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Abstract: So far, the detection and calculation of the malaria index has been done manually using thick and thin blood 

smears. Weaknesses of microscopic examination include the inability to detect low parasitaemia (low titre) so that it 

is not useful in non-endemic areas of malaria, the possibility of misinterpretation of very low or very high parasitaemia, 

the inability to detect mixed infections requires time and expertise in preparation for reading. Detection and calculation 

of parasites using digital imaging has begun to be studied in the world, but its application is still limited, especially in 

Indonesia. Several statistical models can be used to estimate the parasite index and detect parasite morphology 

microscopically. In this research, we propose an alternative method, called PSNPR method, to estimate the number of 

malaria parasites precisely by using a statistical modeling approach, namely, penalized spline nonparametric Poisson 

regression (PSNPR) model. We use image processing techniques for changing image to numeric, then we reduce 



2 

CHAMIDAH, LESTARI, SAIFUDIN, RULANINGTYAS, WARDHANI, BUDIANTARA 

dimension by using discrete wavelet transform, and principal component analysis. The results show that the proposed 

alternative method has high ability to detect and calculate the number of malaria parasites on microscopic image of 

blood smears. In the future, the results of this study can be used for prediction purpose that is to predict duration of 

time until the malaria parasites death after the patient is given treatment by a doctor who treats the patient.  

Keywords: malaria parasite; blood smears; WHO; microscopic image; penalized spline nonparametric Poisson 

regression. 

2020 AMS Subject Classification: 62G08, 62P10, 65D07, 65D10, 68D10. 

 

1. INTRODUCTION 

Malaria is one of the most common mosquito-borne diseases throughout the tropical and 

subtropical regions of the world with enormous medical, social and economic implications. In 

2017, an estimated 219 million cases occurred worldwide with 435,000 deaths and 61% of the 

victims were children under five. In addition, most of the deaths from malaria come from 

developing countries with 93% of them coming from the African region [1]. Humans can be 

infected with malaria by five different species of malaria parasites. Malaria caused by the 

Plasmodium Falciparum parasite is classified as the most dangerous because it can cause various 

complications, seizures, and even coma. This type of malaria is one of the highest causes of death 

from malaria in the world [2]. Malaria in humans has adverse effects such as muscle weakness and 

fatigue, respiratory distress, renal and hepatic failure, and can cause cardiac myopathy. The long-

term impacts of malaria include death, disability and disruption of socio-economic conditions in 

high burden areas [3,4]. There has been a significant reduction in malaria cases in the last decade 

with the use of insecticide-treated nets, indoor residual spraying and mass drug administration [5]. 

However, prompt diagnosis and treatment are still the most effective ways to prevent mild cases 

of malaria from turning into severe disease and death [1]. Although, currently the standard method 

of diagnosing malaria is microscopic examination, but microscopic examination has poor 

sensitivity and specificity, especially at low parasitaemia. It is also unable to distinguish between 

different parasite species and requires experienced medical personnel [6]. 

The development of malaria diagnosis is a key feature in malaria elimination. The use of digital 

imaging as a method has been studied extensively. There are several researchers who have used 

digital imaging methods to identify and detect malaria parasites, for example, Jones and Sushita 

[7] identified and categorized malaria parasites based on thick blood smear images; Poostchi et al. 

[8] used image analysis and machine learning to detect malaria; Motwani et al. [9] detected malaria 
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using machine learning and cubic SVM (Support Vector Machine) methods; Khatri et al. [10] 

identified malaria parasite using image processing; Pattanaik and Swarnkar [11] provided systemic 

reviews on vision-based malaria parasite image analysis; Fatima and Farid [12] used adaptive 

thresholding and morphological image processing algorithms to detect malaria parasite; Devan et 

al. [13] detected and classified red blood cells into infected and uninfected by malaria parasites; 

Untoro and Muttaqin [14] detected malaria in human blood cells using convolutional neural 

network (CNN) method and classified it into parasitized or uninfected classes; Bayu [15] used 

CNN algorithm to detect malaria parasites by identifying Plasmodium image; Shambhy et al. [16] 

reviewed and discussed computer vision and image analysis work that target the automated 

detection of malaria on blood smear images; Maqsood et al. [17] detected deep malaria parasite 

based on thin blood smear microscopic images; and Abdurahman et al. [18] detected malaria 

parasite by using YOLOV3 and YOLOV4 models that have been modified. Meanwhile, according 

to Jones and Sushita [7], certain digital image analysis methods provide less specificity and 

accuracy, certain other methods are expensive and tedious. However, it is indicated that digital 

image analysis may have an important role in improving the diagnosis and treatment of malaria. 

Additionally, the previous studies mentioned above were only limited to knowing the presence of 

malaria parasites, meaning that the estimation of the number of malaria parasites has not been 

discussed. Therefore, in this study we propose an alternative method, called PSNPR method, that 

is not only used to determine the presence of malaria parasites, but also to estimate the number of 

malaria parasites on blood smears microscopic images by using a penalized spline estimator of 

nonparametric Poisson regression model. 

In this study, the data collected consists of microscopic images of malaria parasites in blood 

smears that is a count data which follows a Poisson distribution. Hence, in this case a Poisson 

regression model approach can be used to analyze the data. In statistical modeling, a generalized 

additive model (GAM) is one of nonparametric approaches for Poisson regression models [19]. In 

statistical modeling using the regression model approach, there are two basic approaches to the 

regression model, namely the parametric regression model and the nonparametric regression 

model. Generally, the main problem in regression analysis using both the parametric regression 

model approach and the nonparametric regression model approach is the problem of estimating 

the regression function, namely a function that describes the relationship between the response 

variable and the predictor variable. In the parametric regression model, the problem of estimating 

the regression function is the same as the problem of estimating the parameters of the parametric 
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regression model [20]. That is different from the nonparametric regression model. In the 

nonparametric regression model, estimating the regression function is equivalent to estimating the 

unknown smooth function contained in the Sobolev space using the estimator [21]. There are 

several estimators which are often used to estimate the nonparametric regression functions. Among 

these estimators, spline is the most frequently estimator which is used for estimating nonparametric 

regression functions [22–26] and semiparametric regression functions [27–30], because spline has 

flexibility in estimating functions or data that varies in sub-intervals [31]. The goodness of fit of 

the spline estimator is also supported by the results of research conducted by researchers in 

Refs.[32–34] which showed that the integrated mean squared error of the spline estimator is 

asymptotically close to zero for large sample sizes and the spline estimator is a consistent estimator. 

Furthermore, one of the spline estimators in nonparametric regression and semiparametric 

regression models approach which has efficient property and consistent property for estimating 

these models is penalized spline estimator [35–37]. According to Cameron and Trivedi [38], 

penalized spline estimator also has superior in smoothing capabilities for analyzing a count data 

that has Poisson distribution. The penalized spline estimator was also used by Qin and Yu [39] for 

estimating a count data model with time-varying coefficients; by Carota and Parmigiani [40] for 

estimating regression function in nonparametric component of a semiparametric regression model; 

and by Kan-Kilinc and Asfha [41] for estimating a nonparametric regression model with Poisson 

response and including outliers. Since the number of malaria parasites on microscopic images is a 

count data which follows a Poisson distribution, then in this paper, we discuss estimation of the 

number of malaria parasites on microscopic image of blood smears by using penalized spline 

estimator of nonparametric Poisson regression model. We call the proposed method as PSNPR 

method. 

 

2. MATERIALS AND METHODS 

The data used are secondary image data from microscopic examination of blood preparations from 

the Department of Clinical Pathology, Faculty of Medicine, Airlangga University, Surabaya, 

Indonesia. The microscopic image of the blood preparation has dimensions of 600×512 pixels with 

RGB (Red, Green, and Blue) type. The number of malaria parasites has been diagnosed by a doctor. 

The sample used was 100 images divided into two parts, namely 80 images for model building (in-

sample) and 20 images for validation (out-sample). In this research, the in-sample data is used to 

build a statistical model while the out-sample data is used to validate the obtained statistical model. 
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The research variables used in this study consist of the response variable (Y) in the form of 

count data is the number of malaria parasites in microscopic images of blood preparations. The 

predictor variable (X) is a numeric form of microscopic images of blood preparations with 

dimensions of 600 × 512 × 3. The size of these dimensions causes the predictor variable (X) to 

need to go through the stages of image processing, Discrete Wavelet Transform (DWT) and 

Principal Component Analysis (PCA). In this research, methods to analyze data follow some steps 

as follows: 

(a). Testing. We perform test to determine whether the response variable follows a Poisson 

distribution [42]. 

(b). Image Processing. Basically, the image is a numerical matrix that contains the color intensity 

value for each pixel. In color images, this matrix usually consists of three layers, namely Red, 

Green, and Blue (or RGB). Due to the thin matrix size of high-pixel color images, performing 

analysis on these images is difficult. Image processing is carried out as follows [42]: (i). Gray 

Level Transformation. This converts a color image to a gray-scale image. In practical terms, 

this reduces the three layers in the matrix to one. The matrix contains the gray intensity across 

the pixels in the image. (ii). Histogram Equalization. This is a contrast adjustment method 

using an image histogram. It aims to increase global contrast. This is especially useful when 

the data that can be used are close contrast values [43]. (iii). Image Segmentation. Image 

pixels are segmented into homogeneous areas by changing the image pixel size. This 

effectively reduces the number of pixels in the image [44]. In this research, these images are 

resized into 64×32 pixels. Thus, the total pixels in each image are 2048 pixels. (iv). 

Normalization. Normalization adjust the intensity value range from [0, 255] to [0, 1]. This 

is done by dividing the intensity value by the highest value, namely, 255.    

(c). Dimension Reduction. As discussed in step (b), processed images suffer from high-

dimensionality. High-dimensionality is a condition where dataset has a large number of 

variables, in this case, 2048 variables. High-dimensionality can hinder the performance of 

statistical models. Dimensional reduction solves this problem while eliminating the possibility 

of multicollinearity [45]. To reduce dimensionality effectively, Discrete Wavelet Transform 

(DWT) and Principal Component Analysis are applied to the image matrix: (i). Discrete 

Wavelet Transform (DWT). DWT is a mathematical function that is used to represent data or 

an alternative mathematical transformation function to deal with solving problems. It 

decomposes digital image by extracting the wavelet coefficient. DWT is able to decompose 
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digital image up to (M–1) levels with M satisfies (2M–1) amounts to the number of variables. 

The wavelet decomposition function can be written as follows [46]:   

    (1)            𝑓(𝑡) = 𝑐0,0𝜙(𝑡) + ∑ ∑ 𝑑𝑗,𝑘𝜓𝑗,𝑘(𝑡)
2𝑗−1
𝑘=0

𝑀
𝑗=1                                        

 where t is the gray-scale intensity value that range [0,1], j is the decomposition level, 𝑐0,0 

and 𝑑𝑗,𝑘  are the wavelet coefficients while 𝜙(𝑡)  and 𝜓𝑗,𝑘(𝑡)  are wavelet functions.        

(ii). Principal Component Analysis (PCA). PCA is a technique that converts a set of 

observations of possibly correlated variables into a set of values of linearly uncorrelated 

variables called principal components [47]. This is done as follows: (ii-1). Standardizing the 

data using the following formula: 

    (2)                   𝑀𝑖𝑗 =
𝑥𝑖𝑗−�̅�.𝑗

𝑠(𝑋𝑗)
                          

where 𝑀𝑖𝑗 is element value of row i and column j in standardized matrix; 𝑥𝑖𝑗 is value of 

data in row i and column j; �̅�.𝑗 is mean of column j; 𝑠(𝑋𝑗) is standard deviation of column 

j; (ii-2). Calculating covariance matrix, 𝚺=𝐌T𝐌; (ii-3). Decomposing covariance matrix into 

eigen vectors and eigen values 𝐙 = 𝐏𝐃𝐏−𝟏 where 𝐏 is a matrix of eigen vectors, 𝐃 is a 

diagonal matrix with eigen values on the diagonal and zero values elsewhere; (ii-4). Sorting 

the eigen vectors based on eigen values within the matrix; (ii-5). Calculating the principal 

component: 𝐙∗ = 𝐙𝐏∗ ; (ii-6). Calculating the proportional variance and cumulative 

proportion variance by dividing eigen values of the principal component with the sum of eigen 

values; and (ii-7). Determine principal components to keep based on cumulative proportion 

variance. 

(d). Estimating Model. Statistical modeling used in this research is nonparametric Poisson 

regression based on penalized spline estimator. Penalized spline is one of the methods in 

nonparametric regression that superior in smoothing capability. Its smoothing capability is 

based on several parameters such as polynomial order, knots and lambda (λ). This method can 

be considered as generalized additive model (GAM). Estimator in GAM can be obtained using 

local scoring algorithm [19,48,49], especially when the response variable is from exponential 

family. Local scoring algorithm is comprised of two loops, scoring and back-fitting which 

iterated until residual sum of squares is convergence [48]. Model estimation is done on in-

sample data as follows: (i). Determining the optimal smoothing parameter value for j-th 

predictor based on generalized cross validation (GCV) criterion: (i-1). Determine the 

polynomial order, the number of knots and value of each knots; (i-2). Obtain matrix 𝐗 in 
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accordance with polynomial order and knots; (i-3). Calculate �̂�𝒋 = (𝐗𝒋
𝐓𝑿𝒋 + nλ𝑗𝐃𝒋)

−𝟏
𝐗𝒋
𝐓𝐘. 

(i-4). Calculate 𝑓𝑗(𝐗𝒋) = 𝐗𝒋�̂�𝒋 ; (i-e). Calculate (𝜆𝑗) = 𝐗𝒋(𝐗𝒋
𝑻𝐗𝒋 + 𝑛𝜆𝑗𝐃𝒋)

−𝟏
𝐗𝒋
𝑻  ; (i-5). 

Calculate  𝐺𝐶𝑉(𝜆𝑗) =
𝑛−1∑ (𝑦𝑖−𝑓𝜆𝑖)

2𝑛
𝑖=1

(𝑛−1𝑡𝑟𝑎𝑐𝑒[1−𝐇(𝜆𝑗)])
2  ; (i-6). Iterate step (i-1) to step (i-6) until 

minimum GCV value is obtained. (ii). Estimating penalized spline estimator using the 

following local scoring algorithm: (ii-1). Obtain initial value of 𝑓𝑗
(𝑠)
(𝐗𝒋) at iteration 0 (i.e., 

s = 0); (ii-2). Calculate initial value  𝜂𝒊
(𝟎)
= ∑ 𝑓𝑗

(0)
(𝐗𝒋)

𝑝
𝑗=𝑖 ; (ii-3). Calculate initial value of 

weight matrix: 𝑑𝑖𝑎𝑔(𝐖(𝟎)) = 𝛍(0) = exp(𝛈(0)) ;  (ii-4). Calculate initial adjusted 

dependent vector  𝒛(0) = 𝛈(0) + (𝐘 − 𝛍(0))/𝑑𝑖𝑎𝑔(𝐖(𝟎)) ; (ii-5). Calculate partial residual 

𝐑𝑖𝑗
(𝑠+1)

= z𝑖 − ∑ 𝑓𝑟
(𝑠)(𝑋𝑖𝑟)

𝑗−1
𝑟=1 − ∑ 𝑓𝑟

(𝑠)(𝑋𝑖𝑟)
𝑝
𝑟=𝑗+1  ; (ii-6). Calculate 𝑓𝑗

(𝑠+1)
(𝐗𝒋) =

𝐇(𝜆𝑗)𝐑𝑖𝑗
(𝑠+1)

 ; (ii-7). Calculate �̂�𝑖 = exp (∑ 𝑓𝑗
(𝑠+1)(𝐗𝒋)

𝑝
𝑗=𝑖 ) ; (ii-8). Calculate mean square 

error,  𝑀𝑆𝐸(𝑠+1) = 1

𝑛
(𝐘−𝛍(𝑠+1))

𝑇
(𝐘−𝛍(𝑠+1)) ; (ii-9). Iterate step (ii-1) to step (ii-6) until 

𝑀𝑆𝐸(𝑠+1) convergences to zero ; (ii-10). Recalculate 𝛈(𝑠+1), 𝐳(𝑠+1), 𝐖(𝑠+1) and  𝛍(𝑠+1); (ii-

11). Calculate  𝑎𝑣𝑔(𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒) =
2

𝑛
∑ {𝑦𝑖(log 𝑦𝑖 − log 𝜇𝑖) − (𝑦𝑖 − 𝜇𝑖)}
𝑛
𝑖=1  ; (ii-12). Iterate 

step (ii-1) to step (ii-10) until mean of deviance convergences to ε. (ii-13). Testing the 

goodness of fit for the model. 

(e). Prediction. The estimated model is used to predict response variable for both in-sample and 

out-sample data. The prediction is done with the following steps [48]: (i). Calculate �̂�𝑖 =

exp (∑ 𝑓𝑗(𝐗𝒋)
𝑝
𝑗=𝑖 ) ; (ii). Calculate the mean square error, 𝑀𝑆𝐸 = 1

𝑛
(𝐘−�̂�)𝑇(𝐘−�̂�) ; and (iii). 

Calculate 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 2∑ {𝑦𝑖(log 𝑦𝑖 − log 𝜇𝑖) − (𝑦𝑖 − 𝜇𝑖)}
𝑛
𝑖=1 .  

All calculations in the analysis procedure are performed by creating an R-code. 

 

3. RESULTS AND DISCUSSIONS 

There are 100 microscopic images of malaria parasites in blood smears used in this research. The 

number of malaria parasites as a response variable was tested whether it followed the Poisson 

distribution. The test was carried out with the Chi-square test. The null hypothesis of this test is 

that the response variable follows a Poisson distribution with a significance level (α) of 0.05. The 
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Chi-square critical area is that the null hypothesis is rejected if Chi-square statistic value is more 

than 𝜒(0.05;96)
2 = 11.07. The results of the calculation of the Chi-square test give a statistical value 

of the Chi-square test which is 4.753 where this value is less than 𝜒(0.05;96)
2 = 11.07. So the null 

hypothesis failed to be rejected which means that the number of malaria parasites as a response 

variable has a Poisson distribution. 

Next, image processing is carried out. The aim of image processing is to enhance the image in 

order to extract meaningful information from the image. The results of image processing on the 

images of the malaria parasites in blood smears can be observed in Figures 1–3. The normalized 

gray-scale value for all 100 images creates a matrix with 100 rows and 2048 columns. The rows 

in the matrix represent the image while columns represent pixel. Each element in the matrix 

represents gray-scale intensity for corresponding pixel and image. Image processing produce high 

dimensional data in the form of a 100 × 2048 sized matrix. Because the number of variables is 

relatively high to the number of observations, it is necessary to use a dimension reduction 

technique. Therefore, we use an image segmentation process which is a branch of digital image 

processing which focuses on partitioning an image into different parts according to their features 

and properties where the main purpose of image segmentation process is to simplify the image for 

easier analysis. 

 

 

 

 

 

 

Figure 1. Image of malaria parasites in blood smear (a), and Result of Gray-scale Process (b). 

 

 

 

 

 

 

Figure 2. Image of Gray-scale Process (a), and Result of Histogram Equalization Process (b). 

      

         (a)                       (b) 

 

 

 

 

 

                                        

         (a)                       (b) 
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Figure 3. Image of Histogram Equalization Process (a), and Result of Segmentation Process (b). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Histogram of Equalization Process Result. 

 

Figure 4 shows a histogram plot of the number of malaria parasites on blood smears 

microscopic images after going through the equalization process. Next, both DWT and PCA 

presented by step (c) in the Materials and Methods section are used sequentially on the matrix. The 

numerical result of image processing is a vector with a value between 0 and 1 which represents the 

intensity of the gray color for each processed image. The numerical vector size of the image is 

2048 according to the 2𝑀 form with 𝑀 having a value of 11. Based on this, the size of the image 

numerical vector can be reduced using DWT up to level 11, and the decomposition level used in 

this study is level 10. At that level, the size of the image numerical vector can be reduced to size 

4. This amount is sufficient to represent information of color intensity in the image. This ultimately 

reduces the dimensions to four variables. As can be observed in Table 1, these four variables are 

able to explain 30% of the variance in the data. Although relatively low, only four variables are 

used by the model for parsimony purpose. 

                                      

         (a)                      (b) 

 

 

 

 

 

 

 

Counts 

Intensity 
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Table 1. The Results of Dimension Reduction 

        Standard Deviation     Proportion of Variance     Cumulative Proportion 

PC1          1.0363                       0.1053                        0.1053 

PC2          0.8512                       0.0710                        0.1763 

PC3          0.7976                       0.0624                        0.2387 

PC4          0.7674                       0.0577                        0.2964 

 

Penalized spline estimator is determined based on order of polynomial, the number of knots, 

smoothing parameters (λ), and generalized cross validation (GCV). The optimal smoothing 

parameters are selected based on the minimum value of GCV for each predictor variable. This is 

obtained to estimate the initial value 𝑓𝑗(𝑿𝒋) for the local scoring algorithm. So, the goal is simply 

to reduce the estimation time. Table 2 contains order of polynomial, the number of knots, GCV 

values, and optimal smoothing parameters for each predictor variable. 

Table 2. Optimal Smoothing Parameters Values for Each Predictor Variable. 

               Order of      The Number of     Values of       Optimal Smoothing    

              Polynomial    Knots              GCV           Parameters (𝝀) 

Predictor 1         1               1               5.201887               53.5 

Predictor 2         2               3               4.528555               56.6 

Predictor 3         1               1               5.484600               186.8            

Predictor 4         1               1               5.546851               120.3 

 

Next, by using step in point (e), the estimated model which is obtained by using local scoring 

algorithm is as follows [48]: 

(3)                 �̂�𝑖 = exp (∑ 𝑓𝑗(𝑿𝒋)
4
𝑗=𝑖 )                                                                             

where  𝑓1(𝑋1) = {
−17.57 − 0.08𝑋1,     𝑋1 ≤ −0.20
−17.56 − 0.06𝑋1,     𝑋1 > −0.20

 ;  

       𝑓2(𝑋2) =

{
 
 

 
 8.71 + 0.02𝑋2 + 0.05𝑋2

2,                      𝑋2 ≤ −0.46

8.71 + 0.01𝑋2 + 0.04𝑋2
2 ,      − 0.46 < 𝑋2 ≤ 0.13

8.71 + 0.01𝑋2 + 0.06𝑋2
2,           0.13 < 𝑋2 ≤ 0.63

8.72 + 0.50𝑋2 + 0.10𝑋2
2,                         𝑋2 ≤ 0.63

 ; 
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  𝑓3(𝑋3) = {
5.30 − 0.05𝑋3,      𝑋3 ≤ −0.13 
5.30 − 0.03𝑋3,     𝑋3 > −0.13

;  and  

  𝑓4(𝑋4) = {
5.12 − 0.04𝑋4,    𝑋4 ≤ −0.10 
5.12 − 0.00𝑋4,   𝑋4 > −0.10

. 

Furthermore, the goodness of fit test is used to test whether the model obtained is feasible 

enough for prediction. This test is based on deviance value and the Chi-square distribution. The 

null hypothesis for this test is that the model is feasible. It is calculated that the deviance amounts 

to 29.58. This is less than the critical value of 𝜒0.05,79
2  namely 110.74. Thus, it can be concluded 

that the model is feasible and can be used for prediction. As an example, it is shown how to predict 

the number of malaria parasites on the 100-th observation. The values of predictor variables for 

the 100-th observation are given by 𝑋100 = [0.79   0.25   0.28  − 0.54] . By using model 

expressed in Eq. (1), these predictor variables are used to estimate the response variables as follows: 

   𝑓1(𝑋1) = −17.56 − 0.06(0.79) = −17.61;  

   𝑓2(𝑋2) = 8.71 + 0.01(0.25) + 0.06(0.25)
2 = 8.72;  

   𝑓3(𝑋3) = 5.30 − 0.03(0.28) = 5.29; and  

   𝑓4(𝑋4) = 5.12 − 0.04(−0.54) = 5.14 . 

Thus, the number of malaria parasites is estimated by using nonparametric penalized spline 

Poisson regression approach as follows: 

   �̂�100 = exp(−17.61 + 8.72 + 5.29 + 5.14) = 4.48 ≈ 4.  

This is the same value as the real number of malaria parasites for the 100-th observation. Hereinafter, 

for research purposes, the nonparametric Poisson regression is compared with its parametric 

Poisson regression counterpart. The parametric Poisson regression model is obtained by using 

maximum likelihood estimate method on the same dataset. The obtained parametric Poisson 

regression model can be considered as generalized linear model (GLM) which can be written as 

follows: 

   �̂�𝑖 = exp (1.608 − 0.102𝑋1 + 0.104𝑋2 − 0.051𝑋3 + 0.029𝑋4). 

While, the number of malaria parasites is estimated by using GLM approach and it gives: 

       �̂�100 = exp(1.608 − 0.102(0.79) + 0.104(0.25) − 0.051(0.28) + 0.029(−0.54)) 

       = 4.57 ≈ 5. 

Overall, plots of the results of estimating the number of malaria parasites using both nonparametric 

regression and parametric regression approaches are presented in Figure 5. 
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     Figure 5.  Plots of the Number of Malaria Parasites Estimates Using Nonparametric  

               Regression and Parametric Regression Approaches. 

 

Figure 5 shows estimation value on in-sample data. It can be seen that nonparametric Poisson 

regression approach is more capable in estimating the number of malaria parasites in microscopic 

images of blood smears than parametric Poisson regression approach. This is shown by the 

nonparametric Poisson regression estimation curve which fluctuates like the character of the 

observation data. In addition to statistical calculations, this is also supported by the mean squared 

error (MSE) value of the in-sample data, i.e., 4.988, and percentage of error value, i.e., 0.24%, for 

the nonparametric Poisson regression approach which is less than the MSE value of the in-sample 

data, i.e., 5.150, and percentage of error value, i.e., 0.48%, for the parametric Poisson regression 

approach (see Table 4). 

Next, plots of prediction results for the number of malaria parasites in microscopic images of 

blood smears using both parametric regression and nonparametric regression approaches are 

presented in Figure 6. 
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Figure 6.  Plots of the Number of Malaria Parasites Prediction Results Using Nonparametric  

          Regression and Parametric Regression Approaches. 

 

Figure 6 shows estimation values on out-sample data. As observed in Figure 6, there is only 

slight difference between estimation values of parametric Poisson regression approach and 

nonparametric Poisson regression approach. In Figure 6, we can observe that the range of 

nonparametric Poisson regression estimation is larger than that of parametric Poisson regression 

estimation, and the nonparametric Poisson regression can estimate data better than parametric 

Poisson regression. 

The superiority of the nonparametric Poisson regression approach in predicting malaria 

parasites in images can be justified by the goodness of fit criteria based on penalized spline and 

maximum likelihood (see Table 3). Table 3 shows goodness of fit criteria for both nonparametric 

Poisson regression (represented by GAM Based on Penalized Spline) and parametric Poisson 

regression (represented by GLM Based on Maximum Likelihood) approaches. Based on mean 

square eror (MSE) values and average of deviance values of these approaches, the nonparametric 

Poisson regression approach is better than parametric Poisson regression approach. 
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Table 3. Goodness of Fit Criteria Based on Penalized Spline and Maximum Likelihood. 

                                            Deviance                      MSE 

GAM Based on Penalized Spline             29.58                         4.27 * 

GLM Based on Maximum Likelihood          73.25                           4.69 

  * Bold format indicates a better approach.  

 

We have mentioned before that the range of nonparametric Poisson regression estimation is 

larger than that of parametric Poisson regression estimation, and the nonparametric Poisson 

regression can estimate data better than parametric Poisson regression. In other word, since 

deviance and MSE values of GAM based on penalized spline approach are less than those of GLM 

based on maximum likelihood approach, then the nonparametric Poisson regression approach is 

better than parametric Poisson regression approach. This is also supported by the goodness of fit 

values of the approaches of these models which are presented in Table 4. 

 

Table 4. Goodness of Fit Values for Nonparametric and Parametric Regressions Approaches. 

                              Data          Deviance       MSE       Percentage of Error 

Nonparametric Poisson 

Regression Approach 

Insample         78.709         4.988               0.24% 

Outsample       16.819         3.650               8.05% 

Overall          95.528        4.319               1.58% * 

Parametric Poisson 

Regression Approach 

Insample         79.883         5.150               0.48% 

Outsample       19.876         4.350               14.94% 

Overall          99.759         4.990                2.17% 

  * Bold format indicates a better approach. 

 

Furthermore, from Table 4 it can be seen that the values of the goodness of fit of the 

nonparametric Poisson regression approach is superior to the parametric Poisson regression 

approach. The measures of goodness of fit used for these approaches are deviance, mean square 

error (MSE), and percentage of error. Overall, the nonparametric Poisson regression approach, 

namely NPR-Pspline approach, has a deviance of 95.528, an MSE of 4.319 and a percentage of 

error of up to 1.58% which are less than those of parametric Poisson regression approach. Thus, 

using a nonparametric Poisson regression approach is better than using a parametric Poisson 
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regression approach. This means that the PSNPR method, namely, by using penalized spline 

nonparametric Poisson regression approach, can estimate the number of malaria parasites with a 

deviation of 95.528, an MSE of 4.319 and a percentage of error of up to 1.58 per cent. 

 

4. CONCLUSIONS 

The proposed alternative method which is called as PSNPR method, namely, by using penalized 

spline nonparametric Poisson regression estimator can be used to determine the number of malaria 

parasites in microscopic images of blood smears precisely. Also, based on the statistical goodness 

of an estimate, namely the goodness of fit value determined by the values of the deviation, mean 

square errors, and the percentage errors, we can conclude that the proposed alternative method has 

a high ability to detect, estimate, and predict the number of malaria parasites in microscopic images 

of blood smears compared to other methods, for example using the parametric regression method, 

and using the manual method which requires time and expertise in preparation for reading.  In 

the future, the results of this study can be used to predict value of mean time to failure (MTTF) 

which is an indicator for predicting survival of malaria parasites that is duration of time until the 

malaria parasites death after the patient is given treatment by a doctor who treats him. This can be 

done by using survival analysis which is a branch of statistics. In addition, if the number of malaria 

parasites as the response variable is not Poisson distributed, then we recommend using the 

asymptotic Normal distribution approach with the smoothing spline nonparametric regression 

method. Details about this smoothing spline nonparametric regression method can be found in 

[33,34,37,50]. 
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