) is bounded

at [0,1]. Furthermore, the TB model has the positively invariant region as follows.

(3) Ω =
{

s,e, i,r ∈ R4
+ : 0 < s≤ 1,0≤ e < 1,0≤ i < 1,0≤ r < 1,s+ e+ i+ r = 1

}
.

Corollary 1. The region Ω ∈R4
+ is positively invariant for the model (2) with the initial condi-

tion ∈ R4
≥0.

Therefore, we have that Ω is positively invariant and attract all the solutions in R4
≥0. Hence,

model (2) is considered to be well-posed mathematically and epidemiologically.

3. MODEL ANALYSIS

Since we have s+ e+ i+ r = 1, then it is worth to analyze system (2) by only analyzing the

first three equation, i.e:

ds
dt

= µ−µs−β si = 0,

de
dt

= β si−µe− εe = 0,

di
dt

= εe−µi− γ1ui− γ0(1−u)i = 0,

(4)

where r can be determined as r = 1− s−e− i. To determine the equilibrium point of the model

(4), we need to solve the left hand side of system (4) equals to 0, which ds
dt =

de
dt =

di
dt = 0.



8 KAMALIA, AYUMI, FATHIYAH, ALDILA

3.1. Disease-free equilibrium point and formulation R0. At the disease-free equilibrium

point, it means that there are no humans infected by Mycobacterium tuberculosis when e =

0, i = 0 so there is no TB disease in the population. Therefore, the disease-free equilibrium

point is given by

(5) DFE = (s∗,e∗, i∗) = (1,0,0).

Theorem 2. The Disease-free equilibrium point (s∗,e∗, i∗) in the model (4) will always be exists

in the population without any condition.

Using the next-generation matrix method [15], we determine the expression of basic repro-

duction number. It’s given by

(6) R0 =
εβ

(µ + ε)(µ + γ1u+ γ0(1−u))
.

Basic reproduction number (R0) is the expected number of secondary infection cases caused

by a single infected individual in a susceptible population. for further examples on the calcula-

tion of R0 with this next-generation method can be seen in [16, 17, 18, 19, 20].

3.2. Endemic equilibrium point. Endemic-equilibrium point indicates that the infection will

not be eradicated from the population. It will be determined when e 6= 0 and i 6= 0. Therefore,

the endemic equilibrium point is given in the expression of R0 as follows

(7) EE = (s†,e†, i†) =
(

1
R0

,
µ(R0−1)
R0(µ + ε)

,
µ(R0−1)

β

)
.

From the expression of EE in (7), we have the following theorem.

Theorem 3. Endemic-equilibrium point (s†,e†, i†) of model (4) exists if condition R0 > 1 holds.

3.3. Stability of Disease Free Equilibrium.

3.3.1. Local Stability Analysis of DFE.

Theorem 4. The DFE of TB model in (4) is locally asymptotically stable if R0 < 1 and unstable

if R0 > 1 .
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Proof. We use standard linearization to prove the theorem. Linearization around the disease-

free equilibrium is given by

J|DFE =


−µ 0 −β

0 −µ− ε β

0 ε −µ− γ1u− γ0(1−u)

 .(8)

Next, calculate |λ I− J|DFE) = 0 to get the characteristic equation of the matrix (8) as follows

(λ +µ)(λ 2 +(2µ + γ1u+ γ0(1−u)+ ε)λ +(µ + ε)(µ + γ1u+ γ0(1−u))− εβ = 0.

It can be seen from the equation (9), there is an eigenvalue that obviously negative which is

λ1 =−µ , while the other two eigenvalues can be determined by Routh-Hurwitz criteria. Let

(9) λ
2 +a1λ +a0 = 0,

where a1 = 2µ + γ1u+ γ0(1− u)+ ε , and a0 = (µ + ε)(µ + γ1u+ γ0(1− u))− εβ . The DFE

is asymptotically stable if all the real parts of its eigenvalues are negative. By using Routh-

Hurwitz criteria, the polynomial (9) has negative real parts if a0,a1 > 0. All of our parameters

are positive, so that a1 > 0. To prove that a0 > 0, it must be

εβ

(µ + ε)(µ + γ1u+ γ0(1−u))
< 1 ⇐⇒ R0 < 1.

Hence, the DFE of model (4) is locally asymptotically stable if R0 < 1. �

3.3.2. Global Stability Analysis of DFE.

Theorem 5. The DFE of TB model in (4) is globally asymptotically stable if R0 < 1 and unsta-

ble if R0 > 1 .

Proof. Now we prove that the disease-free equilibrium point is globally asymptotically stable.

We use the following Lyapunov function for the model (4):

(10) V (e, i) = φ1e+φ2i.

where e and i are the compartments of the model (4) and the coefficient φ1,φ2 > 0 is to be

determined. Since the solutions e and i are positive, obviously V (e, i) is always positive and



10 KAMALIA, AYUMI, FATHIYAH, ALDILA

V (e∗, i∗) = 0 when e∗ = i∗ = 0. Furthermore, V (e, i) is also radially unbounded. Differentiating

the function with respect to t along the solutions of the model (4), we have

V ′(e, i) = φ1e′+φ2i′.

Replacing e′ and i′ with their the model equations in (4), we have

V ′(e, i) = φ1(β s∗i∗−µe∗− εe∗)+φ2(εe∗−µi∗− γ1ui∗− γ0(1−u)i∗).

By choosing φ1 =
ε

µ+ε
and φ2 = 1, we got

V ′(e, i) =
ε

µ + ε
(β s∗i∗−µe∗− εe∗)+(εe∗−µi∗− γ1ui∗− γ0(1−u)i∗),

=
ε

µ + ε
(β s∗i∗− (µ + ε)e∗)+(εe∗− (µ + γ1u+ γ0(1−u))i∗),

=
εβ s∗i∗

µ + ε
− εe∗+ εe∗− (µ + γ1u+ γ0(1−u))i∗,

=
εβ s∗i∗

µ + ε
− (µ + γ1u+ γ0(1−u))i∗,

= i∗(µ + γ1u+ γ0(1−u))
(

εβ

(µ + ε)(µ + γ1u+ γ0(1−u))
−1
)
,

= i∗(µ + γ1u+ γ0(1−u))(R0−1).

Since all parameters are positive, we have V ′(e, i) < 0 if R0 < 1 and (e, i) 6= (e∗, i∗). Since

V (e, i) is a function that is positive definite, radially unbounded, and V ′(e, i) < 0, we conclude

that the DFE of model in (4) is globally asymptotically stable when R0 < 1. �

3.4. Stability of Endemic Equilibrium.

3.4.1. Local Stability Analysis of EE.

Theorem 6. The EE of the TB model (4) is locally asymptotically stable if R0 > 1.

Proof. From the linearization, we obtain the following characteristic equation for EE

(11) a0λ
3 +a1λ

2 +a2λ +a3 = 0,
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where

a0 = 1,

a1 = 3µ + γ1u+ γ0(1−u)+ ε +β i†,

a2 = (µ + ε)(µ + γ1u+ γ0(1−u))− εβ s† +(2µ + γ1u+ γ0(1−u)+ ε)(µ +β i†),

a3 = (µ +β i†)((µ + ε)(µ + γ1u+ γ0(1−u))− εβ s†)+ εβ
2s†i†.

(12)

By using the Routh-Hurwitz criteria, we can analyze the local stability of EE. The cubic poly-

nomial in equation (11) has the negative real parts if all the coefficients in equation (12) are

positive and det(Hi)> 0, ∀i = 1,2,3. So, we define three matrices H as follows

H1 =
[
a1

]
,

H2 =

a1 1

0 a2

 ,

H3 =


a1 1 0

a3 a2 a1

0 0 a3

 ,
where a1,a2,a3 are coefficient that written in equation (12). Then, we know that det(H1) =

a1 > 0 and det(H2) = a1a2 > 0 because a1,a2 > 0. Meanwhile, det(H3) is positive if R0 > 1.

Hence, the EE of model(4) is locally asymptotically stable if R0 > 1. �

3.4.2. Global Stability Analysis of EE.

Theorem 7. The EE of the TB model (4) is globally asymptotically stable if R0 > 1.

Proof. Let

(13) V (s,e, i) = κ1

(
s− s†− s† ln

s
s†

)
+κ2

(
e− e†− e† ln

e
e†

)
+κ3

(
i− i†− i† ln

i
i†

)
,

be the Lyapunov function to proof the global stability of EE where the coefficient κ1 > 0,κ2 >

0,κ3 > 0 will be determined later. Notice that V (s,e, i) = 0 when (s,e, i) = (s†,e†, i†). To

establish V (s,e, i)> 0, notice that from equation (13)

κ1

(
s− s†− s† ln

s
s†

)
= κ1s†

( s
s† −1− ln

s
s†

)
,
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where κ1s† always positive. If we set x = s
s† such that

κ1s†
( s

s† −1− ln
s
s†

)
= κ1s†(x−1− lnx).

Set g(x) = x−1− lnx. Note that g(x) achieves a global minimum at x = 1 and g(1) = 0. Hence

g(x) > 0 for all x > 0 and 6= 1. So the first term of V (s,e, i) is positive. In a similar way, the

remaining two terms are also positive. V (s,e, i) is also radially unbounded. Then, we take the

derivative of V (s,e, i) with respect to t and replace s′, e′, and i′ with the model equations in (4),

we have

V ′(s,e, i) =κ1

(
1− s†

s

)
s′+κ2

(
1− e†

e

)
e′+κ3

(
1− i†

i

)
i′,

=κ1

(
1− s†

s

)
(µ−µs−β si)+κ2

(
1− e†

e

)
(β si− (µ + ε)e)

+κ3

(
1− i†

i

)
(εe− (µ + γ1u+ γ0(1−u))i).

(14)

Replacing µ with µ = β s†i†

(1−s†)
or can be rewritten with µ = µs† +β s†i†. Then, µs†−µs can be

combined with the first term in the product to yield a negative term.

V ′(s,e, i) =κ1

(
1− s†

s

)
(−µ(s− s†)+β s†i†−β si)+κ2

(
1− e†

e

)
(β si− (µ + ε)e)

+κ3

(
1− i†

i

)
(εe− (µ + γ1u+ γ0(1−u))i).

(15)

We multiply out all other products, then

V ′(s,e, i) =−µκ1
(s− s†)2

s
+κ1β s†i†−κ1β si−κ1β

s†2i†

s
+κ1β s†i+κ2β si

−κ2(µ + ε)e−κ2β
e†si

e
+κ2(µ + ε)e† +κ3εe−κ3(µ + γ1u+ γ0(1−u))i

−κ3ε
i†e
i
+κ3(µ + γ1u+ γ0(1−u))i†.

(16)

If κ1 = κ2, then κ1β si in equation (16) can be cancelled with κ2β si. Also, where we have

fractions, we multiply and divide by the equilibrium value such that



TUBERCULOSIS TRANSMISSION MODEL WITH MONITORED TREATMENT 13

V ′(s,e, i) =−µκ1
(s− s†)2

s
+κ1β s†i†−κ1β

s†2i†

s
+κ1β s†i−κ2(µ + ε)e

−κ2β s†i†
e†si
es†i†

+κ2(µ + ε)e† +κ3εe−κ3(µ + γ1u+ γ0(1−u))i

−κ3εe† i†e
ie† +κ3(µ + γ1u+ γ0(1−u))i†.

(17)

We want to combine all constant terms with all fractional terms because all constant terms

are positive and all fractional terms are negative. Notice that since κ1 = κ2 we have β s†i† =

(µ + ε)e† from the corresponding equilibrium equation of model (4). We need to choose κ3

such that

κ3(µ + γ1u+ γ0(1−u))i† = κ2(µ + ε)e†,

κ3(µ + γ1u+ γ0(1−u))
εe†

(µ + γ1u+ γ0(1−u))
= κ2(µ + ε)e†.

Hence,

κ3 = κ2
(µ + ε)

ε
.

Then, we pull out κ1β s†i† from all terms. We have

V ′(s,e, i) =−µκ1
(s− s†)2

s
+κ1β s†i†

[
3− s†

s
− e†si

es†i†
− i†e

ie†

]
+(κ1β s†−κ3(µ + γ1u+ γ0(1−u)))i+(κ3ε−κ2(µ + ε))e

(18)

Because κ3 = κ2
(µ+ε)

ε
, so the last two terms in the equation (18) are zero. We know that R0 =

εβ

(µ+ε)(µ+γ1u+γ0(1−u)) , so we can replace β in the second term with β = (µ+ε)(µ+γ1u+γ0(1−u))R0
ε

.

Then

V ′(s,e, i) =−µκ1
(s− s†)2

s
+κ1

(µ + ε)(µ + γ1u+ γ0(1−u))R0

ε
s†i†

[
3− s†

s
− e†si

es†i†
− i†e

ie†

]
By choose κ1 = κ2 = 1, and κ3 =

µ+ε

ε
, we have

(19) V ′(s,e, i) =−µ
(s− s†)2

s
+

(µ + ε)(µ + γ1u+ γ0(1−u))R0

ε
s†i†

[
3− s†

s
− e†si

es†i†
− i†e

ie†

]
The first term in equation (19) must be negative unless s = s†. We will apply Lemma 3.1 to

show that the second term is also negative.
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Lemma 3.1. Assume that x1, ...,xn are n positive numbers. Then, their arithmetic mean is

greater than or equal to their geometric mean. In particular,

x1 + x2 + ...+ xn

n
> n
√

x1...xn.

Now, let

x1 =
s†

s
,x2 =

e†si
es†i†

,x3 =
i†e
ie† .

Notice that x1x2x3 = 1. According Lemma 3.1, the arithmetic mean x is larger than the geomet-

ric mean x. Therefore,
s†

s
+

e†si
es†i†

+
i†e
ie† > 3.

Hence, the second term is negative if R0 > 1. All the parameters are positive, such that

V ′(s,e, i) < 0 if R0 > 1 and (s,e, i) 6= (s†,e†, i†). Since V (s,e, i) is a function that is posi-

tive definite, radially unbounded, and V ′(s,e, i) < 0, we can conclude that EE of model (4) is

globally asymptotically stable when R0 > 1. �

4. OPTIMAL CONTROL PROBLEM

4.1. Characterization of the optimal control problem. This section is interested at inves-

tigating optimal control measures for mitigating the transmission of TB. Let the control u(t)

represents monitored treatment given to people with active TB. Hence, the proportion of recov-

ery individual from active TB class is given by γ1u(t)i+ γ0(1− u(t))i where recovery rate γ1

will be larger than active TB who get unmonitored treatment (γ0). Hence, we have system (4)

now read as follows:

ds
dt

= µ−µs−β si,

de
dt

= β si−µe− εe,

di
dt

= εe−µi− γ1u(t)i− γ0(1−u(t))i,

dr
dt

= γ1u(t)i− γ0(1−u(t))i−µr.

(20)

Our goal is to minimize the proportion of infected individuals with TB while at the same time

maintaining effective control cost. Define the objective function to be minimized as
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(21) J =
∫ T

0
(ω1(t)e+ω2i+ωuu2)dt.

The weighting parameter ω1 is the cost associated with latent TB, ω2 is the cost associated with

active TB, and ωu is the cost of applying monitored treatment. We choose quadratic forms to

measure the control cost. We seek an optimal control û such that

(22) J(û) = min {J(u)|u ∈U},

where U = {u : a ≤ u ≤ b, t ∈ [0,T ]}. The conditions necessary for determining the optimal

controls û that satisfies will be found through Pontryagin’s Minimum Principle. We need to

define Hamiltonian for deriving the necessary conditions as,

H = f (t,xi,u)+
4

∑
k=1

λk(gi(t,xi,u)),

=(ω1e+ω2i+ωuu2)+λ1(µ−µs−β si)+λ2(β si−µe− εe)

+λ3(εe−µi− γ1ui− γ0(1−u)i)+λ4(γ1ui− γ0(1−u)i−µr),

(23)

for k = 1,2,3,4 where λk is the adjoint variables while xi describe the state variables (human

compartments) for i = 1,2,3,4. Then, taking the partial derivatives of H with respect to each

of the state variables yields the adjoint system given below

λ̇1 =−
∂H

∂ s
=µλ1 +β iλ1−β iλ2,

λ̇2 =−
∂H

∂e
=−ω1 +µλ2 + ελ2− ελ3,

λ̇3 =−
∂H

∂ i
=−ω2 +β sλ1−β sλ2 +µλ3 + γ1uλ3 + γ0(1−u)λ3− γ1uλ4− γ0(1−u)λ4,

λ̇4 =−
∂H

∂ r
=µλ4.

(24)

with transversality conditions λk(T ) = 0, k = 1,2,3,4.

The optimal control u that minimizes J over U is obtained by differentiating the Hamiltonian

function, evaluated at the optimal control and set the result equal to zero. Furthermore, we

obtain the optimal control û,

(25) û = min
{

umax,max
{

umin,
(γ1− γ0)(λ3−λ4)i

2ωu

}}
.
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4.2. The effective reproduction number Rt . In Section 3, we calculate the basic reproduc-

tion number of system (4), and give in the form of:

R0 =
εβ

(µ + ε)(µ + γ1u+ γ0(1−u))
.

When u = u(t), then we can not use the term of basic reproduction number R0 to justify

the endemic level of our model. Hence, in this section we will use the effective reproduction

number of our system (20) to justify the TB will extinct or exist when u = u(t) implemented.

Let us define the Transition (V ) and Transmission (F)matrix of system (20) as:

V =

 −µ− ε 0

ε −µ− γ1u− γ0 (1−u)

 , F =

 0 β s(t)

0 0

 .
Hence, the effective reproduction number [24] is given by

(26) Rt =
βεs(t)

(µ + ε)(µ + γ1u(t)+ γ0(1−u(t)))
.

From above expression, we have that

(27) Rt = R0(u(t))× s(t).

4.3. Numerical experiments on optimal control problem. To run the simulation in this sec-

tion, we use the following parameter values:

β = 0.2568,µ =
1

73×12
0,ε = 0.148,γ0 = 0.104,γ1 = 0.416.

With this set of parameter values, we have the basic reproduction number R0 = 2.423 > 1,

which means that TB will always spread among population and tends to the endemic equilib-

rium if the intervention do not taken place.

4.3.1. Effect of initial condition (s(0),e(0), i(0)). In this scenario, we simulate our optimal

control simulation for two different initial condition. The first initial condition represent a

condition where TB is just start to spread. We called this initial condition as endemic prevention

scenario, and the initial condition is given by:

s(0) = 0.99,e(0) = 0.005, i(0) = 0.005.
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The second initial condition represent the condition where TB is already widely spread. We

called this initial condition as endemic control scenario, and the initial condition is given by:

s(0) = 0.7,e(0) = 0.15, i(0) = 0.15.
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FIGURE 2. Optimal control results for endemic prevention scenario (red curve)

and endemic control scenario (blue curve). Panel (a) to (f) represent the dynamic

of s, e, i, e+ i, u, and Rt , respectively. Dashed and solid curve represent without

and with control implementation, respectively.
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The results are given in Figure 2 from panel (a) to (f). Red curve represent the dynamic of

compartment, control, and Rt for endemic prevention scenario, while blue curve for endemic

control scenario. From panel (a), we can see that implementation of treatment success to main-

tain the proportion of susceptible human still in a high number. On the other hand, from panel

(b) to (d) we can see that the number of infected individuals success to be reduced when treat-

ment control is given. We can see from panel (e) that a higher intensity of control needed for

endemic control scenario at the early time of simulation. On the other hand, the dynamic of

control for endemic prevention scenario is slowly increase compared to endemic control sce-

nario. With this implementation of control, the effective reproduction number can be reduced

to be smaller than one in both scenario, but slowly increase when the control intervention start

to decreases. Both scenario gives Rt at final time of simulation to be larger than one, which

indicates that endemic of TB may still occur when intervention of treatment stopped. From the

calculation of cost function J in (21), we find that cost for endemic control scenario is 0.072,

which is larger than endemic prevention scenario, i.e. 0.061.

4.3.2. Effect of initial reproduction number (R0(t = 0,u = 0)). The next simulation con-

ducted to see the impact of initial R0 at t = 0 before intervention of treatment is given. To run

the simulation, we use two different set of parameter values. The first is

β = 0.2568,µ =
1

73×12
0,ε = 0.148,γ0 = 0.104,γ1 = 0.416,

which gives us R0 = 2.423. We called this scenario as high risk scenario. The second set of

parameter values is

β = 0.1284,µ =
1

73×12
0,ε = 0.148,γ0 = 0.104,γ1 = 0.416,

which gives R0 = 1.211, 50% smaller than high risk scenario. We called this scenario as low

risk scenario. The results are given in Figure 3.
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FIGURE 3. Optimal control results for low risk scenario (red curve) and high

risk scenario (blue curve). Panel (a) to (f) represent the dynamic of s, e, i, e+ i, u,

and Rt , respectively. Dashed and solid curve represent without and with control

implementation, respectively.
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From panel (a) in Figure 3, we can see clearly that the susceptible compartment decreases

more for a high risk scenario compared to low risk scenario. Conversely, infected individuals

increases more significantly for a high risk scenario (see panel (b) to (d)). As a results, intensity

of treatment for a high risk scenario should be given higher in most of the time compared to the

low risk scenario (see panel (e)). With this implementation of control, we can see that the Rt for

low risk scenario is always smaller than one which indicates a bigger chance for TB eradication.

On the other hand, Rt for high risk scenario becomes larger than one when the time approach

the final time of simulation. As predicted, the cost for intervention for high risk scenario is

higher than the low risk scenario, where J(high risk)=0.072, while J(low risk)=0.054.

4.3.3. Effect of control weight parameters (ωu). The third simulation conducted to see the

impact of unit cost for control (ωi). For this purposes, we use parameter values as follows:

β = 0.2568,µ =
1

73×12
0,ε = 0.148,γ0 = 0.104,γ1 = 0.416,

with initial condition

s(0) = 0.7,e(0) = 0.15, i(0) = 0.15,

except ωu which varied. We choose ωu = 0.1 to represent cheap control and ωu = 0.5 to repre-

sent expensive control. The results are given in Figure 4.
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FIGURE 4. Optimal control results for cheap control scenario (red curve) and

expensive control scenario (blue curve). Panel (a) to (f) represent the dynamic

of s, e, i, e+ i, u, and Rt , respectively. Dashed and solid curve represent without

and with control implementation, respectively.
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We can see that the dashed blue and red which represent the dynamic before control is given

are the same in panel (a) to (d). On the other hand, we can see in panel (e) that the dynamic of

control for a cheap control (red) given in a higher intensity in all time of simulation compared to

the expensive control scenario (blue curve). As a results, the cost for intervention for expensive

control is 0.101, which is higher compared to the cheap control scenario which only 0.072, or

28.7% cheaper than the expensive control. Similar with previous result, we can see that the

number of infected individual can be reduced significantly, where cheap control scenario gives

a better result. The dynamic of effective reproduction number is given in panel (f), where we

can see that the Rt for cheap control is larger than expensive control scenario. The reason is

due to a higher number of susceptible individual for cheap control scenario at time t = 100

compared to expensive control scenario.

4.3.4. Effect of treatment quality (γ1). In the last simulation, we conduct a numerical exper-

iment to understand the impact of the treatment quality, which represent by γ1. Initial condition

that we used are as follows:

s(0) = 0.7,e(0) = 0.15, i(0) = 0.15,

with parameter values are:

β = 0.2568,µ =
1

73×12
0,ε = 0.148,γ0 = 0.104,

where γ1 = 0.416 represent the medium quality of treatment, and γ1 = 0.832 to represent a good

treatment quality. The results are given in Figure 5.
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FIGURE 5. Optimal control results for good treatment quality (red curve) and

medium treatment quality scenario (blue curve). Panel (a) to (f) represent the

dynamic of s, e, i, e+ i, u, and Rt , respectively. Dashed and solid curve represent

without and with control implementation, respectively.
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From Figure 5, we can see that intervention of treatment with a better quality treatment gives

a better result in reducing number of infected individuals (see panel (b)-(d)). The intensity of

treatment that been implemented is more intense for a medium treatment quality scenario as a

feedback lower recovery rate γ1 (see blue curve in panel (e)). With this intervention, we can see

clearly that Rt for a good treatment quality scenario is almost always smaller than the medium

treatment quality scenario. However, when the time close to the final time of simulation, Rt in-

creasing more rapid for the good treatment quality scenario compared to the medium treatment

quality scenario. With this scenario, we find that the cost function for medium treatment quality

is 0.072, while for the good treatment quality scenario is 0.0540.

5. DISCUSSION AND CONCLUSION

The quality of tuberculosis (TB) treatment has greatly improved recently as a result of de-

velopments in healthcare practices and medical research. To guarantee total eradication of

the germs, a series of antibiotics is administered over a certain period of time as part of the

usual treatment for tuberculosis. More patient-centric methods, more accessible medication,

and shorter, more effective drug regimens have been the main advances in tuberculosis treat-

ment.

Here we have modified a mathematical model for Tuberculosis (TB) employing a modified

SEIR framework by authors in [13]. This model intricately incorporates the proportion of in-

fected individuals who receive treatment, recognizing the crucial role of timely intervention

in controlling the spread of TB. Furthermore, the treatment fraction is represented as a time-

dependent variable within the model. This technique enables for the application of control opti-

mum theory to discover and implement solutions that minimize number of infected individuals

with optimal budget, contributing to more effective and targeted efforts toward TB eradication.

Form analytical results, when the control reproduction number is less than one, the tubercu-

losis (TB) free equilibrium shows both local and global asymptotic stability. On the other hand,

the equilibrium becomes unstable if the reproduction number is greater than one, highlighting

the crucial threshold for tuberculosis control. Additionally, it is demonstrated that the unique

endemic equilibrium is unstable when the control reproduction number is below one and locally

and globally asymptotically stable when the control reproduction number is larger than one.
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The control optimal problem has been characterized by the application of the Pontryagin

Maximum Principle [25]. The forward-backward sweep approach has been applied to success-

fully address the optimal control problem [26, 27, 28]. Numerical experiment conducted to

give a better understanding of the optimal dynamic of tuberculosis treatment under some spe-

cific scenario. Several important finding found from our numerical experiments. The potential

of treatment as a pivotal tool in controlling the widespread dissemination of Tuberculosis (TB)

is shown. Notably, the effectiveness of TB control measures is contingent on the timing and

intensity of interventions. A more robust and costlier treatment approach becomes imperative

when dealing with advanced stages of TB dissemination, underscoring the importance of early

implementation to mitigate both the spread and economic burden. Increasing intervention in-

tensity to the population’s risk, as indicated by a higher basic reproduction number, becomes

crucial. In this context, an intensified intervention is essential to reduce the effective reproduc-

tion number to below one. Moreover, the optimization of TB intervention costs is achievable

through the provision of superior yet cost-effective treatment options, emphasizing the signifi-

cance of enhancing both the quality and affordability of interventions in the fight against TB.
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