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Abstract: Tungro disease is one of the obstacles in rice cultivation that affects the achievement of sustainable 

development goals (SDGs), so it is necessary to control it to minimize losses due to decreased yields. The application 

of pesticides and natural enemies are techniques that can prevent this disease. To understand the population dynamics 

of the spread of Tungro disease in rice, modeling was carried out by considering two growth phases (vegetative and 

generative phases). From the model made, analysis is carried out in the form of dynamic analysis, optimal control, 

sensitivity, and numerical simulation to illustrate it. The results show that the rice population (both vegetative and 

generative) and infected green leafhoppers will decrease more quickly due to control by giving insecticides and 

predators. 

Keywords: rice plants, tungro disease; growth phase; dynamic analysis; optimal control theory; sensitivity analysis; 
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1. INTRODUCTION 

One of the Sustainable Development Goals (SDGs) is to achieve food security and promote 

sustainable agriculture. In achieving this goal, fulfilling basic food needs (i.e., rice from the rice 

plant) is a must. However, when planting rice plants, they often experience obstacles: tungro virus 

disease [1]. This disease is caused by Rice Tungro Spherical Virus (RTSV) and Rice tungro 

Bacilliform Virus (RTBV), which are spread by green leafhopper vector, Nephotettix virescens [2-

4]. Rice plants are divided into 2 phases: the vegetative phase (0-55 days after planting) and the 

generative phase (55-120 days after planting). The symptoms of this tungro disease will appear 

when the plant is 2-3 weeks after planting. The damage caused by this disease will undoubtedly 

impact reducing crop yields so that it hampers the achievement of SDGs. Therefore, efforts need 

to be made to control the spread of the disease by preventing the green leafhopper population as 

the primary mediator of green leafhopper disease transmission to the rice plant population. The 

use of pesticides and predators as biological agents is one of the most common control techniques 

[5]. 

Mathematical researchers have contributed to solving the problem of plant disease spread 

through mathematical modeling. This solution provides a robust understanding of population 

behavior and is very important in understanding the dynamics of plant disease spread. Many 

researchers have developed mathematical models to interpret how disease spreads in plant 

populations [5]. The often-developed vector-borne disease model, including the vector-borne 

disease model with direct transmission [6, 7]. The spread of green leafhoppers with insecticides 

and biological agents [8]. Then the usual vector communicable disease model by considering the 

plant population exposed before being infected [9-12]. This includes considering the impact of 

insecticidal and nutritional interventions on plant disease systems [13]. In addition, researchers 

have also carried out plant disease modeling by assessing the presence of pathogens as an effort to 

control the disease [14,15,26,27], as well as modeling by considering carrying capacity parameters 

as limits on the number of plant populations of vectors [16- 19] and disease models. Vector-borne 

by considering the stages of plant growth, namely vegetative and generative [20]. In contrast, 
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Suryaningrat et al. make a mathematical model with the intervention of insecticides and the 

presence of predators to control the disease by controlling the number of vector populations [5]. 

 In this paper, we develop a mathematical model of transmission of tungro disease in rice plants 

by considering two growth phases (vegetative and generative phases) and provide optimal control 

treatment in the form of the application of pesticides and insecticides to suppress the spread of 

green leafhopper disease in rice plants. Not only that, but we also added predators to the model 

and analyzed them to determine the effect of predators on the green leafhopper population. In 

addition, we also perform a balanced analysis of the model, including its stability. Then a 

numerical simulation was carried out to see the population dynamics, and finally, a sensitivity 

analysis was carried out to see the most sensitive model parameters. 

 

2. MATERIALS AND METHODS 

 This research uses dynamical system theory, sensitivity analysis, and optimal control theory. 

First, we use dynamical system theory to determine the equilibrium point and stability. Next, we 

used sensitivity analysis to find out the most influential parameter in the model. Then, we try to 

use optimal control theory to consider the cost of the intervention what we do to the system.  

2.1 Dynamical System 

The dynamical system is an approaching method used to study a system's behavior for the 

long term. A continuous dynamical system is said to have an equilibrium point if the differential 

equation �̇� = 𝑓(𝑥)  has solution for 𝑓(𝑥) = 0 . The point of 𝑥∗  which satisfied 𝑓(𝑥∗) = 0  is 

called the equilibrium point. 

Definition 1. If a point of 𝑥∗ is an equilibrium point of (1), then the constant function 𝑥(𝑡) = 𝑥∗ 

is a solution for a differential equation 

0 =
𝑑𝑥∗

𝑑𝑡
=

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓(𝑥(𝑡)) = 𝑓(𝑥∗) = 0 (1) 

A system stable if all the eigenvalues of the Jacobian Matrix of the system has negative value. 

2.2 Sensitivity Analysis 

 Sensitivity analysis is a method we use to determine the correlation between parameters on 



4 

ANGGRIANI, ISTIFADAH, CARNIA, AMELIA, INAYATUROHMAT, TRESNA, SETIAWAN 

each compartment of the system. We use the formulas and theory in the paper was created by 

Marino et al. [21] and McKay et al. [22]. The result of this method gave us information that some 

parameters have a strong impact on the system. Then we use the two dominant parameters that we 

can control to make it possible to control with considering the cost. 

2.3 Optimal Control Theory 

 Optimal control theory is a tool used to obtain the optimal control in a system with the 

constraints of the problem. Optimal control problem discusses control variables that have an 

impact on the system. We used the maximum Pontryagin principle to check that our objective 

function satisfies the necessary and sufficient conditions. 

2.3.1 Necessary Condition 

• Optimal Condition 

𝜕𝐻

𝜕𝑢
= 0,0 ≤ 𝑡 ≤ 𝑇 (2) 

• Adjoint Function 

�̇� = −
𝜕𝐻

𝜕𝑥
, 0 ≤ 𝑡 ≤ 𝑇 (3) 

• Transversal Condition 

𝜆(𝑇) = 0, (𝑥(𝑇) = 𝑥𝑇  𝑖𝑓 𝑥𝑇𝑘𝑛𝑜𝑤𝑛) (4) 

2.3.2 Sufficient Condition 

• Minimum Condition 

𝜕2𝐻

𝜕𝑢2
≥ 0 (5) 

• Maximum Condition 

𝜕2𝐻

𝜕𝑢2
≤ 0 (6) 

2.4 Mathematical Model 

 We conclude some assumptions in the vector-borne disease model formulated in Amelia et al. 

[20] and Suryaningrat et al. [5]. We divided the plant population into four subpopulations, which 

healthy rice plants in the vegetative phase is denoted by 𝑆𝑣,the population of susceptible rice in 

the generative phase is denoted by 𝑆𝑔, the population of infected rice plants in the vegetative phase 
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denoted by 𝐼𝑣, and the population of infected rice plants in the vegetative phase denoted by 𝐼𝑔. 

Then there is the vector that carries the tungro disease, namely the green leafhopper. The 

population of green leafhoppers are divided into two classes, susceptible green leafhopper is 

denoted by 𝑆𝑊𝐻 and infected green leafhopper is denoted by 𝐼𝑊𝐻. We also consider the existence 

of the predator denoted by 𝑃𝑟 to suppress the vector. The model developed based on vector-borne 

model. 

 Based in the above assumptions, schematic diagrams of the spread of tungro disease in rice 

plants can be seen in Figure 1. 

 

Figure 1. Schematic diagram of model spread tungro disease. 

From Figure 1, a model can be constructed in the form of a differential equations as follows as: 

𝑑𝑆𝑣

𝑑𝑡
= 𝜆 − 𝛼𝑆𝑣 − 𝛽1𝑆𝑣𝐼𝑊𝐻 − 𝜇𝑝𝑆𝑣 

𝑑𝐼𝑣
𝑑𝑡

= 𝛽1𝑆𝑣𝐼𝑊𝐻 − 𝜇𝑝𝐼𝑣 

𝑑𝑆𝑔

𝑑𝑡
= 𝛼𝑆𝑣 − 𝛽2𝑆𝑔𝐼𝑊𝐻 − 𝜇𝑝𝑆𝑔 

𝑑𝐼𝑔

𝑑𝑡
= 𝛽2𝑆𝑔𝐼𝑊𝐻 − 𝜇𝑝𝐼𝑔 

𝑑𝑆𝑊𝐻

𝑑𝑡
= 𝜔 − 𝛾1𝐼𝑣𝑆𝑊𝐻 − 𝛾2𝐼𝑔𝑆𝑊𝐻 − 𝜇𝐼𝑆𝑊𝐻 − 𝜂𝑆𝑊𝐻 − 𝜁𝑃𝑟𝑆𝑊𝐻 

𝑑𝐼𝑊𝐻

𝑑𝑡
= 𝛾1𝐼𝑣𝑆𝑊𝐻 + 𝛾2𝐼𝑔𝑆𝑊𝐻 − 𝜇𝐼𝐼𝑊𝐻 − 𝜂𝐼𝑊𝐻 − 𝜁𝑃𝑟𝐼𝑊𝐻 

(7) 
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𝑑𝑃𝑟

𝑑𝑡
= Λ − 𝜇𝑟𝑃𝑟 − 𝜂𝑃𝑟 

The parameters contained in this model are described in Table 1. 

Table 1. Definition of variables and parameters 

Variables/ 

Parameters 
Definition 

 

Unit 

𝑁𝑝 Rice plant population  (𝑁𝑝 = 𝑆𝑣 + 𝐼𝑣 + 𝑆𝑔 + 𝐼𝑔) Individual Plant 

𝑁𝑊𝐻 Green Leafhopper Population (𝑁𝑤ℎ = 𝑆𝑊𝐻 + 3𝐼𝑊𝐻) Individual Vector 

𝑆𝑉 Healthy rice plant population in the vegetative phase Individual Plant 

𝐼𝑉 Infected rice plant population in the vegetative phase Individual Plant 

𝑆𝑔 Healthy rice plant population in the generative phase Individual Plant 

𝐼𝑔 Infected rice plant population in the generative phase Individual Plant 

𝑆𝑊𝐻  Healthy Green Leafhopper Population Individual Vector 

𝐼𝑊𝐻  Infected Green Leafhopper Population Individual Vector 

𝜆 Rice plant recruitment rate 1

𝑑𝑎𝑦
 

𝜔 Green leafhopper recruitment rate 1

𝑑𝑎𝑦
 

𝛼 Rice plant growth rate from vegetative to generative 

phase 

1

𝑑𝑎𝑦
 

𝛽1 The rate of infection of rice plants in the vegetative 

phase 

1

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 × 𝑑𝑎𝑦
 

𝛽2 The infection rate of rice plants in the generative phase 1

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 × 𝑑𝑎𝑦
 

𝛾1 Green leafhopper infection rate when taking food from 

infected rice plants in the vegetative phase 

1

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 × 𝑑𝑎𝑦
 

𝛾2 Green leafhopper infection rate when taking food from 

infected rice plants in the generative phase 

1

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 × 𝑑𝑎𝑦
 

𝜇𝑃 Rice plant death rate 1

𝑑𝑎𝑦
 

𝜇𝐼 Green leafhopper natural death rate 1

𝑑𝑎𝑦
 

Λ Predator recruitment Individual  

Predator 

𝜇𝑟 Natural death of a predator 1

𝑑𝑎𝑦
  

𝜂  Death due to insecticide application 1

𝑑𝑎𝑦
 

𝜁 Death due to predation of green leafhoppers by 

predators 

1

𝑑𝑎𝑦
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3. RESULTS AND DISCUSSION 

3.1 Dynamical System 

3.1.1 Non-endemic Equilibrium Point 

Based on model (7), we have three equilibrium point as follows: 

1. Non-endemic Equilibrium Point 

{𝑆𝑣, 𝐼𝑣, 𝑆𝑔, 𝐼𝑔, 𝑆𝑊𝐻, 𝐼𝑊𝐻, 𝑃𝑟}

= {
𝜆

𝜇𝑝 + 𝛼
, 0,

𝜆𝛼

𝜇𝑝(𝜇𝑝 + 𝛼)
, 0,

𝜔(𝜇𝑟 + 𝜂)

𝜂2 + (𝜇𝑖 + 𝜇𝑟)𝜂 + 𝛬𝜁 + 𝜇𝑖𝜇𝑟
, 0,

𝛬

𝜇𝑟 + 𝜂
} 

2. Endemic Equilibrium Point 1 

{𝑆𝑣, 𝐼𝑣, 𝑆𝑔, 𝐼𝑔, 𝑆𝑊𝐻, 𝐼𝑊𝐻, 𝑃𝑟} = {𝑆𝑉
̅̅ ̅, 𝐼�̅�, 𝑆𝑔

̅̅ ̅, 𝐼�̅�, 𝑆𝑊𝐻
̅̅ ̅̅ ̅̅ , 𝐼𝑊𝐻

̅̅ ̅̅ ̅, 𝑃𝑟̅̅ ̅} 

3. Endemic Equilibrium Point 2 

{𝑆𝑣, 𝐼𝑣, 𝑆𝑔, 𝐼𝑔, 𝑆𝑊𝐻, 𝐼𝑊𝐻, 𝑃𝑟} = {𝑆𝑉
̿̿ ̿, 𝐼�̅�

̅, 𝑆𝑔
̅̅ ̅̅̅̅, 𝐼�̅�

̅, 𝑆𝑊𝐻
̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ , 𝐼𝑊𝐻

̅̅ ̅̅ ̅̅̅ ̅̅ ̅, 𝑃𝑟̅̅ ̅̅̅ ̅}. 

3.1.2 Basic Reproduction Ratio 

 The basic reproduction ratio (ℛ0) is an important parameter in epidemiology. This parameter 

is used to determine the number of secondary infections caused by primary infections in 

susceptible populations. The next-generation method is used for determining the basic 

reproduction ratio (ℛ0), where 𝑣 is the transfer matrix and 𝑓 is the new infection matrix. 

𝑓 = [

𝛽1𝑆𝑣𝐼𝑊𝐻

𝛽2𝑆𝑔𝐼𝑊𝐻

𝛾1𝐼𝑣𝑆𝑊𝐻 + 𝛾2𝐼𝑔𝑆𝑊𝐻

] and 𝑣 = [

𝜇𝑝𝐼𝑣
𝜇𝑝𝐼𝑔

𝜇𝑖𝐼𝑊𝐻 + 𝜂𝐼𝑊𝐻 + 𝜁𝑃𝑟𝐼𝑊𝐻

] 

The basic reproduction ratio is obtained from the dominant eigenvalue commonly called the 

spectral radius of (𝐹𝑉−1), where 𝐹 and 𝑉 are the Jacobian matrices of 𝑓 and 𝑣 obtained at 

non-endemic equilibrium points as follows: 

ℛ0 = (𝜂 + 𝜇𝑟)√
𝜔𝜆(𝜇𝑝𝛽1𝛾1 + 𝛼𝛽2𝛾2)

𝜇𝑝
2(𝜇𝑝 + 𝛼)((𝜂 + 𝜇𝑟)(𝜂 + 𝜇𝑖) + Λ𝜁)

2 (8) 

3.1.3 Stability Analysis 

Theorem 1. The non-endemic equilibrium point of model (2) is locally asymptotically stable if 
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ℛ0 < 1. 

Proof. Through the method in [23], to confirm the non-endemic equilibrium point stability in a 

model, it can be known by subtitute the non-endemic equilibrium point 𝐸𝑑𝑓 into the Jacobian 

matrix of model (2). Then, we obtain: 

𝐽 =

[
 
 
 
 
 
 
 
 
−𝛼 − 𝜇𝑝 0 0 0 0 −𝛽1(𝑆𝑣)𝑑𝑓 0

0 −𝜇𝑝 0 0 0 𝛽1(𝑆𝑣)𝑑𝑓 0

𝛼 0 −𝜇𝑝 0 0 −𝛽2(𝑆𝑔)
𝑑𝑓

0

0 0 0 −𝜇𝑝 0 𝛽2(𝑆𝑔)
𝑑𝑓

0

0 −(𝑆𝑊𝐻)𝑑𝑓𝛾1 0 −(𝑆𝑊𝐻)𝑑𝑓𝛾2 −𝜂 − 𝜇𝑖 − (𝑃𝑟)𝑑𝑓𝜁 0 −𝜁(𝑆𝑊𝐻)𝑑𝑓

0 (𝑆𝑊𝐻)𝑑𝑓𝛾1 0 (𝑆𝑊𝐻)𝑑𝑓𝛾2 0 −𝜂 − 𝜇𝑖 − 𝑃𝑟𝜁 0

0 0 0 0 0 0 −𝜂 − 𝜇𝑟 ]
 
 
 
 
 
 
 
 

. 

 The characteristic polynomial of 𝐽 is 

𝑃(𝑥) = (𝑥 + 𝜇𝑝)
2
(𝑥 + 𝛼 + 𝜇𝑝)(𝑥 + 𝜇𝑟 + 𝜂)((𝜂 + 𝜇𝑟)𝑥 + (𝜂 + 𝜇𝑟)(𝜂 + 𝜇𝑖) + Λ𝜁)(𝑎𝑥2 + 𝑏𝑥

+ 𝑐) 

where 

𝑎 = 𝜇𝑝(𝜇𝑝 + 𝛼)(𝜂3 + (𝜇𝑖 + 2𝜇𝑟)𝜂
2 + (𝛬𝜁 + 2𝜇𝑖𝜇𝑟 + 𝜇𝑟

2)𝜂 + 𝜇𝑟(𝛬𝜁 + 𝜇𝑖𝜇𝑟)) > 0 

𝑏 = 𝜇𝑝(𝜇𝑝 + 𝛼)((𝜂 + 𝜇𝑟)(𝜂 + 𝜇𝑖) + Λ𝜁) ((𝜇𝑟 + 𝜂)(𝜇𝑖 + 𝜇𝑝 + 𝜂) + Λ𝜁) > 0 

𝑐 = (𝜂4 + 2(𝜇𝑖 + 𝜇𝑟)𝜂
3 + (2Λ𝜁 + 𝜇𝑖

2 + 4𝜇𝑖𝜇𝑟 + 𝜇𝑟
2)𝜂2 + 2(𝜇𝑖 + 𝜇𝑟)(Λ𝜁 + 𝜇𝑖𝜇𝑟)𝜂 + Λ2𝜁2 +

𝜇𝑖
2𝜇𝑟

2)𝜇𝑝
3 + 𝛼(𝜂4 + 2(𝜇𝑖 + 𝜇𝑟)𝜂

3 + (2Λ𝜁 + 𝜇𝑖
2 + 4𝜇𝑖𝜇𝑟 + 𝜇𝑟

2)𝜂2 + 2(𝜇𝑖 + 𝜇𝑟)(Λ𝜁 +

𝜇𝑖𝜇𝑟)𝜂 + (Λ𝜁 + 𝜇𝑖𝜇𝑟)
2)𝜇𝑝 − 𝜔𝜆(𝜇𝑟 + 𝜂)2(𝜇𝑝𝛽1𝛾1 + 𝛼𝛽2𝛾2) > 0  

𝑐 = (𝜂4 + 2(𝜇𝑖 + 𝜇𝑟)𝜂
3 + (2Λ𝜁 + 𝜇𝑖

2 + 4𝜇𝑖𝜇𝑟 + 𝜇𝑟
2)𝜂2 + 2(𝜇𝑖 + 𝜇𝑟)(Λ𝜁 + 𝜇𝑖𝜇𝑟)𝜂 + Λ2𝜁2 +

𝜇𝑖
2𝜇𝑟

2)𝜇𝑝
3 + 𝛼(𝜂4 + 2(𝜇𝑖 + 𝜇𝑟)𝜂

3 + (2Λ𝜁 + 𝜇𝑖
2 + 4𝜇𝑖𝜇𝑟 + 𝜇𝑟

2)𝜂2 + 2(𝜇𝑖 + 𝜇𝑟)(Λ𝜁 +

𝜇𝑖𝜇𝑟)𝜂 + (Λ𝜁 + 𝜇𝑖𝜇𝑟)
2)𝜇𝑝

2 − 𝜔𝜆(𝜇𝑟 + 𝜂)2(𝜇𝑝𝛽1𝛾1 + 𝛼𝛽2𝛾2) > 0  

𝑐 = 𝜇𝑝
3(𝜂4 + 2(𝜇𝑖 + 𝜇𝑟)𝜂

3 + (2Λ𝜁 + 𝜇𝑖
2 + 4𝜇𝑖𝜇𝑟 + 𝜇𝑟

2)𝜂2 + 2(𝜇𝑖 + 𝜇𝑟)(Λ𝜁 + 𝜇𝑖𝜇𝑟)𝜂 + Λ2𝜁2 +

𝜇𝑖
2𝜇𝑟

2) + 𝛼𝜇𝑝 
2 (𝜂4 + 2(𝜇𝑖 + 𝜇𝑟)𝜂

3 + (2Λ𝜁 + 𝜇𝑖
2 + 4𝜇𝑖𝜇𝑟 + 𝜇𝑟

2)𝜂2 + 2(𝜇𝑖 + 𝜇𝑟)(Λ𝜁 +

𝜇𝑖𝜇𝑟)𝜂 + (Λ𝜁 + 𝜇𝑖𝜇𝑟)
2) − 𝑅2𝜇𝑝

2(𝜇𝑝 + 𝛼)((𝜂 + 𝜇𝑟)(𝜂 + 𝜇𝑖) + Λ𝜁)
2

> 0  

𝑐 = (1 − ℛ0
2)𝜇𝑝

2(𝜇𝑝 + 𝛼) > 0. 
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Based on equation 𝑃(𝑥), it shows that all eigenvalues has a negative value. It means that model 

(2) is locally asymptotically stable at the non-endemic equilibrium point 𝐸𝑑𝑓 if ℛ0 < 1. 

3.2 Sensitivity Analysis 

We used sensitivity analysis to find out the most crucial parameter of the model. First, we take 

5000 samples through the Latin Hypercube Sampling (LHS) and then use the Partial Rank 

Correlation Coefficient (PRCC) to discover the correlation of the parameter. Finally, We compute 

the vector, both susceptible and infectious, and the result is: 

Figure 2.a shows that the most dominant parameter is 𝜇𝐼 which has a negative relationship. 

It describes that when the value 𝑟 increases, so the susceptible vector decreased. Meanwhile, 𝜁 

and 𝜂 have a significant effect on the number of susceptible vector population but it all decrease 

over the time. 

Figure 2.b shows that the most dominant parameter 𝜇𝑝 . This parameter has negative 

relationship, it describes that when the value 𝜇𝑝  increase, so the number of infectious vector 

decrease. Meanwhile, parameters like 𝜁  and 𝜂  has the significant effect on the number of 

susceptible vector population but it all decrease over the time. 

  

a. Compartment 𝑆𝑊𝐻 b. Compartment 𝐼𝑊𝐻 

Figure 2. Sensitivity Analysis on 𝑆𝑊𝐻 and 𝐼𝑊𝐻. 

3.3 Optimal Control Model 

 This section is devoted to investigating the optimal intervention to reduce the population of 
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green leafhoppers that can spread tungro disease, so it is expected that the rice population infected 

with tungro disease can be reduced. We combine the following two controls into a complete model 

(7) 

 𝑢1: Control of the use of insecticide 

 𝑢2: Adding more predators to the ecosystem. 

The model system now reads 

𝑑𝑆𝑣

𝑑𝑡
= 𝜆 − 𝛼𝑆𝑣 − 𝛽1𝑆𝑣𝐼𝑊𝐻 − 𝜇𝑝𝑆𝑣 

𝑑𝐼𝑣
𝑑𝑡

= 𝛽1𝑆𝑣𝐼𝑊𝐻 − 𝜇𝑝𝐼𝑣 

𝑑𝑆𝑔

𝑑𝑡
= 𝛼𝑆𝑣 − 𝛽2𝑆𝑔𝐼𝑊𝐻 − 𝜇𝑝𝑆𝑔 

𝑑𝐼𝑔

𝑑𝑡
= 𝛽2𝑆𝑔𝐼𝑊𝐻 − 𝜇𝑝𝐼𝑔 

𝑑𝑆𝑊𝐻

𝑑𝑡
= 𝜔 − 𝛾1𝐼𝑣𝑆𝑊𝐻 − 𝛾2𝐼𝑔𝑆𝑊𝐻 − 𝜇𝐼𝑆𝑊𝐻 − (1 + 𝑢1)𝜂𝑆𝑊𝐻 − 𝜁𝑃𝑟𝑆𝑊𝐻 

𝑑𝐼𝑊𝐻

𝑑𝑡
= 𝛾1𝐼𝑣𝑆𝑊𝐻 + 𝛾2𝐼𝑔𝑆𝑊𝐻 − 𝜇𝐼𝐼𝑊𝐻 − (1 + 𝑢1)𝜂𝐼𝑊𝐻 − 𝜁𝑃𝑟𝐼𝑊𝐻 

𝑑𝑃𝑟

𝑑𝑡
= (1 + 𝑢2)Λ − 𝜇𝑟𝑃𝑟 − (1 + 𝑢1)𝜂𝑃𝑟 

(9) 

with initial conditions 

𝑆𝑣(0), 𝐼𝑣(0), 𝑆𝑔(0), 𝐼𝑔(0), 𝑆𝑊𝐻(0), 𝐼𝑊𝐻(0), 𝑃𝑟 ≥ 0. 

A combination of the population of healthy and infected green leafhoppers, together with the cost 

of insecticide use and adding more predators, is considered as the objective function to be 

minimized, namely, 

𝐽(𝑢1, 𝑢2) = ∫ [𝐴 𝐼𝑊𝐻(𝑡) + 𝐵 𝑆𝑊𝐻(𝑡) + 𝐶1𝑢1
2(𝑡) + 𝐶2𝑢2

2(𝑡)] 𝑑𝑡
𝑇

0

 (10) 

where 𝑇 is the final time, 𝐴, 𝐵 are positive weight constant, and 𝐶1, 𝐶2 is the weight constant 

for the cost of the tungro disease reduction strategy. 

The control problem formed from the constraint equation as the equation of each compartment 

(9) and the objective function (10), it is possible to form a Hamiltonian equation related to the 

optimal control problem. Therefore, we look for, using Pontryagin's maximum principle [24], the 
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optimal control (𝑢1
∗, 𝑢2

∗  ) ∈ 𝑈 satisfying (9), such that 

𝐽(𝑢1
∗ , 𝑢2

∗  ) = min{ 𝐽(𝑢1, 𝑢2) | (𝑢1, 𝑢2 ) ∈ 𝑈 }. (11) 

The associated pseudo-Hamiltonian is 

𝐻 = 𝐴 𝐼𝑊𝐻 + 𝐵 𝑆𝑊𝐻 + 𝐶1𝑢1
2 + 𝐶2𝑢2

2 + 𝐿1(𝜆 − 𝛼𝑆𝑣 − 𝛽1𝑆𝑣𝐼𝑊𝐻 − 𝜇𝑝𝑆𝑣) 

+𝐿2(𝛽1𝑆𝑣𝐼𝑊𝐻 − 𝜇𝑝𝐼𝑣) + 𝐿3(𝛼𝑆𝑣 − 𝛽2𝑆𝑔𝐼𝑊𝐻 − 𝜇𝑝𝑆𝑔) + 𝐿4(𝛽2𝑆𝑔𝐼𝑊𝐻 − 𝜇𝑝𝐼𝑔) 

+𝐿5(𝜔 − 𝛾1𝐼𝑣𝑆𝑊𝐻 − 𝛾2𝐼𝑔𝑆𝑊𝐻 − 𝜇𝐼𝑆𝑊𝐻 − (1 + 𝑢1)𝜂𝑆𝑊𝐻 − 𝜁𝑃𝑟𝑆𝑊𝐻) 

+𝐿6(𝛾1𝐼𝑣𝑆𝑊𝐻 + 𝛾2𝐼𝑔𝑆𝑊𝐻 − 𝜇𝐼𝐼𝑊𝐻 − (1 + 𝑢1)𝜂𝐼𝑊𝐻 − 𝜁𝑃𝑟𝐼𝑊𝐻) 

+𝐿7((1 + 𝑢2)Λ − 𝜇𝑟𝑃𝑟 − (1 + 𝑢1)𝜂𝑃𝑟) 

(12) 

where 𝐿1, 𝑖 = 1,… ,7 are adjoint variables satisfying (3) and (4), i.e 

�̇�1 = −𝛼𝐿3 − 𝛽1𝐼𝑊𝐻𝐿2 − (−𝛼 − 𝛽𝐼𝑊𝐻 − 𝜇𝑝)𝐿1 

�̇�2 = 𝛾1𝐿5𝑆𝑊𝐻 − 𝛾1𝐿6𝑆𝑊𝐻 + 𝜇𝑝𝐿2 

�̇�3 − 𝛽2𝐼𝑊𝐻𝐿4 − (−𝛽2𝐼𝑊𝐻 − 𝜇𝑝)𝐿3 

�̇�4 = 𝛾2𝐿5𝑆𝑊𝐻 − 𝛾2𝐿6𝑆𝑊𝐻 + 𝜇𝑝𝐿4 

�̇�5 = −𝐵 − (𝛾1𝐼𝑣 + 𝛾2𝐼𝑔)𝐿6 − (−𝜂(𝑢1 + 1) − 𝛾1𝐼𝑣 − 𝛾2𝐼𝑔 − 𝜇1 − 𝜁Pr )𝐿5 

�̇�6 = −𝐴 + 𝛽1𝐿1𝑆𝑣 − 𝛽1𝐿2𝑆𝑣 + 𝛽2𝐿3𝑆𝑔 − 𝛽2𝐿4𝑆𝑔 − (−𝜂(𝑢1 + 1) − 𝜇1 − 𝜁Pr)𝐿6 

�̇�7 = 𝜁𝐼𝑊𝐻𝐿6 + 𝜁𝐿5𝑆𝑊𝐻 − (−𝜂(𝑢1 + 1) − 𝜇𝑟)𝐿7 

(13) 

with the final condition 𝐿𝑖(𝑇) = 0  for 𝑖 = 1,… ,7 . The necessary and sufficient optimal 

condition satisfying (2) and (5), which in turn give the optimal control 

𝑢1
∗ = max {0,min (1,

𝜂(𝐼𝑊𝐻𝐿6 + 𝐿5𝑆𝑊𝐻 + 𝐿7𝑃𝑟)

2𝐶1
)} 

𝑢2
∗ = max {0,𝑚𝑖𝑛 (1,

𝛬𝐿7

2𝐶2
)}. 

(14) 

3.5 Numerical Simulation 

 In this section, we shall carry out numerical simulations of the model to assess the impact of 

various control strategies on the dynamics of the disease. First, we will perform a numerical 
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simulation on the model without control. The equations of the model (7) are solved numerically 

using Python ode solver in scipy library, which is based on the Explicit fourth-order Runge-Kutta 

method. The dynamics of the spread of tungro disease are shown in Figures. 2 with initial values 

and parameter values in Table 2. 

Table 2. Parameter and Initial value for the model 

Parameters /Variables Value 

𝜆 100 

𝜔 500 

𝛼 0.7 

𝛽1 0.001 

𝛽1 0.001 

𝛾1 0.0025 

𝛾2 0.002 

𝜇𝑝 0.3 

𝜇1 0.7 

𝜇𝑟 0.3 

𝜂 0.2 

Λ 50 

𝜁 0.01 

𝑆𝑣 500 

𝐼𝑣 100 

𝑆𝑔 300 

𝐼𝑔 100 

𝑆𝑊𝐻 400 

𝐼𝑊𝐻 150 

𝑃𝑟 30 
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Figure 3.a shows that the population of green leafhoppers, both susceptible and infected 

populations, will decrease. This is due to the presence of green leafhoppers by predators. While 

the predator population over time will increase. This is due to the recruitment rate of predators. 

Figure 3.b it can be seen that all plant populations decreased for both susceptible rice plant 

populations (vegetative and generative phases) and infected rice plant populations (vegetative and 

generative phases), but the susceptible plant population in the generative phase increased. This is 

because of the growth of susceptible plants in the vegetative phase to susceptible plants in the 

generative phase. 

  

(a) (b) 

Figure 3. Dynamics population of green leafhoppers and their predators (a) and rice (b). 

We proceed with numerical simulations for the optimal control problem model system (9) using 

the initial values of the compartments and model parameters in Table 2, then the constants on the 

objective function are positive weight constants 𝐴 = 𝐵 = 1 and control strategy costs 𝐶1 = 5,

𝐶2 = 7 . In order to investigate the impact of various control strategies, the following three 

scenarios are considered 

1. Strategy A: Insecticide control only (𝑢2 = 0), 

2. Strategy B: With the addition of predators in the ecosystem only (𝑢1 = 0), 

3. Strategy C: Both insecticide control and adding predators in the ecosystem are carried out 

(𝑢1, 𝑢2 ≠ 0). 

With a forward-backward sweep algorithm that is done in python programming, obtained control 

values for each non-zero control are as follows. Figure 4.a and Figure 4.b show that controlling 

using insecticides and adding predators in the ecosystem is sufficient only until the fifth week, but 
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for control using insecticides in the fourth week, more insecticides must be given (adding it as 

much as 10% of last week). 

  

(a) (b) 

Figure 4. Control values 𝑢1 (a) and 𝑢2 (b) against time. 

The following is a comparison chart of strategies in each compartment 

  

(a) (b) 

Figure 5. Effect of each strategy on 𝑆𝑣 (a) and 𝐼𝑣 (b) compartments. 

Based on Figure 5, the 𝑆𝑣 compartment does not have much effect due to control either by adding 

predators or controlling insecticides because the population continues to move to the generative 

phase compartment over time. At the same time, the population 𝐼𝑣 with control was lower than 

without control due to the fewer number of infected vectors after control. 

 
 

(a) (b) 

Figure 6. Effect of each strategy on 𝑆𝑔 (a) and 𝐼𝑔 (b) compartments. 
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Based on Figure 6, the population of healthy rice in the generative phase (𝑆𝑔) with control is higher 

than the population without control. The number of infected rice is less, resulting in more healthy 

rice. And the infected rice population during the generative period (𝐼𝑔) will be lower after being 

controlled because the number of vectors is fewer. 

  

(a) (b) 

Figure 6. Effect of each strategy on 𝑆𝑊𝐻 (a) and 𝐼𝑊𝐻 (b) compartments. 

Based on Figure 6, green leafhopper populations, both infected and healthy will decrease due to 

increased mortality by predators and insecticides. 

 

Figure 7. Effect of each strategy on 𝑃𝑟 compartments. 

Based on Figure 7, The 𝑃𝑟 compartment with Strategy B saw a much larger increase in the 

number of predators. However, with the addition of insecticide control (Strategy C), predators did 

not increase too much. Meanwhile, with insecticide control alone (Strategy A) the number of 

predators will be lower. 

 

4. DISCUSSION 

Previous research on tungro disease by developing a model with roguing to control the spread of 

the tungro virus was then applied to numerical simulations [3-4] and the optimal control of tungro 

with insecticides [25] and biological agents [5]. The results show that we can see the rice 
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population's dynamics by dividing the rice plant into generative and vegetative phases. Finally, 

optimal control is applied to this model in the form of a predator. This model can be developed in 

the future by adding the persistence of green leafhoppers. 

 

5. CONCLUSION 

The constructed model of tungro disease transmission in the vegetative and generative phases has 

three equilibrium points, one non-endemic point, and two endemic points. Non-endemic point 

stability indicates that the system will be stable if ℛ0 < 1. Based on the sensitivity analysis, it can 

be concluded that the death of the vector strongly influences the population of susceptible rice 

plants. In contrast, the population of infected green leafhoppers is strongly influenced by the death 

rate of the rice plant. At the same time, the simulation results show that the infected and uninfected 

green leafhopper population decreases. As a result, the infected rice population during the 

vegetative and generative periods will decrease, while the healthy productive rice population will 

be more. Likewise, if controlled using insecticides and predators, the people of rice (both 

vegetative and generative) and infected green leafhoppers will decrease more quickly. 
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