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Abstract. Hybridization in evolutionary algorithms is gaining traction, boosting convergence speed and solution

accuracy-a pivotal research focus. This paper introduces ensemble of GradiLearn with Non-Dominated Sort-

ing Genetic Algorithm-II designed to optimize the neural networks with a focus on dual objectives: enhancing

accuracy and minimizing Mean squared error. This paper implements GradiLearn, a robust approach of back

propagation with self adaptive learning learning rate. The central concept of the proposed framework involves

initiating the population through GradiLearn, rather than relying on random selection. The GradiLearn serves

as a tool to optimize weights in cases where weight represents an volatile population parameter. Subsequent to

population creation, it evolves with NSGA-II method, namely GRL-NSGA II to produce better generation. The

efficacy of GRL-NSGA II is elevated through the enhancement of individuals within the population. This article

also implements a non cooperative fitness function for the finest measure called as Accurate Classification Rate

(ACR)and Canberra distance-based crowding distance, providing an absolute measure of distance. Experimental

results highlight the proposed method’s effectiveness in addressing binary and multi-class classification challenges,

particularly with imbalanced medical datasets. Through empirical demonstration, the article establishes the mod-

els competence in reducing neural network topology while enhancing generalization performance. Comparative

analysis with various machine learning models and ensemble methods reinforces the proposed method as a robust

classifier, enhancing classification process ability.
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1. PRELIMINARIES

Artificial Intelligence (AI) involves developing computer systems that can perform tasks

requiring human intelligence. The goal is to construct machines that can replicate cognitive

capabilities and adapt to new knowledge when doing complex tasks. Machine learning (ML),

a subset of AI, allows systems to recognize patterns and predict outcomes without the need for

explicit programming. The three main types are supervised, unsupervised, and semi-supervised

learning, all of which try to improve computer performance through experience. Algorithms

such as Decision trees, Random forests, Logistic regression, Support vector machines, and Neu-

ral networks are used to handle tasks such as classification, regression, and clustering. Neural

networks (NN), which process information through interconnected nodes, play an important

part in machine learning tasks like as pattern recognition and decision-making [8].

1.1. Multi-layer Feed-Forward Neural Network. An MLFFNN, or machine learning-

optimized feed forward neural network, is designed to process information in a unidirectional

flow, moving from input through hidden layers to output. This architecture is particularly adept

at mastering complex patterns, making it well-suited for tasks like pattern recognition and clas-

sification. Techniques implemented in training include Gradient Descent, Back propagation

(BP), and Stochastic Gradient Descent. Back propagation (BPN) is a crucial approach for re-

ducing differences between actual and desired output signals by altering synaptic weights. The

addition of a bias weight adds another dimension, improving weight adjustment convergence

[29]. The BPN, which is an utilized neural network structure has its set of advantages and

disadvantages. One of its weaknesses is that it encounters difficulties when dealing with the

”scaling problem ” resulting in decreased performance when faced with high dimensional data.

Another challenge is navigating through sparse global minima within spaces. Additionally BP

has limitations when it comes to differentiable criteria or node functions which restricts its us-

age on certain nodes [23]. A layered feed forward network assures that every path from an input

node to an output node has the same number of arcs. The nth layer in this network is made up
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of nodes that are n arc traversals from an input node. Each node in layer I is connected to all

nodes in layer i+ 1 for all layers, and the network is fully connected if each node in layer I

is connected to all nodes in layer i+ 1 for all levels. Because of their effective generalization,

layered feed forward networks are popular. They are frequently used in conjunction with the

BP training algorithm, which determines optimal weights and biases efficiently. A least-squares

optimality criterion is commonly used in BP, a form of gradient search. The idea is to compute

the gradient of the error with respect to weights by propagating the error backward through the

network [21].

1.2. Emergence of Evolutionary algorithms. To tackle BPN’s limitations, there has been

evolution in optimization algorithms coupled with machine learning. MLFFNN training can

be formulated as an optimization problem. Optimization, a fundamental aspect of machine

learning, involves finding the best solution or optimal value for a given problem. Most ma-

chine learning algorithms focus on building an optimization model and learning parameters

from provided data. To alleviate the mentioned drawbacks of BPN, multi-objective optimiza-

tion is employed to enhance performance. Real-world problems often involve non-linear and

multi-objective nature, making this approach particularly relevant.

Multi-objective optimization (MOO) deals with problems having multiple objectives to opti-

mize. A MOO problem consists of q decision variables, p objective functions (to be minimized

or maximized), and constraints (m inequalities and n equalities). The goal is to find optimal

solutions considering conflicting objectives.

The goal of optimization is

Min f (x) = ( f1(x), f2(x), f3(x)... fn(x))T , p≥ 2

sub ject to gi(x) ≤ 0, i = 1,2, ...,m

h j(x) = 0, j = 1,2, ...,n

(1)

Such as m, n is the inequality and equality constraints respectively where x = (x1,x2,x3, ...,xq)

is a q-dimensional decision vectors x ⊆ Rq, f is the n-dimensional objective vector in R. In

the era of vast data, evolutionary optimization algorithms significantly impact the adoption of

machine learning models. Various efficient optimization techniques have been proposed to



4 B. SAI LAKSHMI, G. GAJENDRAN

advance machine learning, notably improving effectiveness and efficiency. The Evolutionary

Algorithm (EA) mimics nature’s evolutionary process, working with a population of solutions

in each iteration. This is particularly beneficial for Multi-Objective Optimization Problems

(MOOP), where EAs can yield multiple optimal solutions in one simulation run. In contrast

to back propagation, genetic algorithms typically do not face the same scaling issues. One key

factor is their tendency to consistently enhance the current best candidate. This is achieved

by retaining the top-performing individual within the population while exploring for superior

candidates. Additionally, genetic algorithms are generally immune to the challenges posed by

local minima. The mutation and crossover operators enable them to navigate from one valley

to another, potentially reaching a lower point without the hindrance of descending directly into

a valley. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is a popular example,

emphasizing the need of discerning diverse solutions with varying objective values in Multi-

Objective Optimization Problems (MOOP) [5].

1.2.1. Basic Structure of NSGA II. NSGA-II enhances the NSGA algorithm by incorporat-

ing an improved sorting algorithm, elitism, and eliminating niche requirements. The process

begins with a randomly initialized population, which is sorted using non-domination to create

hierarchical fronts. Crowding distance values, determined by proximity in the objective space,

guide the selection process. Recombination and mutation operators are then applied to gener-

ate offspring from parent solutions. This iterative cycle persists until a termination criterion is

satisfied. In each generation, the offspring and current population are merged. Elitism ensures

the preservation of the best solutions, and non-dominated sorting shapes the new generation.

If the population surpasses the current size, solutions are chosen based on crowding distance.

This entire process repeats for subsequent generations [22]. The paper is organized into 6 sec-

tions. Section 2 highlights relevant papers on multi-objective neural network training, offering

background information on selected MLFFNN training methods. In Section 3, the proposed

GRL-NSGA II for MLFFNN generalization is detailed, including objectives and constraints.

Sections 4 focus on the dedicated discussion of the multi-objective optimization problem, an

ensemble approach of BPN and NSGA-II with some modifications. Section 5 outlines experi-

mental results before the conclusion.
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2. RELATED WORKS

Evolutionary computing is expansively applied to neural networks, facilitating the optimiza-

tion of crucial elements like activation functions, hyper-parameters (including learning rates),

architectural aspects (comprising layer count and neuron distribution), and even the learning

rules. In supervised learning, machine learning often involves multiple objectives. MLFNN

training is an optimization problem where defining the right objective function is crucial for

optimal weight selection. Once the optimization model is formulated, various algorithms can

be used, from classical methods like back-propagation (BP) [24] to advanced approaches like

genetic algorithms (GA) [7]. In literature, numerous MLFNN training approaches propose us-

ing mean square error (MSE) as the optimization model’s objective function. However, solely

minimizing training error may lead to over fitting. Some works introduce constraints to control

network connections and neurons [3]. The process yields an optimized neural network archi-

tecture. The learning model must not only achieve favourable approximation performance on

the training data but also on unseen data from the same problem. Addressing the limitations

of classical methods in handling multi-objectivity, a new approach was explored: the Pareto-

based approach [10]. This approach views the objective function as a vector [6]. More papers

are adopting a multi-objective approach for MLPNN learning. The initial model in this con-

text, proposed by G. Liu and V. Kadirkamanathan [15], considers three different performance

indices as objectives for the multi-objective model. Additionally, Ricardo H. C. Takahashi et

al., [1] balanced the training error (MSE) and connection weights during training to enhance

MLP generalization. K. Senhaji et al. propose a multi-objective modelling problem with two

objectives: accuracy and complexity, given the inherently multi-objective nature of the learning

problem. The learning task involves simultaneously minimizing both objectives using NSGAII

(Non-dominated Sorting Genetic Algorithm II) as a solver, based on the Pareto domination

concept [27].
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3. MAIN RESULTS

3.1. Proposed Conglomerate of GradiLearn with NSGA-II. The training of MLFFNN is

approached as an optimization problem, with a focus on defining an objective function to mini-

mize MSE and improve accuracy. This article introduces GRL-NSGA-II, a novel approach in-

spired by existing hybrid models, aiming to overcome their limitations. The proposed ensemble

model, combining GradiLearn with NSGA-II (GRL-NSGA II), merges a learning rate-adapted

back propagation from GradiLearn with the genetic algorithm NSGA II. GradiLearn incorpo-

rates a self-adaptive learning rate in back propagation, and the fitness function is designed to

enhance classification accuracy. In contrast to NSGA II’s random population initialization,

our approach uses GradiLearn to create the initial population. Following population creation,

the model progresses through the steps of NSGA II. Building an ensemble model like GRL-

NSGA-II presents technical challenges, including optimizing hyper parameters and defining

the network architecture. The primary focus lies in defining an appropriate objective function

for (1), as it effectively encapsulates the weight selections. Let us elaborate in the section 3.2 as

follows:

3.2. Objective Function. When modelling MLFFNN, minimizing Mean Squared Error

(MSE) is a primary objective. It serves as a significant function by steering the training process

towards attaining greater accuracy and diminishing the discrepancies between predicted and

actual values.

In ANN, a given set of inputs x̄ ∈Rn has a corresponding label value y ∈R, the collection P

comprising all possible compact set of patterns of variation (x̄,y).

For an initial value v̄ ∈R(n+1)h+h+1, an ANN with a hidden layer having h+ 1 neurons on

learning set Ql is defined as N(v̄, x̄) and primary objective of modelling is to discover v̄∗ ∈

R(n+1)h+h+1 such that N(v̄∗, x̄)∼= y.

In general, the sequence {N(v̄i, x̄p)/p = 1,2, ...,P}∞
i=1 converges to {N(v̄∗, x̄p)/p =

1,2, ...,P}, where P is the number of elements in Ql .

(2) f1 =
1

2P

P

∑
p=1
{yp−N(v̄i, x̄p)}2
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here p = 1,2, ...,P and also equation (2) is the residue between yp, the actual output and

N(v̄i, x̄p), the predicted output at v. In general, the sequence {N(v̄i, x̄p)/p = 1,2, ...,P}∞
i=1 con-

verges to {N(v̄∗, x̄p)/p = 1,2, ...,P} where P is the number of elements in Ql .

Whenever the network system use the class value y ∈ R for each input x̄ ∈ Rn, then the

model {N(v̄i, x̄p)/p = 1,2, ...,P} suffers generalization. Inherently, using MSE (2) alone as an

objective function fails to produce the most optimal results N(v̄∗, x̄p)/p = 1,2, ...,P. For any

real world problem, minimizing the prediction error is very much important. By incorporating

Directional change statistic Dstat , the second objective has been proposed aims to minimize

MSE and improve accuracy.

(3) f2 =
1

2P

P

∑
p=1

ap ∗100

where

ap =


1 i f {(yp+1− yp)∗ (N( ¯vi+1, x̄p)−N(v̄i, x̄p))}> 0

0 otherwise

Above equation (3), min(f2) is used to measure how well a predicted output N(v̄i, x̄p) is closer

to actual output yp. Here P is number of patterns in the neural network. Generally, the value of

f2 lies in between 0 and 1. f2 = 0 means that yp = N(v̄i, x̄p) for all observations and there is a

perfect fit and f2 = 1 means that the performance is under fit.

3.2.1. Proposed non cooperative objective function. This proposed work utilizes the Accurate

Classification Rate (ACR) as the finest measure for the fitness function in obtaining classifica-

tion models.

The ACR measure is given in the following expression:

(4) ACR =
1

2P

N

∑
i=1

Pii

where in (4), N is the number of classes, P is the number of patterns in the dataset, and Pii is the

number of patterns from the ith class that are correctly classified in that class.
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3.2.2. To define inequality constraints. In the context of learning in Back propagation Neural

Network (BPN), the process can face challenges of getting trapped in local minima, particularly

when the determinant value of the Jacobian matrix linked to the outputs of neurons in the hidden

or output layers nears zero. To overcome this issue, a suggested optimization approach entails

choosing the Jacobian matrix through the imposition of an inequality constraint, as outlined

below:

ζk(J) =


1 i f ‖J‖ ≥ d

0 i f ‖J‖ ≤ d
,

such that c is the constrained range of interval, 0.1 ≤ d ≤ 0.9, k =1,2-layer label and J is a

Jacobian matrix of gradients of weight vector, where the criterion function min f = ( f1, f2)

depends on v̄ = (vih,vho) or vi j

To avoid the total elimination of updating the weight, at least one neuron to be kept in the kth

layer. by using above equation the constraint for equation 1 is defined as

(5) ∑ζk(J)≥ 1

So defined objective function (2) and (3) on multi objective optimization problem (1) with the

inequality constraint (5).

The equation (1) Multi objective MLFFN training model is defined as follows:

(6)



min f1 (v,η ,ζ )

min f2 (v,η ,ζ )

subject to∑ζ (J)≥ 1; k = 1,2 layer label

v =
(

vk
i j

)
; k = {0,1} ; 1 6 i 6 {n0,P} ; 1 6 j 6 {P,n}

η = (ηi) ; 1 6 i 6 P

4. A HYBRID OF GRADILEARN WITH NSGA-II

Our proposed model begins with population initialization using proposed GradiLearn ap-

proach, tackling the challenge of creating an effective and optimal initial population. The
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GradiLearn approach is one which combines a self-adaptive learning rate to enhance the per-

formance of traditional back propagation.

4.1. Adaptive GradiLearn based Initial Population. NSGA-II excels in solving complex

multi objective optimization problems. In the realm of evolutionary computation, population

scaling is crucial, a subset of solutions in the current generation. Random population generation,

considering factors like search space, fitness function, diversity, and more, can boost solutions,

especially with a larger population. However, initializing based on conventional BPN has draw-

backs. Our approach balances population size for better solutions, providing the algorithm with

an optimal number of chromosomes, each encoding a potential problem solution. The general

form of Population will be

(7) Pi = {vi/vi ∈ R}

In (7) weight vector vi serves as a pivotal element in the optimization process through GRL-

NSGA II. Initially, this vector is conceived as an ensemble of components drawn randomly

from the population associated with the target population elements.

To initiate training of a model, a random weight vector v1 is selected from the neural network.

Subsequently, the initial weights undergo modification under proposed self adaptive learning

rate. In this process, vi is regarded as a fundamental hyper parameter, and its values are refined

through successive iterations of GradiLearn approach.

The initial population parameters are now explicitly defined, selected from the specified range

of intervals below.

P1 = {v1/vi ∈ Rn, i = 1,2, ....n}

The slope of yp layer is almost parallel to xp and least at every point of the interval ranges

from [−∞,∞], where initial learning of MLFFNN gets slow. It is important to initialize some

neurons in the proposed interval xp ranges from −3.4≤ xp ≤ 3.4.

For any real number r > 1, choice of weight vector (v1) lies between[
−q
√

l
(m+1)max‖xu−xv‖2

,q
√

l
(m+1)max‖xu−xv‖2

]
where (u,v) ∈ P and xu,xv ∈ xp , where l is user

adaptive fixed constant and fixed value for q = 6.8.
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This standard approach applies to all neurons in the MLFFN. It entails using an analytical

presentation to initialize the weight vectors depending on their corresponding input vectors,

transforming the MLFFN architecture into a mapping or function, also known as mapping rep-

resentation. The major goal of this mapping representation is to ensure that the MLFFN can

generate output values that fall inside the specified desired output interval.

For an initial weight v̄1 ∈ R(n+1)h+h+1 and the input vector x̄ ∈ Ql , and{
N(v̄1, x̄p)/p = 1,2, . . . ,P

}
a NN with a hidden layer having h + 1 hidden neurons on

training set from input vector Ql and it is a first population. The updation of weight vector is

dependent on a learning rate that transports learning information to weight encoded in network

and has a positive impact on producing superior generation. For all proposed initialized weight

components v0, the weight updated rule for this model is formally given by

(8) vi+1 = vi−ηi−1∆vi

where in (8), ∆vi is the rate of change of f1 with respect to fi where ∆v = ∂ f1(v)/∂v. The

updation of weight rule is sensitive to the hyper parameter η , is the learning rate and our pro-

posed self adaptive learning rate is discussed below: To find the next generation, the second

population weight vector v2 is generated using initial learning rate η0 on conventional BPN.

4.1.1. Self-Adaptive learning rate. In the process of generating the subsequent population

weight vector, this article introduces an enhanced variant known as GradiLearn. This modifi-

cation involves the incorporation of an Self-Adaptive learning rate , denoted as η (the learning

parameter that imparts information to the next generation). The proposed adaptation of the

learning parameter is founded on its inherent capacity to acquire knowledge.

In gradient descent learning algorithms like error back propagation, the learning rate param-

eter plays a crucial role in influencing generalization accuracy. To enhance generalization ac-

curacy, especially in dealing with large and intricate problems, a noteworthy strategy involves

diminishing the learning rate beyond the threshold that yields the fastest convergence. Sur-

prisingly, even with a relatively modest learning rate, optimal generalization accuracy can be

attained with a minimal number of epochs.
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The dynamics of the population structure can be significantly updated through the process

of learning. Therefore, we expound on the concept of learning. In this context, each weight

vector encapsulates its unique information, and this is denoted as the learning rate. Selecting

the optimal learning rate poses a challenge, mainly due to the non-monotonic nature of the

process. To ensure that all weight components minimize the error function through the on-line

learning method, our proposed model for the learning rate is outlined as follows:

Let
{

N(v̄i, x̄p)/p = 1,2, . . . ,P
}

be the set of NN corresponding to epochs, where

{N(v̄∗, x̄p)/p = 1,2, ...,P} is updated network of proposed model.

Consider AEAt and AEBt as the absolute errors of all patterns generated by{
N(v̄i, x̄p)/p = 1,2, . . . ,P

}
after and before learning, respectively. But due to non-monotonic

nature, the NN may diverges. To circumvent this issue, if AEBt < AEAt , then AEAt should not

surpass 3AEBt ; otherwise, proposed GradiLearn stops the learning process. In light of this,

considering an initial learning rate η0 close to zero, the proposed learning rate can be expressed

as:

(9) η(t +1) =


0 i f

{
N(v̄i, x̄p)

}∞

i=1 converges to N(v̄∗, x̄p)

η(t)+b+ r AEAt
3∗AEBt

i f 0 < AEAt
3∗AEBt

< 1
3

η(t)−b− r AEAt
3∗AEBt

i f AEAt
3∗AEBt

> 1
3

The learning process commences with an initial learning rate, denoted as η0 = 0.00009. In the

learning phase of real-world problems, our devised model dynamically tunes the learning rate

using the equation with parameters b = 0.001 and r = 0.001. This adaptive approach facilitates

the algorithm in efficiently minimizing errors. The suggested learning rate leverages informa-

tion by assessing the learning capability of GradiLearn. Throughout the learning process, it

functions as a self-regulating and adaptive learning rate, aiming to control the non-monotonic

behaviour of GradiLearn to the maximum extent[25].

Creating population using equation (8) and (9) tailored to the demands of the real-world

problem at hand. The size of this population is contingent upon the elements of the matrix

(vectors) associated with the given real-world problem. In our approach, generating population

size to accommodate all data samples, capped at 50.
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After initializing the weight vector using learning rate, the network initiates GradiLearn,

aiming to minimize the mean squared error as its primary objective. Subsequently, it adheres

to the conventional NSGA-II procedure to generate improved offspring, with the ultimate goal

of converging the mean squared error towards zero and also to generate offspring population

solutions. To proceed with NSGA-II algorithm, the initial population is combined with the

offspring population.

4.2. Non-dominated sorting. After initial population, utilize non-dominated sorting to select

best solutions using concept of Pareto optimality. Pareto optimal is calculated at each epoch

using cost function f1 and f2.

The solution x1 dominates the other solution x2 if it satisfies the condition where, for all ob-

jectives, x1 is at least as good as x2, and for at least one objective, x1 is strictly better than

x2:

fi(x1)≤ fi(x2) f or all i = 1,2, . . . ,n

fi(x1)≤ fi(x2) f or atleast one i = 1,2, . . . ,n

Where n denoting the number of objective functions and fi(x) representing the ith value of an

objective function for decision vector x, the relation is such that x1 dominates x2. A solution x

from the solution space (i) is not dominated by any other feasible solutions, it is called a Pareto

optimal solution. The collection of all Pareto optimal solutions is denoted as a Pareto set,

and the corresponding objective vector defines a Pareto front. Then
{

N(v̄i, x̄p)/p = 1,2, ...,P
}

converges to
{

N(v̄∗, x̄p)/p = 1,2, ...,P
}

using Pareto optimality.

4.3. Canbera distance based Crowding Distance Algorithm (CB-Dist based Crowding

Distance Algorithm). Perform non-dominated sorting on the population, assigning a rank

value to each network based on its non-dominated level. Furthermore, this paper introduces

an innovative method for computing the Crowding Distance measure based on CB-Dist for

each individual. The CB-Dist based Crowding Distance of each point in the front Fr is deter-

mined using the following algorithm:

Step 1: Assign 0 to the corresponding CB-Dist Crowding Distance, for every solution in the set

Fr.
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Step 2: Arrange the set in descending order of the worse adjustment of fm, for each objective

function fm,m = 1,2, . . .M.

Step 3: Assign an infinite distance to the boundary solutions Dr(1) = Dr(l) = ∞(1) is the

first solution and l is the last one in the front Fr(after sorting). Then, for all other solutions

i = 2, ..., l−1 Assign:

(10) Dr(i) = Dr(i)+
| f r

m(i+1)− f r
m(i−1) |

| f max
m | − | f min

m |

Such as:

Fr The rth Pareto set;

f r
m (i+1) is the mth objective function value of the (i+1) solution in the set Fr;

f r
m (i-1) is the mth objective function value of the (i-1) solution in the set Fr

f max
m is the maximum value of the mth objective;

f min
m is the maximum value of the mth objective;

The aggregate CB-Dist based Crowding Distance (10), denoted as Dr(i) , is the summation of

the crowding distances of solution i concerning each objective.

4.4. Crowded Tournament Selection Operator. To determine candidates for the next gen-

eration, the NSGA-II uses tournament selection based on crowding distance criteria. Non-

domination rank irank and crowding distance i are used to evaluate each member in the popu-

lation. It can be defined as follows:

f (irank ≤ jrank)or(irank = jrank)and(icr ≤ jcr)

In the event that two randomly selected solutions, i and j, share the same non-dominated rank

(ri = r j), the one with the higher crowding distance value is selected. If their crowding distances

are identical, the choice is determined by rank, giving preference to the solution with the lower

rank. This method safeguards population diversity and mitigates premature convergence.

Following with tournament selection, the optimal candidate solution is chosen, and genetic

operators such as crossover and mutation are subsequently applied.
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4.5. Genetic operators. The offspring cohort, which results from the parental selection pro-

cess, lays the framework for the creation of a new group of individuals. Furthermore, the off-

spring population is divided into two segments, each of which is subjected to either crossover

or mutation operations. There is an extensive number of created crossover and mutation pro-

cedures in the literature, and this article focuses on the operators that are specifically geared to

handle our unique problem.

4.5.1. Crossover. The proposed method employs a crossover scheme inspired by the binary

crossover namely simulated binary crossover(SBX crossover) observed in nature. This tech-

nique is applied individually to each variable.

Simulated Binary Crossover. To calculate the offspring the formulation is as follows:

C1,k = 0.5(1+αk)f1,k +(1−αk)f2,k

C2,k = (1+αk)f2,k +0.5(1−αk)f1,k

Such as fi,k is the selected parent, Ci,k is the ith child with kth component. To calculate αk using

below formulation:

αk =


(2µ)

1
r+1 , i f r < 0.5

( 1
2(1−µ))

1
r+1 , otherwise

where r is the index of user defined distribution(positive) and 0 < µ < 1 To compute function

of αk, using probability distribution:

f (αk) =


0.5(r+1)αr, i f α ≤ 0.5

0.5(r+1) 1
αr+2 , otherwise

The utilized crossover rate is 0.7. Crossover does not directly enhance the likelihood of discov-

ering the optimal solution within a given set. However, it plays a crucial role in accelerating the

convergence speed toward a potential optimal solution during the search process. Considered

a convergence operator, crossover acts as a pivotal step in steering the population towards the

optimum value.
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4.5.2. Mutation. Mutation is not ubiquitous in the evolutionary process. When there is a lack

of diversity among individuals, the population is reinitialized to avoid premature convergence

or stagnation in the search. Only the best individuals are retained in the new population. The

mutation technique employed is described as follows

f (i) = C (i)+(α−0.5)∗14

f (i) is the selected parent, C (i) is the obtained child and αk is a chosen by a uniform distribution

in [0,1] randomly. Implementing a basic mutation involves exchanging values among randomly

selected genes. The genes chosen for permutation are determined based on a specified mutation

rate (0.4).

4.6. Replacement. NSGA-II utilizes an elitist algorithm, employing a steady-state population

replacement approach. This involves combining the offspring population with the current pop-

ulation to fulfil niching requirements. Moreover, a non-dominated ranking strategy is applied

to choose the leading N individuals (with N denoting the population size) from this merged

population. These selected individuals subsequently serve as the foundation for generating the

next generation of the population.

4.7. Stopping criteria. Our algorithm employs the attainment of an optimal number of itera-

tions as a stopping criterion, ensuring the best convergence rate.

5. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, performed range test for our proposed approach using standard benchmark

data sets from the University of California Irvine (UCI) machine-learning repository. We chose

4 classification problems with imbalanced data sets: Breast cancer, Cryotherapy, Heart, Im-

munotherapy. The data set is utilized to test the ability of the proposed model. Additionally, all

the benchmark data sets are normalized to same scale [0,1]. The performance evaluation was

carried out in MATLAB 2023 software. The discussion about the data set and training method

given below in detail for each data set separately. Table 1 represents overview of used data set

characteristics: the number of instances, number of components, class and their imbalance ratio
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are mentioned. For model construction and validation, this article employed a neighbourhood-

based approach to partition the datasets into feasible ratio. This strategic division aimed to

enhance the model’s overall performance [18].

TABLE 1. Pre-Processing of Dataset

Data sets Instances Components Class Imbalance ratio Threshold Learning set Testing set

Breast Cancer 569 30 2 1.68396 0.3982 303 266

Cryotherapy 90 7 2 1.14285 0.5439 48 42

Heart 303 13 2 1.19565 0.5386 230 73

Immunotherapy 90 8 2 3.7368 0.6712 63 27

5.1. Breast cancer Data set. Breast cancer is the world’s second largest cause of female

mortality. Early detection is critical, and advanced machine learning algorithms are being used

by researchers to make accurate predictions. The Wisconsin Breast Cancer Dataset (WBCD)

from the UCI repository, with 569 instances and 30 features, served as the training set. It’s

noteworthy for its completeness with no missing values. Out of 569 cases, 357 are benign, and

212 are malignant, providing a robust dataset for assessing machine learning efficacy in breast

cancer prediction[28].

5.1.1. Performance evaluation of GRL-NSGA II. After pre-processing of data, Performance

of proposed method evaluated by various statistical measures to substantiate our model’s stabil-

ity and it is given in Table 2.

TABLE 2. Performance metrics of proposed GRL-NSGA II

Accuracy Precision Recall Specificity AUC F-Score G-Means MCC Kappa No.of Gen

99.649 99.0566 100 99.4429 99.7215 99.5261 99.7211 0.9925 0.9925 2

The performance of each benchmark dataset and experimental results underscores the robust-

ness and benefits of our proposed model. Table 3 presents the performance of our method in

comparison to other established machine learning models and hybrid models.
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TABLE 3. Performance comparison of various prediction methods in the Breast cancer Dataset

Method Accuracy F-Score Precision

LR [28] 96 - -

NB [28] 96.61 - -

SVM [28] 97 - -

DT [28] 95.81 - -

CNN [28] 99 - -

Voting classifier [28] 98.77 - -

MLP [28] 98 - -

RF [28] 97.66 - -

XGBoost [28] 98.24 - -

KNN [28] 94.35 - -

Hybrid crowded Pearson [14] 92.31 - -

Pearson correlation [14] 92.47 - -

FCA [14] 98.255 - -

Hybrid SVR using NSGA II [30] 99.07 99.04 0.97

BSO-CV [13] 99.30 - -

Proposed GRL-NSGA II 99.649 99.5261 99.0566

The above table represents GRL-NSGA II classifier represents an enhanced iteration of the

pre-existing model, designed categorizing unfamiliar observations through a completely in-

novative approach. Consequently, this paper assessed the effectiveness of GRL-NSGA II in

identifying breast cancer using best-performing classifiers. (i) K.M.M. Uddin et al. 2023 (var-

ious alforithms) (ii) Abdesslem Layeb., 2023 (Hybrid crowded pearson, Pearson correlation,

FCA) (iii) Mohammad Hossein) Zangooei et al., 2014 (Hybrid SVR using NSGA II)(iv) R. Abu

Khurma et al. 2023 (BSO-CV). In the context of this comparative analysis, distinct software

implementations of these classifiers are factored. Remarkably, GRL-NSGA II outperforms the
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aforementioned classifiers. As indicated in the provided table, GRL-NSGA II achieves excep-

tional results with the highest Accuracy, Precision, and F-measure reaching values of 99.649,

99.5261, and 99.05660 respectively in the Breast cancer dataset.

5.2. Cryotherapy. Warts, non-cancerous tumors on the skin, are often treated with Cryother-

apy applying extreme cold to eliminate abnormal tissue. Data from a dermatology clinic in Iran

(UCI Machine Learning Repository) covers 90 patients’ response to Cryotherapy. Sessions, up

to ten with one-week intervals, were recorded. If not cured, other methods were explored. The

dataset features seven factors, with the outcome variable being Cryotherapy effectiveness. Of

90 patients, it worked for 48, and for 42, it did not. The response variable distribution is bal-

anced (53.3% positive, 46.7% negative). Success rates differ by gender, with Cryotherapy more

effective for males (57.4%) than females (48.8%) [17].

5.2.1. Performance evaluation of GRL-NSGA II. After pre-processing of data, Performance

of proposed method evaluated by various statistical measures to substantiate our models stability

and it is given in Table 4.

TABLE 4. Performance metrics of proposed GRL-NSGA II

Accuracy Precision Recall Specificity AUC F-Score G-Means MCC Kappa No.of Gen

97.778 97.9167 97.9167 97.6190 97.7679 97.9167 97.7677 0.9554 0.9554 4

Performance of the individual benchmark data set and experimental results signifies the ro-

bustness and advantage of our proposed model. Table 5 shows the performance of proposed

method compared with other existing machine learning models and hybrid models.
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TABLE 5. Performance comparison of various prediction methods in the Cryotherapy Dataset

Method Accuracy F-Score AUC score Precision Recall

MLP [17] 93.3 93.6 - 91.7 95.7

SVM [17] 92.2 92.3 - 87.5 97.7

CVM [17] 97.8 97.9 - 97.9 97.9

k-NN [17] 93.3 93.8 - 93.8 93.8

BLR[17] 91.1 91.3 - 87.5 95.5

CART[17] 89.22 - - 88.57 89.79

LDA [17] 86.67 - - 89.05 84.59

GNC [4] 95.03 - - - -

Pruned FNN [11] 88.64 - 0.89 0.86 0.93

FNN [11] 85.75 - 0.85 0.80 0.90

P-dist TWSVM [26] 94.4444 95 - - -

Proposed GRL-NSGA II 97.778 97.9167 97.7679 97.9167 97.9167

The GRL-NSGA II classifier is an advanced evolution of the existing model, engineered to

classify unfamiliar observations using a completely novel approach. In this context, we evalu-

ated the efficacy of the GRL-NSGA II in precisely differentiating instances within the Cryother-

apy dataset, leveraging high-performing classification techniques. (i) Y. Chen, X. Zhang, Y.

Zhuang et al. 2023 (GNC) (ii) G Augusto Junio Guimarães et al., 2019 (Pruned FNN, FNN)(iii)

Yashik Singh., 2021 (MLP, SVM, CVM, KNN, BLR) (iv) Md Mamunur Rahman et al., 2019

(CART, LDA) (v) Sai Lakshmi B & G.Gajendran (P-dist TWSVM) 2023. In the scope of this

comparative examination, diverse software realizations of these classifiers are taken into ac-

count. Notably, when juxtaposed with the classifiers mentioned earlier, GRL-NSGA II exhibits

superior performance. As emphasized in the provided table, GBPNSGA-II achieves notewor-

thy results, achieving Accuracy, F-score, AUC score, Precision, and Recall values of 97.778,

97.9167, 97.76785, 97.9167, and 97.9167 respectively on the Cryotherapy dataset.
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5.3. Heart-Cleveland. Cardiovascular disease stands as the primary global cause of death.

However, enhancing patient survival rates and reducing fatality rates can be achieved through

early diagnosis and prognosis. Unfortunately, the shortage of radiologists and doctors in many

countries poses a significant obstacle to early detection. The predominant dataset utilized in

numerous research papers is sourced from the University of California, Irvine (UCI) Center for

Machine Learning and Intelligent Systems. This dataset comprises four databases from dis-

tinct hospitals, each sharing a common set of 14 features but varying in the number of records.

Specifically, the Cleveland dataset, one of the four, encompasses 303 instances, with 164 corre-

sponding to normal patients and 139 to those with heart conditions [2].

5.3.1. Performance evaluation of GRL-NSGA II. After pre-processing of data, Performance

of proposed method evaluated by various statistical measures to substantiate our models stability

and it is given in Table 6.

TABLE 6. Performance metrics of proposed GRL-NSGA II

Accuracy Precision Recall Specificity AUC F-Score G-Means MCC Kappa No.of Gen

97.6897 97.5757 98.1707 97.1223 97.6465 97.8723 97.6451 0.9534 0.9534 7

Performance of the individual benchmark data set and experimental results signifies the ro-

bustness and advantage of our proposed model.

Table 7 shows the performance of proposed method compared with other existing machine

learning models and hybrid models.
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TABLE 7. Performance comparison of various prediction methods in the Heart Dataset

Method Accuracy Precision Recall

NB [2] 86.4198 - -

ANN ensemble [2] 89.01 - -

DT [2] 85 - -

KNN [2] 97.4 - -

SVM & RBF [2] 86.42 - -

BPNN [16] 96 95 95

ELM-NN [16] 87 - -

GA-SVM [16] 88 - -

PSO-FFBP [16] 92 92 93

DT-NN [16] 78 - 78

NSGAII [9] 91.6 - -

Hybrid Ann-NSGA II [19] 93.2 - -

P-dist TWSVM [26] 84.2975 - -

Proposed GRL-NSGA II 97.6897 97.5757 98.1707

The GRL-NSGA II classifier signifies a sophisticated progression from the present model,

created to categorize the provided instances using a completely novel approach. In this par-

ticular context, we evaluated the efficacy of the GRL-NSGA III in precisely discerning cases

within the Heart - Cleveland dataset, utilizing leading classification techniques. (i) Maryam I.

Al-Janabi 2018 (NB,ANN ensemble, DT, KNN, SVM & RBF) (ii) Samir Malakar et al., 2015

(BPNN, ELM-NN, GA-SVM, PSO-FFBP, DT-NN) (iii) Ashraf Mohamed Hemeida et al., 2018

(NSGA II) (iv) S Mane et al., (hybrid NSGA II and ANN) 2016. Within the context of this

comparative analysis, various software implementations of these classifiers are considered. Re-

markably, when compared to the previously mentioned classifiers, GRL-NSGA II demonstrates

superior performance. Highlighted in the provided table, GRL-NSGA II attains remarkable
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outcomes, with Accuracy, Precision, and Recall values of 97.6897, 97.5757, and 98.1707, re-

spectively, when applied to the Heart - Cleveland dataset.

5.4. Immunotherapy. Human Papillomavirus (HPV) infection triggers the formation of

warts, often on the hands and feet, posing challenges in later-stage treatment. Literature re-

view reveals diverse proposed treatments, highlighting a key challenge: tailoring treatments for

individual patients. This variability makes it hard to identify optimal approaches for faster re-

covery and personalized treatment. Authors, in their experimentation, utilized Immunotherapy

datasets from UCI, featuring detailed information on 8 attributes for a total of 90 patient in-

stances. These 8 features play a crucial role in understanding and analysing immunotherapeutic

responses against HPV [11].

5.4.1. Performance evaluation of GRL-NSGA II. After pre-processing of data, Performance

of proposed method evaluated by various statistical measures to substantiate our models stability

and it is given in Table 8.

TABLE 8. Performance metrics of proposed GRL-NSGA II

Accuracy Precision Recall Specificity AUC F-Score G-Means MCC Kappa No.of Gen

93.333 97.1831 94.5205 88.2353 91.3779 95.8333 91.3239 0.7937 0.7918 6

Performance of the individual benchmark data set and experimental results signifies the ro-

bustness and advantage of our proposed model. Table 9 shows the performance of proposed

method compared with other existing machine learning models and hybrid models
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TABLE 9. Performance comparison of various prediction methods in the Immunotherapy Dataset

Method Accuracy F-score AUC score Precision Recall

Pruned FNN [11] 84.32 - 0.69 0.97 0.41

FNN [11] 81.91 - 0.65 0.94 0.36

MLP [11] 78.02 - 74 0.88 0.60

J48 [11] 83.92 - 0.71 0.91 0.52

NB [11] 76.67 - 0.69 0.87 0.51

ZR(Zero rule)[11] 79.13 - 0.50 0.50 0.50

RT(Random tree)[11] 81.24 - 0.74 0.94 0.54

SVM [12] 78.9 88.2 - 62.2 78.9

KNN [12] 70 69.6 - 68.2 70

Binary Logistic regression [12] 85.0 91.6 - 100 84.5

Bayes net [12] 85.5556 - - - -

FURIA [12] 82.2 - - - -

RF [12] 86.7 - - - -

C5.0 DT [20] 93.324(Test) & 88.13(Train) - - - -

Proposed GRL-NSGA II 93.333 95.8333 91.3779 97.1831 94.5205

The GRL-NSGA II classifier signifies a sophisticated progression from the present model,

created to categorize the provided instances using a completely novel approach. In this par-

ticular context, we evaluated the efficacy of the GRL-NSGA II in precisely discerning cases

within the Immunotherapy dataset, utilizing leading classification techniques. (i) G Augusto

Junio Guimarães et al., 2019 (Pruned FNN, FNN, MLP, J48, NB, ZR, RT) (ii) Sabita Khatri1

et al., 2018 (SVM, KNN, BLR, BN, FURIA) (iii) Maad M. Mijwil et al., 2021 (C5.0 Decision

Tree). Within the context of this comparative analysis, various software implementations of

these classifiers are considered. Remarkably, when compared to the previously mentioned clas-

sifiers, GRL-NSGA II demonstrates superior performance. Highlighted in the provided table,

GRL-NSGA II attains remarkable outcomes, with Accuracy, Precision, and Recall values of

93.333, 95.8333, 91.3779, 97.1831 and 94.5205 respectively when applied to the Immunother-

apy dataset.
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6. VISUAL REPRESENTATION OF PROPOSED GRL-NSGA II

Graphical representations provide a visual overview of complex models, making it easier

for individuals to grasp the structure and relationships within the model. This visual clarity is

especially important when dealing with intricate and imbalanced data. It is also a fundamental

aspect of the modelling process that enhances understanding, communication, and decision-

making.

(A) Breast cancer (B) Cryotherapy

(C) Heart-Cleveland (D) Immunotherapy

FIGURE 1. Pareto Front defining trade off between conflicting objectives

Figure 1 illustrates the Pareto fronts, delineating the trade-off between conflicting objectives.

In the second subplot, the waterfall plot visualizes the region of the decision space where the

Pareto optimal solutions are selected. Along the x-axis, it have the first objective, the y-axis

represents the second objective, and the z-axis indicates the data number.

Figure 2 represents box plot, also known as a box-and-whisker plot, is a graphical repre-

sentation that provides a summary of the distribution of errors between Target (x axis) and the

predicted outputs (y-axis). It displays key statistical measures and allows for the identification

of potential outliers.
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(B) Cryotherapy
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(C) Heart-Cleveland
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(D) Immunotherapy

FIGURE 2. Misclassification rate: Target vs. Predicted Output

Figure 3 depicts a ribbon plot, serving as an effective representation of uncertainty or vari-

ability in the data. In this context, it illustrates the variability of the proposed objective function

over time. Additionally, the plot visually conveys the proximity of the objective function to the

target output, highlighting efforts to minimize f1.

(A) Breast cancer (B) Cryotherapy

(C) Heart-Cleveland (D) Immunotherapy

FIGURE 3. Variability in Objective Function
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(A) Breast cancer (B) Cryotherapy

(C) Heart-Cleveland (D) Immunotherapy

FIGURE 4. Relationship Between Objectives and Input Data

In Figure 4, a clear representation is provided, showcasing how a response variable, specif-

ically the proposed objective function f2 varies concerning two independent variables. The

plot visually communicates the dynamic changes of f2 across the input space, emphasizing its

proximity to the target output.

7. CONCLUSIONS

In this article, a framework named GradiLearn with NSGA-II (GRL-NSGA II) is introduced

to achieve an ensemble of classifiers, aiming to enhance accuracy and minimize errors. To

achieve the minimization of Mean Squared Error (MSE), a second objective function is pro-

posed. GradiLearn is a combination of a self-adaptive learning rate with conventional Back-

propagation Neural Network (BPN). The GRL-NSGA II framework is built upon the ensemble

of the GradiLearn with NSGA II, where the initial population is formed using the proposed

GradiLearn approach. The framework incorporates a non-cooperative fitness function, Accu-

rate Classification Rate (ACR), to improve the accuracy of classification rates for each class.

This approach is specifically applied to address imbalanced pattern classification problems. The
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paper also introduces the concept of Canberra distance in crowding distance, namely the CB-

Dist based Crowding Distance Algorithm. Experimental results demonstrate that the proposed

GRL-NSGA II method achieves superior classification accuracy and other statistical measures

compared to existing ensemble methods and conventional machine learning models.
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