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Abstract. In this study, we conduct an analysis of a stochastic SIRI model with nonlinear relapse that incorporates

the Ornstein–Uhlenbeck process. Initially, we establish the existence of a unique global positive solution. Then,

we present the sufficient conditions for both disease extinction and persistence. By constructing an appropriate

Lyapunov function, we further demonstrate the existence of a stationary distribution for our model. Finally, we

present some computer simulations that demonstrate the theoretical insights that we have obtained. The results of

this study have the potential to enhance our understanding of epidemic models and contribute to the development

of viable strategies for disease prevention and control.
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1. INTRODUCTION

Many factors, such as changes in the environment, globalization, human behavior, and micro-

bial evolution, contribute to the origin and resurgence of infectious diseases. Despite the recent

focus on diseases like MERS, pandemic influenza, SARS, Zika, and Ebola, ancient diseases like

plague, cholera, and yellow fever still pose problems and have even made a comeback. For epi-

demiologists, researchers, and public health officials, the application of mathematical modeling
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to the study of infectious diseases has proved immensely valuable. In order to explain the dy-

namics of disease transmission, project the trajectory of the diseases, and evaluate the potential

effects of intervention methods, these models provide a systematic framework that can support

these endeavors. In mathematical epidemiology, the SIR model, developed by Kermack and

McKendrick [11], has been crucial. Susceptible “S”, infectious “I”, and recovered “R”are the

three groups that this model divides the population into when considering the spread of disease.

The phenomenon of latent infections, in which persons who have healed from an infection may

reawaken or reactivate the pathogen, making them contagious again. This is especially crucial

for infectious disorders like herpes and tuberculosis, which can cause latent infections in the

host. Generally, the traditional SIR framework in epidemiology is not appropriate for modeling

this type of behavior. It may be more acceptable to use models that take into consideration

latent periods, reactivation, and potential re-entry into the pool of infectious individuals. Ex-

tensions to the basic SIR model, such as the SEIR (Susceptible-Exposed-Infectious-Recovered)

model or models with additional compartments indicating delay, can be utilized to reflect these

dynamics [5, 6, 8, 13].

2. PRELIMINARIES

2.1. Mathematical Model. In the context of alcohol consumption or other behaviors that

might influence the reactivation of latent infections, an interdisciplinary approach that considers

both epidemiological and behavioral aspects would be necessary. Modeling such phenomena

requires a nuanced understanding of the specific disease, its biological characteristics, and the

social and behavioral factors that may influence relapse or reactivation. Sanchez et al. [19]

used a SIRI epidemic model with nonlinear relapse to give a full explanation of the patterns of

drinking that happen because of social interactions that happen in places where people drink

together. The following set of nonlinear differential equations describes the model.

(1)


Ṡ = b−bS−βSI,

İ = −(b+δ )I +βSI +λRI,

Ṙ = −bR+δ I−λRI.
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In this instance, there are three groupings within the population: steady and random streaks

“S”, big or bothersome streaks “I”, and short-term healing “R”. The real touch rate is shown

by the parameter β . This means that β IS shows the change from class S to class I caused by

interactions between people from classes S and I that depend on how often they happen. b

shows the adoption rate of weak people who are born or immigrate, and λ shows the return

rate. This means that λ IR shows the speed at which things change from R to I. This happens

because R and I interact with each other in ways that depend on frequency. This nonlinear

process assumes that people R, I, and S live in the same setting. The recovery rate is denoted

by δ .

Regarding the system (1) stated above, we can easily show that the total population ϒ =

S+ I +R verifies

dϒ(s) = d
[
S(s)+ I(s)+R(s)

]
=
[
b−b(S(s)+ I(s)+R(s))

]
ds = b(1−ϒ(s))ds,

which implies by integration

1−ϒ(s) = (1−ϒ(0))e−bs.

Then, if ϒ(0) = S(0)+ I(0)+R(0) = 1, we obtain

S(s)+ I(s)+R(s) = ϒ(s) = 1.

In this paper, we are going to define Rd
+ =

{
(u1, ...,ud)|uk > 0, k = 1, ...,d

}
. This means that

the set

D1 =
{

X = (u1,u2,u3) ∈ R3
+; u1 +u2 +u3 = 1

}
is a positively invariant region of system (1). In order to investigate a two-dimensional system,

the model (1) is reduced as follows:

(2)

 İ = −(b+δ )I +β (1− I−R)I +λRI,

Ṙ = −bR+δ I−λRI.

For system (2), the basic repetition number is represented by

Rδ =
β

δ +b
.
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The dimensionless quantity Rδ represents the number of I-individuals that are generated in

a population that is predominantly composed of S-individuals sharing a common environment.

It has been demonstrated by Sanchez et al. [19] that the dynamics of system (1) also depend on

the initial population size and ratios

R1 =
λ

β
×
[
1−Rδ

]
, R2 =

λ

β
×

[
1

1+ b
β

−2

√
b
β
− b

λ

]
.

• The I-class is established if Rδ > 1. This guarantees the continuation of a regular

drinking class over time.

• The I-class is extinct if R2 < Rδ < 1 and R1 < 1, or Rδ < R2 < 1.

• If R2 < Rδ < 1 and R1 > 1, the starting size of the I-individuals shows if the I-class is

set up or not.

2.2. Stochastic Model. In the real world, ambient noise always has an impact on the transmis-

sion of infectious diseases. As a result, numerous authors have examined the epidemic model

incorporating random perturbation and put forth a variety of random perturbation model types

(see, for example, [1, 2, 6, 9, 12, 13, 21, 29]). Numerous scholars have proposed a type of SIRI

epidemic model with random perturbation based on stochastic differential equations, such as

[20], stochastic model under regime switching [7], and stochastic model with Lévy process [3].

In physics and biology, the Ornstein–Uhlenbeck process is used to model processes that have

a tendency to return to a specific equilibrium state. It can be used to describe the mobility

of particles subjected to friction as well as the behavior of biological systems with regulatory

mechanisms. Currently, a number of random interference channels use the Ornstein–Uhlenbeck

process (see [4, 15, 22, 28]). To determine the effect of ambient noise on transmission rate, we

assume that β and λ follow the mean-reverting Ornstein–Uhlenbeck process in model (2) as

follows [16, 17, 25, 26]:

(3) dβ (t) =−α1×
(
β (t)−β

)
dt +ξ1dW1(t), dλ (t) =−α2×

(
λ (t)−λ

)
dt +ξ2dW2(t),

where β ,λ are measure the long-run mean levels of the infection rates β ,λ ; α j( j = 1,2) denote

the speeds of reversion. W j( j = 1,2) are independent standard Brownian motion parameters



A STOCHASTIC EXAMINATION OF THE SIRI EPIDEMIC MODEL 5

defined on a complete probability space
(
Ω,F ,{Ft}t≥0 ,P

)
, and parameter ξ j( j = 1,2) repre-

sents the intensity of W j. In general, all parameters are considered to be nonnegative.

The following explicit form solution for the arithmetic Ornstein–Uhlenbeck process (3) can

be obtained using the stochastic integral format.

(4)


β (t) = β +

(
β0−β

)
e−α1t +ξ1

∫ t

0
e−α1(t−v)dW1(v),

λ (t) = λ +
(
λ0−λ

)
e−α2t +ξ2

∫ t

0
e−α2(t−v)dW2(v),

with initial values β0 = β (0) and λ0 = λ (0).

It is simple to determine that the term ξi
∫ t

0 e−αi(t−v)dWi(v) follows the normal distribution

N
(

0, ξ 2
i

2αi
(1− e−2αit)

)
. When t −→∞, it is easy to demonstrate by calculating expectation and

variance that

E(β (t))−→ β , V(β (t))−→
α2

1
2ξ1

, E(λ (t))−→ λ , V(λ (t))−→
α2

2
2ξ2

.

Clearly, β (t) follows the normal distribution N
(

β ,
α2

1
2ξ1

)
as t tends to infinity. Here is the

definition of the probability density function:

(5) κ1(x) =
√

α1√
πξ1

e
−α1(x−β )2

ξ 2
1 .

To make the subsequent computations easier, it results in that

(6) lim
t→∞

1
t

∫ t

0
|β (v)−β |dv =

∫ +∞

−∞

|x−β |κ1(x)dx =
ξ1√
πα1

,

which shows β is ergodic and weakly converges to probability density function κ1(x).

In order to discuss the positivity of model (2) with Ornstein–Uhlenbeck process, we define

β+(t) = max{0,β (t)} and λ+(t) = max{0,λ (t)}. As a result, the following stochastic model

with Ornstein–Uhlenbeck process is the subject of our investigation in this study.

(7)



dI(t) =
(
− (b+δ )I(t)+β+(t)(1−R(t)− I(t))I(t)+λ+(t)R(t)I(t)

)
dt,

dR(t) =
(
−bR(t)+δ I(t)−λ+(t)R(t)I(t)

)
dt,

dβ (t) = −α1× (β (t)−β )dt +ξ1dW1(t),

dλ (t) = −α2× (λ (t)−λ )dt +ξ2dW2(t).

Additionally, u1 ∧ u2 is written as min{u1,u2}; in a similar manner, u1 ∨ u2 is written as

max{u1,u2}.
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3. EXISTENCE AND UNIQUENESS OF A GLOBAL SOLUTION

Within the scope of this section, we will discuss the existence of a global solution for model

(7), as well as its uniqueness. Prior to beginning our investigation of the model, it is necessary

for us to specify the following subset:

D2 =
{
(I,R,β ,λ ) ∈ R2

+×R2; I +R < 1
}
.

Theorem 1. If (I(0),R(0),β (0),λ (0)) ∈ D2, then P
(
(I(t),R(t),β (t),λ (t)) ∈ D2

)
= 1 for any

t ≥ 0. The assertion that the set D2 is almost certainly positively invariant by the system (7) is

supported by this evidence.

Proof. Clearly, the coefficients of model (7) satisfy the local Lipschitz conditions, hence, for

any starting point (I(0),R(0),β (0),λ (0)) ∈ D2, there exists a unique local solution X (t) =

(I(t),R(t),β (t),λ (t)) on t ∈ [0,τe), where τe denotes the explosion time. We only need to show

that τe = ∞ to show that this solution is global. Let p0 > 0 such that eβ (0),eλ (0), I(0),R(0) ∈

[ 1
p0
, p0]. For each integer p > p0 considering the stopping times

τp = inf
{

t ∈ [0,τe) : min
{

eβ (t),eλ (t), I(t),R(t)
}
≤ 1

p
or max

{
eβ (t),eλ (t), I(t),R(t)

}
≥ p
}
.

We set out in this paper to inf /0 = ∞. Evidently, τp is increasing as p −→ ∞. Set τ∞ = lim
p→∞

τp,

next, we determine that τ∞ ≤ τe a.s. If we demonstrate that τ∞ = ∞ a.s., so τe = ∞ a.s., then(
I(t),R(t),β (t),λ (t)

)
∈D2 a.s. for any t ≥ 0.

Let us define a Lyapunov function ϕ : R2
+×R2 −→ R+,

ϕ
(
I,R,β ,λ

)
= (I−1− ln I)+(R−1− lnR)+

[
(1−R− I)−1− ln(1−R− I)

]
+

β 2

2
+

λ 2

2
.

Using Itô’s formula, we obtain

(8) dϕ = L ϕdt +ξ1βdW1(t)+ξ2λdW2(t),

where

L ϕ = −1
I
×
[
− (b+δ )I +β

+(1−R− I)I +λ
+RI

]
− 1

R
×
[
−bR+δ I−λ

+RI
]

− 1
1−R− I

[
b(R+ I)−β

+(1−R− I)I
]
+α1β (β −β )+

ξ 2
1
2

+α2λ (λ −λ )+
ξ 2

2
2
.
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We easily obtain

L ϕ ≤ 2b+δ +β
++λ

++
ξ 2

1
2

+
ξ 2

2
2

+α1β (β −β )+α2λ (λ −λ )

≤ 2b+δ + |β |+ |λ |+
ξ 2

1
2

+
ξ 2

2
2
−α1β

2 +α1β |β |−α2λ
2 +α2λ |λ |

≤ 2b+δ +
ξ 2

1
2

+
ξ 2

2
2

+
(α1β +1)2

4α1
+

(α2λ +1)2

4α2
:= A,

where A is a positive constant independent of R, I and t. For the purpose of brevity, we will skip

over the remainder of the demonstration that is identical to the proof of Theorem 2 in [13]. The

proof of theorem is thus completed. �

4. EXISTENCE OF A STATIONARY DISTRIBUTION

This section pertains to the stationary distribution in the system (7), which has implications

for the continued transmission of infectious diseases. We present Lemma 1 before beginning to

establish that system (7) has a stationary distribution.

Lemma 1. [18] For every starting value, Z0(0) = (I(0),R(0),β (0),λ (0)) ∈ D2, if there exists

a bounded closed domain Hη ⊂D2 with regular boundary, and obeys

(9) liminf
t→∞

1
t

∫ t

0
P(v,Z0(0),Hη)dv > 0 a.s.,

where P(v,Z0(0),Hη) denotes the transition probability of Z0(t). In this situation, the stochas-

tic system (7) has at least one stationary distribution.

Define a critical value,

(10) R̃β =
β

b+δ + ξ1√
πα1

.

Theorem 2. Let
(
I(0),R(0),β (0),λ (0)

)
∈ D2 be a starting departure point. If R̃β > 1, then

the stochastic system (7) has at least one stationary distribution ϖ(.) on D2.

Proof. The definition of a C2-function Ψ1 will be given first, as stated below.

Ψ1 =− ln(I)+
β

b
R.
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Using Itô’s formula, we have

L Ψ1 = (b+δ )−β
+(1− I−R)−λ

+R+
β

b
× (−bR+δ I−λ

+RI)

≤ b+δ −β (1− I−R)+ |β −β
+|(1− I−R)+

β

b
× (−bR+δ I)

≤ −β +b+δ +β I +
δβ

b
I + |β −β |(11)

≤ −(R̃β −1)
(

b+δ +
ξ1√
πα1

)
+ I×

(
β +

δβ

b

)
+ |β −β |− ξ1√

πα1
.

Denote

Ψ2 =− ln(R), Ψ3 =− ln(1− I−R), Ψ4 =
β 2

2
+

λ 2

2
.

We have

L Ψ2 = b− δ I
R

+λ
+I,

L Ψ3 =
−b(R+ I)
1− (R+ I)

+β
+I ≤ β

+I− bI
1− (R+ I)

,

L Ψ4 = α1β (β −β )+α2λ (λ −λ )+
ξ 2

1
2

+
ξ 2

2
2
.

Let us define a function Ψ : R2
+×R2 −→ R,

Ψ(I,R,β ,λ ) = A Ψ1 +Ψ2 +Ψ3 +Ψ4,

where the positive constant A > 0 is sufficiently large to be selected in an appropriate manner

at a later time.

We define a non-negative C2-function Ψ as follows

Ψ(I,R,β ,λ ) = Ψ(I,R,β ,λ )−Ψ(X̌0),

where Ψ(X ) is a continuous function, X̌0 is a minimum point (Ǐ0, Ř0, β̌0, λ̌0) in the interior

domain of D2. Using Itô’s formula, we obtain

L Ψ ≤ −A (R̃β −1)
(

b+δ +
ξ1√
πα1

)
+A

(
β +

δβ

b

)
I +A

(
|β −β |− ξ1√

πα1

)

+b− δ I
R

+λ
+I +β

+I− bI
1− (R+ I)

+α1β (β −β )+α2λ (λ −λ )+
ξ 2

1 +ξ 2
2

2
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≤ −A (R̃β −1)
(

b+δ +
ξ1√
πα1

)
+A

(
β +

δβ

b

)
I +A

(
|β −β |− ξ1√

πα1

)

+b+
ξ 2

1 +ξ 2
2

2
− δ I

R
− bI

1− (R+ I)
+ |λ |+ |β |+α1|β |β −α1β

2 +α2|λ |λ −α2λ
2

≤ −A (R̃β −1)
(

b+δ +
ξ1√
πα1

)
+A

(
β +

δβ

b

)
I +A

(
|β −β |− ξ1√

πα1

)

+b+
ξ 2

1 +ξ 2
2

2
− δ I

R
− bI

1− (R+ I)
+

(1+α1β )2

2α1
+

(1+α2λ )2

2α2
− α1β 2

2
− α2λ 2

2

= G
(
I,R,β ,λ

)
+A

(
|β −β |− ξ1√

πα1

)
,

where

G
(
I,R,β ,λ

)
= −A (R̃β −1)

(
b+δ +

ξ1√
πα1

)
+A

(
β +

δβ

b

)
I +b+

ξ 2
1 +ξ 2

2
2

+
(1+α1β )2

2α1
+

(1+α2λ )2

2α2
− δ I

R
− bI

1− (I +R)
− α1β 2

2
− α2λ 2

2
.

To begin, we select a sufficiently large constant A > 0 that

−A (R̃β −1)×
(

b+δ +
ξ1√
2α1

)
+B <−2,

where

B = b+
ξ 2

1 +ξ 2
2

2
+

(1+α1β )2

2α1
+

(1+α2λ )2

2α2
.

We construct the bounded closed set

Hη =

{
(I,R,β ,λ ) ∈D2 : I ≥ η , I +R≤ 1−η

2,R≥ η
2, |β | ≤ 1

η
, |λ | ≤ 1

η

}
,

the constant η is sufficiently small to meet the conditions that are listed below.

−2+A ×

(
β +

δβ

b

)
η ≤ −1,(12)

−2+A ×

(
β +

δβ

b

)
− b

η
≤ −1,(13)

−2+A ×

(
β +

δβ

b

)
− δ

η
≤ −1,(14)

−2+A ×

(
β +

δβ

b

)
− α1

2η2 ≤ −1,(15)
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−2+A ×

(
β +

δβ

b

)
− α2

2η2 ≤ −1.(16)

Just to make things more clear, we divide D2 \Hη into five domains.

H c
η ,1 = {(I,R,β ,λ ) ∈D2 : I < η} ,

H c
η ,2 =

{
(I,R,β ,λ ) ∈D2 : I ≥ η , I +R > 1−η

2} ,
H c

η ,3 =
{
(I,R,β ,λ ) ∈D2 : I ≥ η ,R < η

2} ,
H c

η ,4 =

{
(I,R,β ,λ ) ∈D2 : |β |> 1

η

}
,

H c
η ,5 =

{
(I,R,β ,λ ) ∈D2 : |λ |> 1

η

}
.

Obviously, D2 \Hη = ∪5
i=1H

c
η ,i. We will demonstrate that G

(
I,R,β ,λ

)
≤ −1 on D2 \Hη ,

this is identical to displaying it on the five previous domains.

• Case 1. Whenever (I,R,β ,λ ) ∈H c
η ,1, according to (12), we have

G(I,R,β ,λ )≤−2+A ×

(
β +

δβ

b

)
η ≤−1.

• Case 2. Whenever (I,R,β ,λ ) ∈H c
η ,2, in light of (13), we have

G(I,R,β ,λ )≤−2+A ×

(
β +

δβ

b

)
− b

η
≤−1.

• Case 3. Whenever (I,R,β ,λ ) ∈H c
η ,3, in light of (14), we get

G(I,R,β ,λ )≤−2+A ×

(
β +

δβ

b

)
− δ

η
≤−1.

• Case 4. Whenever (I,R,β ,λ ) ∈H c
η ,4, according to (15), we get

G(I,R,β ,λ )≤−2+A ×

(
β +

δβ

b

)
− α1

2η2 ≤−1.

• Case 5. Whenever (I,R,β ,λ ) ∈H c
η ,5, according to (16), we have

G(I,R,β ,λ )≤−2+A ×

(
β +

δβ

b

)
− α2

2η2 ≤−1.

When all five cases are considered together, it becomes clear that

G(I,R,β ,λ )≤−1 for all (I,R,β ,λ ) ∈D2 \Hη .
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Furthermore, there exists a positive constant Λ which satisfies G
(
I,R,β ,λ

)
≤ Λ. Here, denote

Z0(t) =
(
I(t),R(t),β (t),λ (t)

)
. As a result, we can obtain

0 ≤ 1
t
E
[
Ψ(Z0(t))

]
=

1
t
E
[
Ψ(Z0(0))

]
+

1
t

∫ t

0
E
[
L Ψ(Z0(v))

]
dv

≤ 1
t
E
[
Ψ(Z0(0))

]
+

1
t

∫ t

0
E
[
G(Z0(v))

]
dv

+A

{
E
[

1
t

∫ t

0
|β (v)−β |dv

]
− ξ1√

πα1

}
.(17)

Taking the inferior limit on both sides of (17) and combining it with (6), we have

0 ≤ liminf
t→∞

(
1
t
E
[
Ψ(Z0(0))

])
+ liminf

t→∞

(
1
t

∫ t

0
E
[
G(Z0(v))

]
dv
)

+A

{
liminf

t→∞
E
[

1
t

∫ t

0
|β (v)−β |dv

]
− ξ1√

πα1

}
= liminf

t→∞

(
1
t

∫ t

0
E
[
G(Z0(v))

]
1{Z0(v)∈Hη}dv

)
+liminf

t→∞

(
1
t

∫ t

0
E
[
G(Z0(v))

]
1{Z0(v)∈D2\Hη}dv

)
≤ Λ× liminf

t→∞

(
1
t

∫ t

0
P
{

Z0(v) ∈Hη

}
dv
)
− liminf

t→∞

(
1
t

∫ t

0
P
{

Z0(v) ∈D2 \Hη

}
dv
)

≤ −1+(1+Λ)× liminf
t→∞

(
1
t

∫ t

0
P
{

Z0(v) ∈Hη

}
dv
)
.

This indicates that

liminf
t→∞

(
1
t

∫ t

0
P
{

Z0(v) ∈Hη

}
dv
)
≥ 1

1+Λ
,

then

(18) liminf
t→∞

(
1
t

∫ t

0
P
{

v,Z0(0),Hη

}
dv
)
≥ 1

1+Λ
> 0, ∀Z0(0) ∈D2 a.s.

The inequality (18) and the invariance of D2 suggest the existence of an invariance probability

measure for model on D2. The existence of the invariant probability measure also makes it

easy to derive the positive recurrence of model (7). Therefore, the system (7) has a stationary

distribution ϖ(.). �
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5. DISEASE EXTINCTION

In this section, we will discuss the required condition for the disease to become extinct. Prior

to delving into this matter, we will first define

R̃E =

ξ1
2
√

α1π
e
− β

2
α1

ξ 2
1 +βΦ

(
β
√

α1
ξ1

)
+ ξ2

2
√

α2π
e
− λ

2
α2

ξ 2
2 +λΦ

(
λ
√

α2
ξ2

)
b+δ

,

where Φ(x) =
∫ x
−∞

1√
2π

e
−v2

2 dv.

Theorem 3. With a starting value of (I(0),R(0),β (0),λ (0))∈D2, let (I(t),R(t),β (t),λ (t)) be

the solution of the system (7). If R̃E < 1, then

P
(

limsup
t→∞

ln I(t)
t

< 0
)
= 1.

To put it another way, the disease almost surely goes away exponentially.

Proof. Employing the Itô formula on I 7→ ln I, we can get

d
[

ln I(t)
]

=
[
− (b+δ )+β

+(1−R(t)− I(t))+λ
+R(t)

]
dt

≤
[
− (b+δ )+β

++λ
+
]
dt.(19)

Division by t after integrating this inequality (19) from 0 to t, we get

1
t
× ln I(t) ≤ 1

t
× ln I(0)+

1
t

∫ t

0
β
+(v)dv+

1
t

∫ t

0
λ
+(v)dv− (b+δ ).(20)

β (t) has the ergodic property and there is a unique stationary distribution with the density

function κ1(x) =
√

α1√
πξ1

e
−α1(x−β )2

ξ 2
1 . Then the strong law of large numbers [11], we get

lim
t→∞

1
t

∫ t

0
β
+(v)dv =

∫
∞

0
xκ1(x)dx

=
∫

∞

0
x
√

α1√
πξ1

e
−α1(x−β )2

ξ 2
1 dx

=
ξ1

2
√

α1π
e
− β

2
α1

ξ 2
1 +β

[
1−Φ

(
−β
√

α1

ξ1

)]

=
ξ1

2
√

α1π
e
− β

2
α1

ξ 2
1 +βΦ

(
β
√

α1

ξ1

)
.(21)



A STOCHASTIC EXAMINATION OF THE SIRI EPIDEMIC MODEL 13

In a similar manner, we have

lim
t→∞

1
t

∫ t

0
λ
+(v)dv =

ξ2

2
√

α2π
e
− λ

2
α2

ξ 2
2 +λΦ

(
λ
√

α2

ξ2

)
.(22)

In light of lim
t→∞

1
t
× ln I(0) = 0 combined with (20), (21) and (22); we obtain

limsup
t→∞

[
ln I(t)

t

]
≤ (b+δ )×

(
R̃E −1

)
< 0.

This concludes the proof. �

6. PERSISTENCE IN MEAN OF THE DISEASE

Extinction and persistence of diseases are the most interesting things to study in epidemic

models. Section 5 talked about the first one. Following this section, we will demonstrate that

the disease persists for a long time.

Theorem 4. If R̃β > 1, then for any starting value
(
I(0),R(0),β (0),λ (0)

)
∈D2, the following

inequality holds

(23) liminf
t→∞

1
t

∫ t

0
I(v)dv ≥

b
(

ξ1√
πα1

+b+δ

)
β (b+δ )

×
(
R̃β −1

)
a.s..

Proof. Through (11), we can get

L Ψ1 ≤ −β +b+δ +

(
β +

δβ

b

)
× I + |β −β |.

Integrating both sides of the above inequality from 0 to t and dividing t, there is

Ψ1(t)−Ψ1(0)
t

≤ (−β +δ +b)+

(
β +

βδ

b

)
× 1

t

∫ t

0
I(v)dv+

1
t

∫ t

0
|β (v)−β |dv.

Then (
β +

βδ

b

)
× 1

t

∫ t

0
I(v)dv ≥ β −b−δ − 1

t

∫ t

0
|β (v)−β |dv−Ψ1(0)

t
.(24)
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Consequently, from (6) and (24) we easily get

liminf
t→∞

1
t

∫ t

0
I(v)dv ≥

β −b−δ − ξ1√
πα1(

β + βδ

b

)
≥

b
(

ξ1√
πα1

+b+δ

)
β (b+δ )

×
(
R̃β −1

)
.

Which concludes the proof. �

7. NUMERICAL EXAMPLES

In this part, various numerical simulations have to be carried out in order to show the analyt-

ical conclusions that were described before. Here, we apply the higher-order Milstein’s method

as stated in [10]. The discretized form is as follows:

βp+1 = βp +α1
(
β −βp

)
∆t +ξ1ρ1,p

√
∆t + ξ 2

1
2 (ρ2

1,p−1)∆t,

λp+1 = λp +α2
(
λ −λp

)
∆t +ξ2ρ2,p

√
∆t + ξ 2

2
2 (ρ2

2,p−1)∆t,

Ip+1 = Ip +
[
− (b+δ )Ip +β+

p (1−Rp− Ip)Ip +λ+
p IpRp

]
∆t,

Rp+1 = Rp +
[
−bRp +δ Ip−λ+

p IpRp
]
∆t,

where ∆t > 0 is time variation, ρ1,p,ρ2,p(p = 1,2, ...) are the Gaussian random variables which

follows the standard normal distribution.

In all examples, the values of β0 = 0.2,λ0 = 0.5, I(0) = 0.2 and R(0) = 0.1, are chosen to be

the same.

Example 1. To begin, we choose b = 0.09,δ = 0.08,β = 0.3,λ = 0.2,α1 = 0.2,α2 = 0.2,ξ1 =

0.02,ξ2 = 0.02. Since R̃β = 1.5366 > 1. As a result, Theorem 2 indicates that the solution of

model (7) has a stationary distribution, which is demonstrable through numerical simulation,

as Figure 1 illustrates.
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FIGURE 1. The stationary distribution of the stochastic system (7) is simulated

when R̃β = 1.5366 > 1. The column on the left represents the density of the

stochastic system (7). On the right column, the stochastic solution of the system

(7) is indicated by the red lines, and the deterministic solution of the system (2)

is depicted by the blue lines.

Example 2. We choose b= 0.09,δ = 0.13,β = 0.1,λ = 0.1,α1 = 0.2,α2 = 0.2,ξ1 = 0.05,ξ2 =

0.05. Since R̃E = 0.8652 < 1. According to Theorem 3, the stochastic model (7) predicts that

the disease will inevitably vanish from the population. For more illustrations of this example,

see Figure 2.
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FIGURE 2. The red trajectories represent the solution to model (7), and the blue

trajectories represent the corresponding deterministic system. When using the

parameters from Example 2, track diagram examples of I(t) and R(t). By this

point, R̃E = 0.8692 < 1, the disease will be eliminated.

In numerical simulation, changing the essential parameters β ,ξ1,α1 has a significant impact

on the alteration of the curve of the system (7). To demonstrate the influence of simulation,

we apply the control variables approach, which involves varying the values of a significant

parameter together with a change in the curve. Figures 3-5 provide examples of this.

Example 3. We choose b = 0.09,δ = 0.1,λ = 0.2,α1 = 0.2,α2 = 0.2,ξ1 = 0.02,ξ2 = 0.02.

Here we choose four situations: the diseases will continue to exist for β = 0.3,β = 0.25,β = 0.2

and will eventually become extinct for β = 0.15. For more illustrations of this example, see

Figure 3.

FIGURE 3. The paths of the solution (I(t),R(t)) of the system (7), based on data

from Example 3.
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Example 4. We choose b = 0.09,δ = 0.1,β = 0.3,λ = 0.2,α1 = 0.2,α2 = 0.2,ξ2 = 0.02. Here

we choose three situations: ξ1 = 0.001,ξ1 = 0.01, and ξ1 = 0.1. It is evident from Figure 4 that

the disease is more unstable as ξ1 increases.

FIGURE 4. The paths of the solution (I(t),R(t)) of the system (7), based on data

from Example 4.

Example 5. We choose b= 0.09,δ = 0.1,β = 0.3,λ = 0.2,α2 = 0.2,ξ1 = 0.02,ξ2 = 0.02. Here

we choose three situations: α1 = 0.05,α1 = 0.5, and α1 = 1. Figure 5 shows that the disease

gets more unstable as α1 decreases.

FIGURE 5. The paths of the solution (I(t),R(t)) of the system (7), based on data

from Example 5.

8. CONCLUSION

This article looks at how a random SIRI epidemic model with nonlinear relapse works. It

uses the mean-reverting Ornstein-Uhlenbeck process. First, we provide and demonstrate the
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theoretical result that there is a unique global positive solution for the stochastic SIRI system

(7). Then, it is decided that the epidemic disease will end or stay active based on two threshold

values, R̃β and R̃E , of the stochastic system (7). Based on theory, we show that there are

ergodic stationary distributions for random SIRI systems (7). We find that if R̃E < 1, the disease

is almost surely exponential extinction (see Theorem 3). Nevertheless, based on Theorem 4, we

showed that, if R̃β > 1, the process I is persistent in mean. Importantly, we produce simulations

with different parameter values in order to illustrate and verify our theoretical results.

These findings shed important light on how stochastic epidemic models function, which has

applications in disease prevention and management. We can utilize them to formulate targeted

strategies aimed at halting the transmission of infectious diseases. Moreover, additional sto-

chastic epidemic models [24, 27] can benefit from the effective application of the theoretical

techniques employed in this work. This project is presently in progress.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] L.J.S. Allen, An introduction to stochastic processes with applications to biology, Prentice Hall, Upper Saddle

River, 2003.

[2] E. Beretta, Y. Takeuchi, Global stability of an SIR epidemic model with time delays, J. Math. Biol. 33 (1995),

250–260. https://doi.org/10.1007/bf00169563.

[3] B. Berrhazi, M. El Fatini, R. Pettersson, et al. Media effects on the dynamics of a stochastic SIRI epidemic
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