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Abstract: This research analyzes the interaction of prey and carnivorous apex facultative scavengers in the existence 

of prey carrion biomass. Prey consists of vertebrate marine animals as the main food preferences for carnivorous apex 

facultative scavengers, which comprise fish, reptiles and marine mammals, whose carrion is also hunted and eaten. 

Apex facultative scavengers or formidable predators are superior in scavenging, where they can search and consume 

carrion more efficiently than other scavengers. The fishery system is assumed to be in an extreme condition where the 

temperature in marine life habitat is high due to climate change. There, the survival of apex facultative scavengers in 

the marine system only depends on their predation and scavenging interactions with prey and prey carrion biomass, 

respectively. Moreover, prey carrion biomass formation only relies on the predation interaction of prey and apex 

facultative scavengers due to its limited source. Apex facultative scavengers can be extinct without the existence of 

prey. Both prey and apex facultative scavenger populations are harvested due to their commercial values. However, 

the dynamical behaviors of the fishery model have been analyzed by considering prey harvesting as a bifurcation 

parameter due to their importance in determining the stability of an extreme fishery system since prey are the main 
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source of apex facultative scavengers growth and prey carrion biomass formation. It is found that the underharvesting 

of prey leads to the appearance of periodic oscillations around unstable coexistence equilibrium through Hopf 

bifurcation. The intermediate level of prey harvesting guarantees the coexistence of all interacting populations, and 

their high level of harvesting implies the appearance of the bistability phenomenon and saddle-node bifurcation of the 

steady-states in the fishery system. Lastly, the overharvesting of prey makes the extreme fishery system collapse.  

Keywords: prey-prey carrion biomass-apex facultative scavenger; prey harvesting; predation; scavenging; local 

bifurcations; bistability. 

2020 AMS Subject Classification: 34A34, 34C23, 34C60, 92B05, 92D25, 92D40. 

 

 

1. INTRODUCTION 

In a fishery ecosystem, along with prey and predator populations, there also exists a type of 

animal that feeds on the dead animal’s leftovers, which is called a scavenger. The major food 

source for aquatic scavengers is fishery discards. Examples of aquatic scavengers that feed on 

carrion (the flesh of dead animals) are mackerel, Atlantic cod, sea bass, remora, spinous spider 

crab, cuttlefish, shark and conger eel [1]. Shark is an example of a carnivorous apex facultative 

scavenger that hunts and consumes both live prey and carrion of dead marine animals. Instead of 

vertebrate marine animals, sharks also consume marine invertebrates like mollusks and 

crustaceans as their alternative foods. A massive aquatic animal like a shark has a large pectoral 

fin that prefers to cruise through the water and has been considered a top facultative scavenger [2]. 

However, sharks have the possibility to compete with their apex predators or competitors like orcas 

(killer whales) in hunting their same limited food sources [3]. According to Carey et al. [4], sharks 

are ectotherm fish with low metabolic rates who can go weeks without eating because they prefer 

the energy-dense parts of carcasses (dead bodies of marine animals). However, sharks in the 

tropical ocean as well as small sharks have high metabolic rates and are actively searching for their 

live prey and carrion to survive.  

Scavenger research is significant because these organisms assist in cleaning up the environment 

and controlling disease. Scavengers can consume the carcasses of infected animals without 

affecting their health [5, 6]. As stated by Motivarash Yagnesh et al. [7], sharks regulate prey 

populations by removing weak and sick animals, thus maintaining diversity in prey species. 

Unfortunately, it was estimated that the global amount of marine carrion which is the food source 

for marine scavengers that come from fisheries discards was 18.8 million tonnes in 1989 and is 
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currently declining to less than 10 million tonnes annually [8, 9]. The execution of the Landing 

Obligation (LO), which gradually eliminates discards by minimizing needless catches as much as 

possible and by slowly ensuring that catches are landed, may destroy the scavenger population [1, 

10]. Furthermore, due to animal deaths from natural aging and rapid ingestion by scavengers, there 

are less naturally occurring marine carrion formations, such as the carrion of seals, dolphins, sea 

lions, whales and fish.  

According to Cheung et al. [11], extreme temperature events have occurred in all ocean basins 

over the last two decades, harming marine biodiversity, ecosystem functions and services. Using 

an integrated climate-biodiversity-fisheries-economic impact model, they estimated that when an 

annual high temperature extreme occurs in an exclusive economic zone, 77% of exploited fish and 

invertebrates will lose biomass, while maximum catch potential will fall by 6%, adding to the 

decadal-scale mean impacts of climate change. The net negative impacts of high temperature 

extremes on fish stocks are expected to result in losses in fisheries revenues and livelihoods in the 

majority of maritime countries, causing jolts to fishery’s social-ecological systems, especially in 

climate-vulnerable regions. However, in this research, we consider the temperature of the water in 

the fishery ecosystem which is in the tropical ocean is higher than usual (not too hot) due to climate 

change. According to Nero et al. [12], the temperature of water in the sea usually decreases with 

depth below the mixed layer (thermocline) and it has a major impact on the decomposition rate of 

dead sea turtles where the volume of their internal gases produced to float to the surface of the sea 

are decreased (Charles’ Law) and thus resulting to the nonlinearly decrease in their decomposition 

rate. The gases like methane, ammonia, hydrogen sulfide and carbon dioxide are produced by 

aerobic and anaerobic bacteria in the tissues and digestive tract of dead organisms during their 

decomposition [13].  

As opposed to that, the warm and humid environment conditions can accelerate the 

decomposition rates of carcasses or carrion [14]. Besides, the flora and fauna in the sea may 

influence the rate of decomposition of marine carrion. The flora or plants like seaweed, algae, 

seagrass and microscopic algae (phytoplankton) absorb carbon dioxide and release oxygen during 

their photosynthesis. The oxygen gas is needed for decomposers like bacteria, fungi, marine worm 

and echinoderm for their respiration and survival in doing the decomposition activity. The 

ubiquitous existence of marine fauna like scavengers and decomposers in the sea may accelerate 

the decomposition rate of marine carrion. Moreover, the strong currents in the ocean can cause 

carcasses to move over long distances and they can probably be scraped along things such as tree 
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limbs, rocks, the bottom of the body of water and others. These situations will put pressure on the 

apex facultative scavenger population to hunt their food since marine carrion easily decomposes, 

and they may confront their apex predators in hunting the same food sources (prey). The prey 

population can be threatened if the harvesting activity is not controlled, and it can have an adverse 

effect on the stability of the fishery system.  

Realizing the importance of carrion for scavengers, O’Bryan, Holden and Watson [15] have 

proposed two mathematical models to describe the scavenging interactions between apex obligate 

scavengers, mesoscavengers and carrion biomass in the first model and considered apex facultative 

scavengers to replace apex obligate scavengers in the second model. Distinct from facultative 

scavengers, obligate scavengers are fully dependent on carrion for life. Besides, Mellard et al. [16] 

have analyzed the effects of scavenging activities by facultative scavengers and primary predators 

on predation in a four-dimensional food web model. Based on the research of Jana and Panja [17], 

they discovered that in the presence of extra food for the scavenger species, the disorderly 

dynamics can be regulated by the quadratic harvesting of predator and scavenger species. Hussin 

et al. [6] found that scavenging activities by scavengers have a detrimental effect on the 

prey− predator− scavenger fishery system with scavenger harvesting if they are not properly 

controlled. Additionally, Zawka and Melese [18] studied the dynamics and ideal harvesting 

practices of a prey−predator system in the presence of scavengers, which reduced pollution in the 

environment by eating the carcasses of sick predator and prey.  

Previous research studied the effect of carrion source marine animal harvesting on the density 

of carrion in the fishery systems, but not many studied in terms of bifurcation analysis. 

Ecologically, carrion is an important food source for scavengers, and research related to scavengers 

is needed to ensure balanced interaction between these species, which then leads to a balanced 

fishery ecosystem. Past studies [1, 5, 6, 15−21] have inspired us to investigate the dynamics of the 

fishery model with prey carrion biomass density and with the existence of carrion source marine 

animals (prey) and apex facultative scavenger harvesting. We investigate the impacts of prey 

harvesting on the stability of an extreme fishery system via bifurcation analysis due to the 

significance of prey population density in the fishery system, which acts as a main food source for 

carnivorous apex facultative scavengers. We think that the model will lead to more complex 

dynamics in fishery models’ behaviors, which is important for maintaining and conserving the 

fishery ecosystem. 
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2. THE MATHEMATICAL MODEL 

The mathematical formulation of the current research fishery model is based on previous 

research by [5, 15, 16]. Differing from previous research, this present work considers the 

harvesting impacts of prey in an extreme fishery system with prey carrion biomass density. Our 

approach mainly focuses on bifurcation analysis. The dimensional form of the fishery model is 

formulated as  

                 
𝑑𝑅

𝑑𝑇
= 𝑟1𝑅 (1 −

𝑅

𝐾1
) − 𝛼1𝑅𝑆 − 𝑞1𝐸1𝑅, (1a) 

𝑑𝐶

𝑑𝑇
= 𝜃𝛼1𝑅𝑆 − 𝑑1𝐶 − 𝛼2𝐶𝑆, 

(1b) 

                          
𝑑𝑆

𝑑𝑇
= 𝜙𝛼1𝛽1𝑅𝑆 − 𝑑2𝑆 + 𝛼2𝛽2𝐶𝑆 − 𝑞2𝐸2𝑆, 

(1c) 

where R, C and S are prey, prey carrion biomass and carnivorous apex facultative scavenger, 

respectively. Variable T refers to time. Prey grows logistically with the intrinsic growth rate r1 and 

carrying capacity K1. Parameters α1 and α2 are attack rates of prey and prey carrion by the apex 

facultative scavenger, respectively. The conversion rates of prey and prey carrion to apex 

facultative scavenger density are represented by parameters ꞵ1 and ꞵ2, respectively. The proportion 

of dead prey that the apex facultative scavenger rapidly eats is represented by the parameter ϕ ∈ 

(0,1), while the proportion of dead prey that the apex facultative scavenger instantly transforms 

into carrion is represented by θ =1−ϕ. The rate of prey carrion losses due to other scavenger species 

and decomposition and the natural mortality rate of apex facultative scavenger are denoted by 

parameters d1 and d2, respectively. The catchability coefficients of the prey and apex facultative 

scavenger are represented by parameters q1 and q2, respectively. Parameters E1 and E2 refer to the 

effort harvesting rates of prey and apex facultative scavenger, respectively. Every parameter is 

positive, and each variable is not negative.  

Kane et al. [22] revealed that carrion production depends on predation, disease and scavenging. 

In the extreme fishery system (1), we assume the sources of prey carrion are only contributed by 

the predation interaction between prey and apex facultative scavengers, and both predation and 

scavenging activities have control over the density of prey carrion. In the absence of prey, apex 

facultative scavengers can extirpate. In an extreme fishery system (1), we omitted the sources of 

carrion from the natural deaths of vertebrate marine prey and apex facultative scavengers and 
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sources of foods other than vertebrate marine prey for apex facultative scavengers due to the 

limitations of those sources because of the rapid consumption of other scavenger and predator 

species and the rapid decomposition by decomposers like bacteria, fungi, marine worms and 

echinoderms due to environment conditions in the marine life habitat that supported decomposition 

process. Natural mortality refers to the elimination of aquatic animals other than harvesting, such 

as through natural senescence, disease, competition, cannibalism and pollution.  

The factors that may influence the decomposition activity of the marine carrion are water depth, 

the temperature of the water, water current, the surrounding ecosystem and the existence of flora 

(marine plants) and fauna (decomposers and scavengers) that support the decomposition process. 

Because carrion is unpredictable and ephemeral, unlike living prey, scavenging depends more on 

the potential to move efficiently over greater distances than predation. Instead of the locomotion 

ability of scavengers, the good sensory detection of carrion through smell ensures faster reach to 

the carrion. 

2.1. Dimensionless fishery model 

To make the fishery model easier to analyze, the fishery system (1) is non-dimensionalized, 

which minimizes the number of parameters in the model. The dimensionless fishery system is 

given by 

         
𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝑥) − 𝑥𝑧 − 𝜌𝑥 , 

  (2a) 

 
𝑑𝑦

𝑑𝑡
= 𝜂𝑥𝑧 − 𝜎𝑦 − 𝜖𝑦𝑧 , 

  (2b) 

         
𝑑𝑧

𝑑𝑡
= 𝜔𝑥𝑧 − 𝜅𝑧 + 𝑦𝑧 − 𝛿𝑧 , 

  (2c) 

where its non-dimensional variables are  

𝑥 =
𝑅

𝐾1
 , 𝑦 =

𝛼2𝛽2𝐶

𝑟1
, 𝑧 =

𝛼1𝑆

𝑟1
 , 𝑡 = 𝑟1𝑇, 

and dimensionless parameters are 

    𝜌 =
𝑞1𝐸1

𝑟1
 , 𝜂 =

𝛼2𝛽2𝜃𝐾1

𝑟1
, 𝜎 =

𝑑1

𝑟1
 , 𝜖 =

𝛼2

𝛼1
 , 𝜔 =

𝜙𝛼1𝛽1𝐾1

𝑟1
 , 𝜅 =

𝑑2

𝑟1
 , 𝛿 =

𝑞2𝐸2

𝑟1
 . 

The dimensionless system (2) is on the set 

𝜁 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3|𝑥 ≥ 0, 𝑦 ≥ 0, 𝑧 ≥ 0}. (3) 
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3. THE PRESENCE AND STABILITY OF EQUILIBRIUM 

The fishery system (2) equilibria are derived, and their local and global stability is examined in 

this section. Prey harvesting (ρ) is a bifurcation parameter, and the threshold requirements for the 

existence of transcritical and saddle-node bifurcations about the equilibrium points or steady-states 

are studied. 

3.1. Existence of steady-states from the fishery model (2) 

i. The extinction equilibrium point P1 = (0,0,0) exists without any parametric restrictions. 

ii. The prey-free equilibrium P2= (0, 𝜅 + 𝛿, −
𝜎

𝜖
 ) is not biologically meaningful due to the 

strictly negative value of the equilibrium number of apex facultative scavengers. This 

steady-state is not considered throughout the analysis of the fishery system (2). 

iii. The equilibrium with only the presence of prey, P3 = (1−ρ,0,0) is feasible if 1−ρ > 0. 

iv. The coexistence steady-state P4 = (1−ρ−𝑧̂, κ+δ − ω [1−𝜌 − 𝑧̂], 𝑧̂), where 𝑧̂ is positive 

root(s) by solving the quadratic polynomial equation of 

(𝜂 + 𝜖𝜔)𝑧̂2 + [𝜎𝜔 + 𝜖(𝜅 + 𝛿) − (𝜂 + 𝜖𝜔)(1 − 𝜌)]𝑧̂ + 𝜎[𝜅 + 𝛿 − 𝜔(1 − 𝜌)] = 0. (4) 

      The coexistence steady-state P4 exists or is feasible under the conditions  

   [(1 − 𝜌)(𝜂 + 𝜖𝜔) − [𝜎𝜔 + 𝜖(𝜅 + 𝛿)]]
2

≥ 4𝜎(𝜂 + 𝜖𝜔)[𝜅 + 𝛿 − 𝜔(1 − 𝜌)], 
(5a) 

𝜎𝜔 + 𝜖(𝜅 + 𝛿) < (1 − 𝜌)(𝜂 + 𝜖𝜔), (5b) 

0 < 1 − 𝜌 − 𝑧̂ <
𝜅+𝛿

𝜔
 . (5c) 

3.2. Analysis of the local stability in the steady-states 

We investigate the local stability requirements for feasible steady-states of the fishery system 

(2) based on the linearization method and the Routh-Hurwitz criterion [23−28]. Local stability of 

the equilibrium points indicates the solutions of the differential equations of the system (2) tend to 

converge to the equilibrium points under the initial number of interacting populations close to the 

equilibrium points. Therefore, by considering the Jacobian matrix 

𝐽(𝑥, 𝑦, 𝑧) = (
1 − 𝜌 − 𝑧 − 2𝑥 0 −𝑥

𝜂𝑧 −𝜎 − 𝜖𝑧 𝜂𝑥 − 𝜖𝑦
𝜔𝑧 𝑧 𝜔𝑥 + 𝑦 − 𝜅 − 𝛿

) , 
  

(6) 

the local stability of the equilibrium points of the fishery system (2) can be investigated. 
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3.2.1. Stability of P1 = (0,0,0) 

The eigenvalues found from the Jacobian matrix (6) derived at equilibrium point P1 are λ1 

=1−ρ, λ2 = −𝜎 and λ3 = −(κ+δ). Hence, the extinction equilibrium P1 is a stable node if 1−ρ 

< 0, while it is an unstable saddle point if 1−ρ > 0. If equilibrium P1 is a stable node, therefore 

an equilibrium P3 is unfeasible due to the unsatisfaction of the condition 1−ρ > 0, whereas if 

equilibrium P1 is an unstable saddle point, hence equilibrium P3 is feasible because the condition 

1 − ρ >  0 is holding. Moreover, if equilibrium P1 is an unstable saddle point, coexistence 

equilibrium P4 can exist as long as the conditions (5a)−(5c) are satisfied, whereas if equilibrium 

P1 is a stable node where 1−ρ < 0, the coexistence equilibrium P4 does not exist. 

Based on this research, the neutral saddle (NS) of equilibrium P1 describes the nature of its 

eigenvalues which is the sum of the two eigenvalues is zero and the other eigenvalue is a negative 

real number. The neutral saddle point is not a bifurcation point, since it is a hyperbolic saddle [29]. 

Neutral saddle points occur when  

𝜌 = 1 − (𝜅 + 𝛿), (7) 

and 

𝜌 = 1 − 𝜎,  (8) 

when we treat prey harvesting, ρ as a bifurcation parameter. At steady-state P1, the necessary 

criteria for the transcritical bifurcation (TB) to happen when ρ differs is  

𝜌 = 1. (9) 

3.2.2. Stability of P3 = (1−ρ,0,0) 

By considering the Jacobian matrix (6) about the steady-state P3, the eigenvalues obtained are 

λ1 = −(1−ρ), λ2 = −𝜎 and λ3 = 𝜔(1−ρ) − (κ +δ). Consider the feasibility condition 1−ρ > 0 

for equilibrium P3 is satisfied. Hence, steady-state P3 is a stable node if the condition κ +δ  >

𝜔(1−ρ) is satisfied, while it is an unstable saddle point if the condition 𝜅 + 𝛿 < 𝜔(1 − 𝜌) is 

satisfied. 

If equilibrium P3 is a stable node, then equilibrium P1 is an unstable saddle due to the condition 

1−ρ < 0 not holding, whereas if equilibrium P3 is an unstable saddle, then equilibrium P1 also 

can be the unstable saddle. Besides, if equilibrium P3 is a stable node, the coexistence equilibrium 

P4 may exist as long as conditions in (5a) −(5c) are satisfied. In the condition of equilibrium P3 is 

an unstable saddle, it can cause the feasibility of coexistence equilibrium P4 if criteria in (5b) and 

(5c) are satisfied.  
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Regarding this study, neutral saddles of equilibrium P3 happen when 

𝜌 = 𝜎 + 1, (10) 

𝜌 = 1 − (
𝜅 + 𝛿

𝜔 − 1
), 

(11) 

and 

𝜌 = 1 − (
𝜎 + 𝜅 + 𝛿

𝜔
), 

 

(12) 

when we treat ρ as a bifurcation parameter. On the other hand, the threshold conditions for the 

existence of transcritical bifurcation when ρ varies are ρ =1, which is same as a condition in (9) 

and   

𝜌 =
𝜔 − (𝜅 + 𝛿)

𝜔
 . 

 (13) 

3.2.3. Stability of P4 = (1−ρ−𝒛̂, κ +δ−ω[1−ρ−𝒛̂], 𝒛̂) 

Based on the Jacobian matrix of system (2) in (6), the Jacobian matrix about the coexistence 

equilibrium P4 is given as 

𝐽𝑃4
= (

−(1 − 𝜌 − 𝑧̂) 0 −(1 − 𝜌 − 𝑧̂)

𝜂𝑧̂  −(𝜎 + 𝜖𝑧̂)   𝜂(1 − 𝜌 − 𝑧̂) − 𝜖[𝜅 + 𝛿 − 𝜔(1 − 𝜌 − 𝑧̂)]

𝜔𝑧̂ 𝑧̂ 0

). 
 

 (14) 

Theorem 1.  If all feasibility conditions of the coexistence steady-state P4 in (5a)−(5c) are 

satisfied, then the coexistence equilibrium P4 exists and is locally stable if the conditions 

𝜂𝑧̂ < 𝜎 + 𝑧̂(𝜖 + 𝜔), (15a) 

𝜎𝜔 + 𝜖(𝜅 + 𝛿) > (1 − 𝜌 − 2𝑧̂)(𝜂 + 𝜖𝜔), (15b) 

   [1 − 𝜌 − 𝑧̂] × [(𝜎 + 𝑧̂[𝜖 + 𝜔])(1 − 𝜌 − 𝑧̂ + 𝜎 + 𝜖𝑧̂)] + 𝜖𝑧̂(𝜎 + 𝜖𝑧̂) 

          × [𝜅 + 𝛿 − 𝜔(1 − 𝜌 − 𝑧̂)] > 𝑧̂(1 − 𝜌 − 𝑧̂)[(𝜎 + 𝜖𝑧̂)(𝜂 + 𝜔) + 𝜂𝑧̂], 

  

(15c) 

are satisfied. 

Proof.  The coexistence steady-state P4 characteristic equation is expressed as  

𝐴1𝜆3 + 𝐴2𝜆2 + 𝐴3𝜆 + 𝐴4 = 0,  (16) 

where, 
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𝐴1 = 1, (17a) 

𝐴2 = (1 − 𝜌 − 𝑧̂) + (𝜎 + 𝜖𝑧̂), (17b) 

𝐴3 = (1 − 𝜌 − 𝑧̂)[𝜎 + 𝑧̂(𝜖 + 𝜔) − 𝜂𝑧̂] + 𝜖𝑧̂[𝜅 + 𝛿 − 𝜔(1 − 𝜌 − 𝑧̂)],  (17c) 

𝐴4 = 𝑧̂(1 − 𝜌 − 𝑧̂)[𝜎𝜔 + 𝜖(𝜅 + 𝛿) − (1 − 𝜌 − 2𝑧̂)(𝜂 + 𝜖𝜔)]. (17d) 

From (17a), A1 is always positive. If all feasibility conditions of coexistence steady-state P4 in 

(5a)−(5c) and conditions in equations (15a) and (15b) are satisfied, therefore A2, A3 and A4 in 

(17b)−(17d) are all positive. Next, consider the derivation of equation A2A3 −A1A4 > 0 below: 

[1 − 𝜌 − 𝑧̂ + 𝜎 + 𝜖𝑧̂] × [(1 − 𝜌 − 𝑧̂)[𝜎 + 𝑧̂(𝜖 + 𝜔) − 𝜂𝑧̂] + 𝜖𝑧̂[𝜅 + 𝛿 − 𝜔(1 − 𝜌 − 𝑧̂)]] −

𝑧̂(1 − 𝜌 − 𝑧̂) × [𝜎𝜔 + 𝜖(𝜅 + 𝛿) − (1 − 𝜌 − 2𝑧̂)(𝜂 + 𝜖𝜔)] > 0.  

The above equation is equivalent to 

[1 − 𝜌 − 𝑧̂ + 𝜎 + 𝜖𝑧̂] × [(1 − 𝜌 − 𝑧̂)[𝜎 + 𝑧̂(𝜖 + 𝜔) − 𝜂𝑧̂] + 𝜖𝑧̂[𝜅 + 𝛿 − 𝜔(1 − 𝜌 − 𝑧̂)]] −

𝑧̂(1 − 𝜌 − 𝑧̂) × [𝜂𝑧̂ + 𝜔(𝜎 + 𝜖𝑧̂) + 𝜖(𝜅 + 𝛿 − 𝜔[1 − 𝜌 − 𝑧̂]) − 𝜂(1 − 𝜌 − 𝑧̂)] > 0.  

By expanding, factorizing and simplifying the latest equation above, we obtain 

[1 − 𝜌 − 𝑧̂] × [(1 − 𝜌 − 𝑧̂ + 𝜎 + 𝜖𝑧̂)[𝜎 + 𝑧̂(𝜖 + 𝜔) − 𝜂𝑧̂] − 𝑧̂(𝜂𝑧̂ + 𝜔[𝜎 + 𝜖𝑧̂]) + 𝜂𝑧̂(1 − 𝜌 −

𝑧̂)] + 𝜖𝑧̂(𝜎 + 𝜖𝑧̂) × [𝜅 + 𝛿 − 𝜔(1 − 𝜌 − 𝑧̂)] > 0.  

Continue to expand, simplify and factorize the like terms, we arrived to 

[1 − 𝜌 − 𝑧̂] × [(𝜎 + 𝑧̂[𝜖 + 𝜔])(1 − 𝜌 − 𝑧̂ + 𝜎 + 𝜖𝑧̂) − 𝑧̂([𝜎 + 𝜖𝑧̂][𝜂 + 𝜔] + 𝜂𝑧̂)] + 𝜖𝑧̂(𝜎 +

𝜖𝑧̂) × [𝜅 + 𝛿 − 𝜔(1 − 𝜌 − 𝑧̂)] > 0,  

and by rewriting it, lastly, we get 

         [1 − 𝜌 − 𝑧̂] × [(𝜎 + 𝑧̂[𝜖 + 𝜔])(1 − 𝜌 − 𝑧̂ + 𝜎 + 𝜖𝑧̂)] + 𝜖𝑧̂(𝜎 + 𝜖𝑧̂) 

× [𝜅 + 𝛿 − 𝜔(1 − 𝜌 − 𝑧̂)] − 𝑧̂(1 − 𝜌 − 𝑧̂)[(𝜎 + 𝜖𝑧̂)(𝜂 + 𝜔) + 𝜂𝑧̂] > 0. 

 

 

 (18) 

Again, if all existence conditions of the coexistence steady-state P4 and condition in (15c) are 

satisfied, then the latest equation of A2A3 −A1A4 in (18) is positive. Thus, based on the Routh 

Hurwitz criterion, it ensures the local stability of the coexistence steady-state P4.             □                                

If coexistence equilibrium P4 is stable which is all its feasibility conditions in (5a)−(5c) are 

satisfied and conditions in (15a)−(15c) are satisfied, then P1 is an unstable saddle point, whereas 

if steady-state P4 is unstable, therefore equilibrium point P1 also can be an unstable saddle point. 
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Besides, if the coexistence steady-state P4 is stable, therefore equilibrium point P3 is a stable node 

depending on the satisfaction of the condition κ+δ > ω(1−ρ). If coexistence equilibrium P4 is 

unstable, therefore equilibrium point P3 can be a stable node or unstable saddle depending on the 

satisfaction of the conditions κ+δ > ω(1−ρ) or κ+δ < ω(1−ρ), respectively. 

To derive the threshold condition for the occurrence of neutral saddle equilibrium (if any) of 

the coexistence steady-state P4 when ρ varies is hard due to the complexity of deriving the 

analytical equation for the three eigenvalues from the characteristic equation in (16). However, 

saddle-node bifurcation about the coexistence steady-state P4 will happen if all its feasibility 

conditions, conditions in (15a) and (19) below 

    𝑧̂(1 − 𝜌 − 𝑧̂)[𝜎𝜔 + 𝜖(𝜅 + 𝛿) − (1 − 𝜌 − 2𝑧̂)(𝜂 + 𝜖𝜔)] = 0, (19) 

is satisfied. The saddle-node bifurcation occurs at the limit point (LP), which is at the particular 

value of ρ, such that the previously mentioned conditions hold. Consequently, the characteristic 

equation of the fishery system (2) in (16) becomes 

𝐴1𝜆3 + 𝐴2𝜆2 + 𝐴3𝜆 = 0.  (20) 

The nonhyperbolic characteristic of the coexistence steady-state P4, which is a needed condition 

for saddle-node bifurcation to occur, can be seen in (20). Based on equation (20), the solutions of 

the three eigenvalues are zero and the other two eigenvalues are negative distinct real numbers 

since the conditions A1, A2 and A3 > 0 and A2A3 > 0 are satisfied simultaneously. 

3.3. Analysis of the global stability for the coexistence steady-state P4 

A mathematical model’s global stability implies that, regardless of the initial state, the solutions 

to a system of differential equations converge to the stable steady-state. This is slightly different 

from the local stability highlighted in Subsection 3.2. Understanding the stable or unstable 

interactions among all modeled populations is crucial, that is why we are interested in studying the 

global stability of the coexistence steady-state P4. By creating a suitable Lyapunov function, we 

apply the global stability analysis for the non-trivial or coexistence steady-state P4. Therefore, we 

consider Theorem 2. 

Theorem 2.  Coexistence equilibrium P4 in the form of (𝑥̂, 𝑦̂, 𝑧̂) is globally asymptotically stable 

in the region of 

𝑦𝑦̂(𝑧 − 𝑧̂)

𝜔[𝜖𝑦𝑦̂(𝑧 − 𝑧̂) − 𝜂(𝑥𝑦̂𝑧 − 𝑥̂𝑦𝑧̂)]
> 0.  (21) 
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Proof.  Considering the Lyapunov function for fishery system (2) at coexistence steady-state P4 

be 

𝑉(𝑥, 𝑦, 𝑧) = ((𝑥 − 𝑥̂) − 𝑥̂ln
𝑥

𝑥̂
) + 𝐷1 ((𝑦 − 𝑦̂) − 𝑦̂ln

𝑦

𝑦̂
) + 𝐷2 ((𝑧 − 𝑧̂) − 𝑧̂ln

𝑧

𝑧̂
) , 

 (22) 

where, the positive functions 𝐷1 and 𝐷2 need to be defined in the next steps. It is evident that 

for any positive values of x, y and z, 𝑉(𝑥̂, 𝑦̂, 𝑧̂) = 0 and 𝑉(𝑥, 𝑦, 𝑧) > 0. For the Lyapunov function 

in (22), its derivative is 

𝑑𝑉

𝑑𝑡
 

= (
𝑥 − 𝑥̂

𝑥
)

𝑑𝑥

𝑑𝑡
+ 𝐷1 (

𝑦 − 𝑦̂

𝑦
)

𝑑𝑦

𝑑𝑡
+ 𝐷2 (

𝑧 − 𝑧̂

𝑧
)

𝑑𝑧

𝑑𝑡
 

 = (𝑥 − 𝑥̂)[−(𝑥 − 𝑥̂) − (𝑧 − 𝑧̂)] + 𝐷1(𝑦 − 𝑦̂) [𝜂 (
𝑥𝑧

𝑦
−

𝑥̂𝑧̂

𝑦̂
) − 𝜖(𝑧 − 𝑧̂)] + 𝐷2(𝑧 −

𝑧̂)[𝜔(𝑥 − 𝑥̂) + (𝑦 − 𝑦̂)]  

 = − {(𝑥 − 𝑥̂)[(𝑥 − 𝑥̂) + (𝑧 − 𝑧̂)] − 𝐷1(𝑦 − 𝑦̂) [
𝜂

𝑦𝑦̂
(𝑥𝑦̂𝑧 − 𝑥̂𝑦𝑧̂) − 𝜖(𝑧 − 𝑧̂)] − 𝐷2(𝑧 −

𝑧̂)[𝜔(𝑥 − 𝑥̂) + (𝑦 − 𝑦̂)]}  

 

 

 

 

= 
− {(𝑥 − 𝑥̂)2 + (𝑧 − 𝑧̂)[(𝑥 − 𝑥̂)(1 − 𝜔𝐷2)] + (𝑦 − 𝑦̂) [−𝐷2(𝑧 − 𝑧̂) − 𝐷1 (

𝜂

𝑦𝑦̂
(𝑥𝑦̂𝑧 −

𝑥̂𝑦𝑧̂) − 𝜖(𝑧 − 𝑧̂))]} .  

From the latest equation of 
𝑑𝑉

𝑑𝑡
 , it is clear that the term (𝑥 − 𝑥̂)2 is strictly positive. Hence, we 

consider both equations (𝑧 − 𝑧̂)[(𝑥 − 𝑥̂)(1 − 𝜔𝐷2)] = 0  and (𝑦 − 𝑦̂) [−𝐷2(𝑧 − 𝑧̂) −

𝐷1 (
𝜂

𝑦𝑦̂
(𝑥𝑦̂𝑧 − 𝑥̂𝑦𝑧̂) − 𝜖(𝑧 − 𝑧̂))] = 0. Solving both equations simultaneously for D1 and D2, we 

get 

𝐷1 =
𝑦𝑦̂(𝑧 − 𝑧̂)

𝜔[𝜖𝑦𝑦̂(𝑧 − 𝑧̂) − 𝜂(𝑥𝑦̂𝑧 − 𝑥̂𝑦𝑧̂)]
 , (23) 

and 
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𝐷2 =
1

𝜔
 . 

(24) 

From equation (24), D2 is strictly positive. If D1 > 0, and we substitute both equations (23) and (24) 

into the last equation of  
𝑑𝑉

𝑑𝑡
, we get 

𝑑𝑉

𝑑𝑡
= −{(𝑥 − 𝑥̂)2} . 

(25) 

Hence, from (25), 
𝑑𝑉

𝑑𝑡
< 0 in the region in equation (21). This implies a coexistence steady-state 

P4 is globally asymptotically stable. It shows that Theorem 2 is legitimate.                  □ 

 

4. ANALYSIS OF THE HOPF BIFURCATION OF THE COEXISTENCE EQUILIBRIUM P4 

Hopf bifurcation (HB) is a periodic solution that arises from the switching behavior in the 

stability of a coexistence steady-state P4. This section examines the Hopf bifurcation that occurs 

around the coexistence steady-state P4 in response to changes in the prey harvesting (ρ) parameter. 

Employing the Hopf bifurcation theorem, we verify the presence of the Hopf bifurcation around 

the coexistence steady-state P4 concerning that bifurcation parameter.  

Theorem 3.  If the condition (𝐴3 − 3𝐴1𝜔̅2) (
𝑑𝐴4

𝑑𝜌
− 𝜔̅2 𝑑𝐴2

𝑑𝜌
) + 2𝐴2𝜔̅2 𝑑𝐴3

𝑑𝜌
≠ 0  is met. The 

fishery system (2) experiences a Hopf bifurcation around the coexistence steady-state P4 with 

respect to the prey harvesting (ρ) parameter. 

Proof.  Coexistence steady-state P4’s stability depends on the harvesting parameter ρ. The fishery 

system (2) experiences the Hopf bifurcation if the Jacobian matrix 𝐽𝑃4
as in (14) has a pair of purely 

imaginary eigenvalues and the third eigenvalue has a negative real part. This is in accordance with 

the Hopf bifurcation theorem used in previous studies [6, 24, 30−32]. The transversality condition 

𝑅𝑒 (
𝑑𝜆

𝑑𝜌
)

𝜌=𝜌𝐻𝐵

≠ 0 with respect to ρ as a bifurcation parameter needs to be satisfied for Hopf 

bifurcation to occur. The Hopf bifurcation point regarding the prey harvesting parameter is shown 

by the notation 𝜌𝐻𝐵. Regarding the coexistence steady-state P4 characteristic equation in (16), the 

coefficients of the characteristic equation for purely imaginary eigenvalues must meet the 

requirement A2A3 −A1A4 = 0. It is crucial to note that the other prerequisites are met automatically. 

To determine the transversality condition that guarantees the occurrence of periodic oscillations 

via the Hopf bifurcation, Kuang [33] states that we need to choose λ = ± 𝑖𝜔̅ be a pair of purely 
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imaginary eigenvalues with respect to 𝜌𝐻𝐵. By differentiating the characteristic equation in (16) 

concerning ρ, we can now get 

𝑑𝜆

𝑑𝜌
= −

𝜆2 𝑑𝐴2

𝑑𝜌
+ 𝜆

𝑑𝐴3

𝑑𝜌
+

𝑑𝐴4

𝑑𝜌

3𝐴1𝜆2 + 2𝜆𝐴2 + 𝐴3
 . 

Therefore, 

(
𝑑(𝑅𝑒(𝜆))

𝑑𝜌
)

𝜆=𝑖𝜔̅

= 𝑅𝑒 (−
𝜆2 𝑑𝐴2

𝑑𝜌
+ 𝜆

𝑑𝐴3

𝑑𝜌
+

𝑑𝐴4

𝑑𝜌

3𝐴1𝜆2 + 2𝜆𝐴2 + 𝐴3
)

𝜆=𝑖𝜔̅

  

                               = 𝑅𝑒 (−
(𝑖𝜔̅)2 𝑑𝐴2

𝑑𝜌
+ 𝑖𝜔̅

𝑑𝐴3

𝑑𝜌
+

𝑑𝐴4

𝑑𝜌

3𝐴1(𝑖𝜔̅)2 + 2𝑖𝜔̅𝐴2 + 𝐴3
). 

By solving the latest equation above, we acquired 

(
𝑑(𝑅𝑒(𝜆))

𝑑𝜌
)

𝜆=𝑖𝜔̅

= −
(𝐴3 − 3𝐴1𝜔̅2) (

𝑑𝐴4

𝑑𝜌
− 𝜔̅2 𝑑𝐴2

𝑑𝜌
) + 2𝐴2𝜔̅2 𝑑𝐴3

𝑑𝜌

(𝐴3 − 3𝐴1𝜔̅2)2 + (2𝐴2𝜔̅)2
 . 

(26) 

Hence, if the condition (𝐴3 − 3𝐴1𝜔̅2) (
𝑑𝐴4

𝑑𝜌
− 𝜔̅2 𝑑𝐴2

𝑑𝜌
) + 2𝐴2𝜔̅2 𝑑𝐴3

𝑑𝜌
≠ 0 in equation (26) is met. 

Consequently, the fishery system (2) experiences Hopf bifurcation with respect to the bifurcation 

parameter ρ. The Theorem 3 has been proven.                                        □ 

5. RESULTS AND ANALYSIS OF BIFURCATION 

In this section, we implement numerical simulations to analyze the impacts of prey harvesting, 

which is considered a bifurcation parameter, on the dynamical behavior of the extreme fishery 

system (2) by using Maple 18, XPPAUT and MATLAB R2021a softwares [34−36]. A set of 

hypothetical parameter values ρ = 0.1, ω = 0.3, κ = 0.05, δ = 0.2, η = 0.3, σ = 0.2 and 

𝜖 =  0.1 is chosen to show the bifurcation results due to the hardly available primary data in 

simulating our fishery model. 

5.1. Prey harvesting (ρ) as a bifurcation parameter 

The bifurcation diagrams of prey (x), prey carrion biomass (y) and apex facultative scavenger (z) 

versus prey harvesting (ρ) are shown in Fig. 1. In all bifurcation diagrams, the blue solid lines and 

curves represent stable steady-states, the red dashed-dotted lines and curves represent unstable 

steady-states, and the green curve represents the Hopf locus. 
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(a) 

 

(b) 

 

(c) 

Figure 1: Bifurcation diagrams of fishery system (2) with varying values of prey harvesting parameter, 𝜌 

for (a) prey, x, (b) prey carrion biomass, y and (c) apex facultative scavenger, z, respectively. 
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Based on Fig. 1 in Region I, which is 0 ≤ ρ < 0.0774, the coexistence steady-state P4 is unstable 

as shown in the red dashed-dotted curve. The steady-state is unstable due to the existence of 

periodic oscillations around it, which is illustrated by an open green loop that appears from a Hopf 

bifurcation (HB) point at 𝜌𝐻𝐵 =  0.0774. By using the characteristic equation (16), we can 

determine the HB point with respect to the prey harvesting parameter by considering the 

requirement A2A3 −A1A4 = 0. By letting parameter ρ be unknown, we can solve for ρ and obtain 

one HB point, which is 𝜌𝐻𝐵 = 0.0774. Then, we solve the characteristic equation (16) and acquire 

three eigenvalues, which are λ1,2 = ±0.2744i and λ3 = −0.5029. The term 𝜔̅ in the transversality 

condition in (26) refers to the real numbers of purely imaginary eigenvalues, in this case 𝜔̅ =

 ±0.2744, getting from λ1,2. Upon replacing all term values in the transversality condition (26), we 

obtain 𝑅𝑒 (
𝑑𝜆

𝑑𝜌
)

𝜌𝐻𝐵=0.0774
= − 0.1796, therefore proving Theorem 3. The periodic oscillations 

grow more when ρ decreases due to the impact of lower prey harvesting levels on the extreme 

growth of apex facultative scavengers. The amplitudes of periodic oscillations at their maximum 

and minimum points are represented by the higher and lower parts of the open green loop, 

respectively. These results relevantly occurred in the fishery system, where they can also be seen 

from previous research [17, 37]. Jana and Panja [17] investigate the interaction of prey, predator 

and scavenger populations by assuming predator and scavenger quadratic harvesting as bifurcation 

parameters. Besides, Savoca et al. [37] analyzed the effects of the hermit crab (predator) death rate 

on the stability of the Messina beachrock pools system in the presence of a top snail (prey) 

population via bifurcation analysis. 

From Fig. 1, in Region II (0.0774< 𝜌 ≤ 0.1667), where ρ = 0.1667 is the first transcritical 

bifurcation point (TB1) derived by considering equation (13). At the TB1 point, the initially stable 

unfeasible coexistence steady-state P4 (blue solid curve) changes to the unstable feasible 

coexistence steady-state P4 (red dashed-dotted curve), whereas the steady-state P3 changes from 

unstable (red dashed-dotted line) to stable (blue solid line). In Region II, the coexistence 

equilibrium P4 is stable, as shown in the blue solid curve due to the decreasing level of apex 

facultative scavengers preying on prey. The increasing level of prey harvesting causes both prey 

carrion biomass and apex facultative scavengers to decrease in their densities in the fishery system, 

as illustrated in Figs. 1(b) and 1(c), respectively. This situation will reduce the dominance of the 

apex facultative scavenger population in the fishery system. This condition is preferable where all 

interacting species persist in their harmonious interaction. On the other hand, in the range of 0 ≤  
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ρ < 0.1667, the unfeasible coexistence steady-state P4 is stable, as illustrated in the blue solid curve, 

but we ignore it because it is not biologically relevant.  

Based on Region III (0.1667< 𝜌 <0.3637909870), where ρ = 0.3637909870 is the limit point 

(LP), this can be verified through the satisfaction of all feasibility conditions of the coexistence 

equilibrium P4 in (5a)− (5c) and conditions in equations (15a) and (19). In Region III of Fig. 1, the 

curve for the coexistence steady-state P4 has two types of stability, which are stable steady-states 

(blue solid curve) and unstable steady-states (red dashed-dotted curve). By our numerical 

simulation, to show the existence of the saddle-node bifurcation at the LP point, we consider the 

values of ρ which are before and close to the LP point, to see the changes in the values of 

eigenvalues for the coexistence steady-states P4 where their hyperbolic characteristics gradually 

disappear when approaching limit point. Based on Table 1 below, when ρ = 0.3600 associated 

eigenvalues for the coexistence steady-state (0.4112, 0.1266, 0.2288) of the blue solid curve are 

λ1  = − 0.0307, λ2 = − 0.1792 and λ3  = − 0.4241, while the coexistence steady-state (0.4863, 

0.1041, 0.1537) of the red dashed-dotted curve having the eigenvalues of λ1 =  0.0157, λ2 =

−0.2536 and λ3 = −0.4638. Based on the analysis of the eigenvalues [30, 38], we can conclude 

that the coexistence steady-state (0.4112, 0.1266, 0.2288) is a stable node, while (0.4863, 0.1041, 

0.1537) is an unstable saddle point. Refer to Table 1, for more increasing values of ρ (0.3600 < ρ 

<0.3637909870), the hyperbolic characteristics of the coexistence steady-states P4 gradually 

disappear, which is shown by the values of λ1, which are gradually approaching 0.  

The saddle-node bifurcation about the coexistence steady-state P4 occurs at the limit or turning 

point, where the initially two distinct stability of coexistence steady-states, which are stable node 

and unstable saddle collide and annihilate each other at the LP point. Substituting the value of ρ =

  0.3637909870 into the characteristic equation (20), the eigenvalues obtained for saddle-node 

equilibrium point (0.4469, 0.1159, 0.1893) are λ1 = 0, λ2 = −0.2290 and λ3 = −0.4368, which 

is the non-hyperbolic characteristic of coexistence steady-state P4 is shown. The non-hyperbolic 

characteristic of steady-state is a required condition for the saddle-node bifurcation to occur [39, 

40]. Besides, the bistability phenomenon of the steady-states occurs in this region, where both the 

coexistence steady-state P4 and the equilibrium of only prey presence P3 are stable. Depending on 

the initial population sizes of interacting populations and the values of the prey harvesting rate, the 

solutions of the fishery model will converge to one of the stable steady-states.  
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Table 1: The types of stability for the coexistence steady-states P4 at ρ = 0.3600, 0.3610, 0.3620, 0.3630 

and 0.3637.  

 

Prey 

harvesting 

(ρ) values 

 

  Coexistence steady-   

  states P4 

 

  

Eigenvalues 

Types of 

stability of 

the 

coexistence 

steady- 

states P4 

0.3600 (0.4112, 0.1266, 0.2288) 

 

𝜆1 = −0.0307,𝜆2 = −0.1792, 𝜆3 = −0.4241 Stable node 

(0.4863, 0.1041, 0.1537) 𝜆1 =0.0157, 𝜆2 = −0.2536, 𝜆3 = −0.4638 

 

Unstable 

saddle 

0.3610 (0.4161, 0.1252, 0.2229) 

 

𝜆1 = −0.0246,𝜆2 = −0.1886, 𝜆3 = −0.4252 Stable node 

(0.4805, 0.1058, 0.1585) 𝜆1 =0.0140, 𝜆2 = −0.2513, 𝜆3 = −0.4591 

  

Unstable 

saddle 

0.3620 (0.4220, 0.1234, 0.2160) 𝜆1 = −0.0183,𝜆2 = −0.1986, 𝜆3 = −0.4267 

 

Stable node 

(0.4736, 0.1079, 0.1644) 𝜆1 = 0.0118, 𝜆2 = −0.2480, 𝜆3 = −0.4538 

 

Unstable 

saddle 

0.3630 (0.4301, 0.1210, 0.2069) 𝜆1 = −0.0112,𝜆2 = −0.2102, 𝜆3 = −0.4294 

 

Stable node 

(0.4644, 0.1107, 0.1726) 𝜆1 =0.0083, 𝜆2 = −0.2427, 𝜆3 = −0.4473 

 

Unstable 

saddle 

0.3637 (0.4411, 0.1177, 0.1952) 

 

𝜆1 = −0.0034,𝜆2 = −0.2232, 𝜆3 = −0.4340 Stable node 

(0.4527, 0.1142, 0.1836) 𝜆1 = 0.0031, 𝜆2 = −0.2341, 𝜆3 = −0.4400 

  

Unstable 

saddle 

 

 

 



19 

IMPACTS OF PREY HARVESTING ACTIVITY 

After that, in Region IV which is 0.3637909870 ≤ 𝜌 <  1.0, where ρ =  1.0 is a second 

transcritical bifurcation (TB2) value. In this region, steady-state P3 is stable. The growth of the 

prey population is decreasing as visualized in Fig. 1(a), while both prey carrion biomass and the 

apex facultative scavenger population are absent in the fishery system as shown in Figs. 1(b) and 

1(c), respectively, because of the increasing harvesting rate level of prey. Predation interaction 

between apex facultative scavengers and prey does not happen, thus making prey carrion 

unavailable in the fishery system. Apex facultative scavengers are driven to extinction in the 

fishery system because of harvesting activity on them and predation pressure from their apex 

predators that compete for the same food (prey) that is driven by the decreasing level of prey 

population density. However, in this present research, we do not mathematically model the 

predation and competition interactions between apex facultative scavengers and their apex 

predators, but we considered that the natural death rate of apex facultative scavengers is 

contributed by these factors. Moreover, the limitation of the apex facultative scavenger population 

alternative foods in an extreme fishery system can also cause extirpation in their population. In 

this region, first neutral saddle point (NS1) occurs at ρ = 0.7500, and second neutral saddle point 

(NS2) at ρ =  0.8000 which can be verified by considering equations (7) and (8), where the 

corresponding eigenvalues of the neutral saddle equilibrium P1 (red dashed-dotted line) are λ1,2 =

 ±0.2500, λ3 = −0.2000 and λ1,2 = ±0.2000, λ3 = −0.2500, respectively. The sum of λ1,2 is zero. 

The value of TB2 =1.0 indicates the transition of the stability of equilibrium P3, which is from 

stable (blue solid line) to unstable (red dashed-dotted line), while extinction equilibrium P1 

changes from unstable to stable.  

Lastly, in Region V where ρ >1.0, the fishery system collapses due to prey overharvesting and 

the extreme conditions in the fishery system, where all interacting populations are extinct, which 

is steady-state P1 is stable. The harvesting rate of prey is impactful on the stability of the extreme 

fishery system (2) due to its critical conditions, where carnivorous apex facultative scavengers 

only depend on prey and prey carrion to survive. 

 

5.1.1. Time series plots for each region of the bifurcation diagram 

In this part, we visualized the graphs of interacting populations versus time at particular values 

of prey harvesting, ρ for each region of bifurcation diagrams in Fig. 1. Through this part, we can 

observe and analyze the growth patterns of the modeled populations from the fishery model (2) 

concerning time. 
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Figure 2: Time series plot of fishery system (2) with initial condition of (x0, y0, z0) = (0.3,0.3.0.6) at ρ = 

0.05 (Region I). 

 

In Fig. 2, the graph of prey (x), prey carrion biomass (y) and apex facultative scavenger (z) 

versus time at ρ = 0.05, which is in the range of Region I is plotted. The apex facultative scavenger 

population is dominating the fishery system due to the low rate of prey harvesting, as seen in Figs. 

1 and 2. This is because they have access to an abundance of food sources, such as live prey and 

prey carrion. That situation makes the fishery system’s coexistence steady-state P4 unstable. The 

periodic oscillations occur around the unstable coexistence steady-state (0.2282, 0.1815, 0.7218), 

which is not a good and undesirable condition in the fishery system due to the fluctuation in the 

population densities of x, y and z. According to previous research by Hussin et al. [6] and Hussin, 

Embong and Noor [41], the periodic oscillations around the unstable coexistence steady-states of 

their population models also appear due to the high scavenging rate of scavengers and high time 

delay in Holling type II functional response, respectively. The large amount of scavenged predator 

carcasses ensures the domination of scavengers in the fishery system, which can have a bad effect 

on the stability of the fishery system [6]. On the other hand, the high time lag in predator response 

function disturbs the previously stable prey-predator interaction [41]. 
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Figure 3: Time series plot of fishery system (2) with initial condition of (x0, y0, z0) = (0.3,0.3.0.6) at ρ = 

0.14 (Region II). 

In Fig. 3, the graph of all interacting populations versus time at ρ =  0.14 (Region II) is 

illustrated. Initially, harvesting operation of prey and predation effects on prey from apex 

facultative scavengers cause the depletion in the number of prey population in the fishery system. 

Prey carrion biomasses decrease due to the scavenging effect of apex facultative scavengers. The 

growth of apex facultative scavengers is increasing due to the sufficient food sources from the live 

prey and prey carrion. After that, the population number of apex facultative scavengers alternately 

decreases and increases, which is opposite to the growth of prey and prey carrion biomass 

formation, which alternately increases and decreases. From the initial period, prey carrion biomass 

density slowly decreases and increases as compared to prey due to the positive and negative effects 

of apex facultative scavengers on carrion formation through predation interaction with prey and 

the loss rate of prey carrion during scavenging, respectively. Over time, all interacting populations 

converge to their equilibrium state (0.2496, 0.1751, 0.6104).   

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 4: Time series plots of fishery system (2) with ρ = 0.2 (Region III) at initial conditions of (a) (x0, y0, 

z0) = (0.1,0.02,0.02), (b) (x0, y0, z0) = (0.3,0.3,0.6), (c) (x0, y0, z0) = (0.3,0.02,0.02) and (d) (x0, y0, z0) 

= (0.02,0.3,0.3), respectively. 
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We visualized the graph of interacting populations versus time at ρ = 0.2 (Region III), and its 

corresponding steady-states can be (0.8,0,0) as P3 and (0.2690, 0.1693, 0.5310) as P4. Based on 

the fishery system (2), the densities of prey carrion (y) and apex facultative scavenger (z) depend 

on prey population (x). This is because prey act as sources of food for apex facultative scavengers 

in terms of their live population and carrion biomass. If the initial conditions for x, y and z are low, 

which is (0.1, 0.02, 0.02), then the steady-state P3 is stable, as shown in Fig. 4(a). This is because 

the small number of the initial population of prey is unable to support the growth of the initially 

small population number of apex facultative scavengers, thus causing the extirpation of the apex 

facultative scavenger population and the non-existence of prey carrion. No predation interaction 

between prey and apex facultative scavengers will cause no formation of prey carrion. In Fig. 4(a), 

when prey carrion and apex facultative scavenger approach zero population densities due to the 

indirect effect of prey harvesting and their low initial population densities, prey drastically 

increases, and after that, they converge to an equilibrium state (0.8,0,0). The prey population 

survives due to no threat from the apex facultative scavenger population.   

According to Fig. 4(b), the high initial populations for x, y and z which is (0.3,0.3,0.6), 

guarantee the stability of coexistence steady-state P4. The number of periodic oscillations of 

interacting populations versus time in Fig. 4(b) is smaller than in Fig. 3, due to the lower 

dominance of apex facultative scavengers in the fishery system as compared to Fig. 3 because of 

higher prey harvesting level. The value of ρ = 0.2 does not decrease the growth of prey due to 

their large initial population number. However, the growth of apex facultative scavengers and the 

formation of prey carrion are indirectly affected by prey harvesting. This situation will facilitate 

the convergence of interacting populations to their equilibrium state. Based on Fig. 4(c), the low 

initial values of y and z and high value of x such as (0.3, 0.02, 0.02) make the coexistence steady-

state P4 stable due to the sufficient food sources from live prey and remaining prey carrion to apex 

facultative scavengers’ growth. In Fig. 4(c), initially, the growth of prey is fast and close to x = 0.8 

due to the less predation effect from apex facultative scavengers. The population density of apex 

facultative scavengers and prey carrion approaches 0. After that, the growth of apex facultative 

scavengers and the formation of prey carrion from dead prey increased because of food sources 

contributed by prey to apex facultative scavengers. The further enhancement in the population of 

apex facultative scavengers and prey carrion formation causes a depletion in the number of prey 

population and the appearance of periodic oscillations. Over time, all interacting populations 

converge to their equilibrium state.  
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Regarding Fig. 4(d), the large initial numbers of y and z and the small initial number of x which 

is (0.02, 0.3, 0.3), make the coexistence steady-state P4 stable. This is because apex facultative 

scavengers can survive in the fishery system with their initially high population and food source 

from prey carrion. Initially, for a small period, the population of apex facultative scavengers 

increased due to the sufficient food sources from prey carrion and prey. Then, when prey carrion 

further drastically decreases and the population number of prey is small due to harvesting and their 

small initial population number, apex facultative scavengers start to decrease. After that, the 

population density of prey increases. A further increase in the population of prey triggers the 

growth of apex facultative scavengers and the formation of prey carrion. Next, the continuous 

growth in the population number of apex facultative scavengers and the density of prey carrion 

cause a reduction in the growth of prey. Periodic oscillations occur when prey and apex facultative 

scavengers oppositely increase and decrease. The formation of prey carrion follows apex 

facultative scavengers’ growth as time increases. Over time, all populations converge to their 

equilibrium state. 

Based on the analysis of our fishery model, if the value of ρ < 0.2 and in the range of Region 

III, for example ρ = 0.17, and apply the initial condition (0.1, 0.02, 0.02), which has been 

considered a low initial condition value for the time series plot when ρ = 0.2 as in Fig. 4(a), the 

coexistence steady state P4 becomes stable as shown in Fig. 5. This is because the low prey 

harvesting rate can maintain the coexistence of interacting populations in the fishery system. This 

situation shows that the rate of prey harvesting plays an important role in avoiding the non-

coexistence state of interacting populations.  

 

Figure 5: Time series plot of fishery system (2) with initial condition of (x0, y0, z0) = (0.1,0.02.0.02) at ρ 

= 0.17 (Region III). 
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Based on Fig. 5, initially, the growth of apex facultative scavengers and the formation of prey 

carrion approaches 0, this is due to their low initial condition values and the indirect effect of prey 

harvesting. For a short period, the growth of prey is drastically increased because of less threat 

from apex facultative scavengers. After that, the growth of apex facultative scavengers and prey 

carrion formation increases, whereas prey decreases due to the food source contributed by prey. 

Next, the growth of apex facultative scavengers and prey carrion formation drastically increase, 

whereas prey sharply decreases. The apex facultative scavenger population gets sufficient food 

sources from prey and prey carrion. The fluctuation in the population densities of interacting 

populations occurs and over time, converges to their equilibrium state (0.2586, 0.1724, 0.5714).  

 

Figure 6: Time series plot of fishery system (2) with initial condition of (x0, y0, z0) = (0.3,0.3,0.6) at ρ = 

0.36 (Region III). 

Besides, for the value of ρ > 0.2 and in the range of Region III, for instance ρ = 0.36, the high 

initial condition (0.3, 0.3, 0.6) that we applied in Fig. 4(b) makes the steady-state P3 stable as 

shown in Fig. 6. This is because the high prey harvesting rate can cause extinction states for both 

apex facultative scavenger population and prey carrion biomass. The growth of apex facultative 

scavengers and prey carrion formation fundamentally depends on prey population density. 

According to Fig. 6, initially, the growth of apex facultative scavengers increases because of their 

high initial condition and their sufficient food sources from prey and prey carrion. The growth of 

prey and their carrion formation decrease because of predation and scavenging impacts from apex 

facultative scavengers, respectively. After that, the growth of apex facultative scavengers starts to 

decrease due to the further reduction in their sources of food. Apex facultative scavenger 

populations continuously decreased, resulting in an enhancement of the prey population. However, 
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prey carrion biomass formation continues to decrease because of a reduction in the apex facultative 

scavenger population, which can produce prey carrion. For increasing time, the prey carrion 

biomass increases because of less scavenging impact from apex facultative scavengers. The further 

reduction in the apex facultative scavenger population makes the prey carrion biomass density 

decrease again due to the same reason as stated before. The growth of prey is increasing. Over 

time, all modeled populations converge to their equilibrium state (0.6400, 0, 0).  

 

Figure 7: Time series plot of fishery system (2) with initial condition of (x0, y0, z0) = (0.3,0.3.0.6) at ρ = 

0.8 (Region IV). 

Based on Fig. 7, the graph of x, y and z versus time is illustrated by considering ρ = 0.8 (Region 

IV). In the earlier period, the growth of prey decreased due to the harvesting and predation effects 

of increasing apex facultative scavengers, whereas prey carrion biomass density slowly decreased 

due to the positive and negative effects of apex facultative scavengers increasing growth. Based 

on the fishery system (2), the prey carrion biomass density depends on the density of caught prey 

that is converted into carrion. The more apex facultative scavengers that can form prey carrion, the 

higher the density of prey carrion. However, the high scavenging rate of prey carrion may reduce 

their density. Next, the growth of apex facultative scavengers decreases due to the further decrease 

in their sources of food which are approaching 0. For a longer period, the population of prey 

increases and converges to their equilibrium population x  =  0.2 due to no threat from apex 

facultative scavengers. The apex facultative scavenger population is extinct because of the loss of 

their source of food from prey carrion and the indirect effect of prey harvesting. This situation 

shows that prey carrion is very important for apex facultative scavengers’ growth.  
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Figure 8: Time series plot of fishery system (2) with initial condition of (x0, y0, z0) = (0.3,0.3.0.6) at ρ = 

1.2 (Region V). 

In Fig. 8, we illustrate the pattern of growth for the interacting populations versus time when 

the prey harvesting rate is extremely high, which is ρ =1.2. The growth of interacting populations 

in Figs. 7 and 8 are quite similar. However, in this figure, because of prey overharvesting, the 

fishery system (2) collapsed. This situation shows that prey overexploitation is harmful to the 

fishery system. 

6. CONCLUSIONS AND DISCUSSIONS 

In this paper, we have formulated a new extreme fishery model with the presence of prey and 

apex facultative scavenger harvesting. Our objective is to analyze the prey harvesting impacts on 

the stability of the extreme fishery system via bifurcation analysis. The fishery system is 

considered an extreme condition because carnivorous apex facultative scavengers totally depend 

on their main food preferences, which are the vertebrate marine prey and their carrion as sources 

of food. Without the existence of prey, apex facultative scavengers may extirpate due to the 

limitations of their alternative foods like invertebrate marine animals. Moreover, the habitat 

conditions may reduce the density of prey carrion biomass by accelerating the decomposition of 

prey carrion in the fishery system. This situation triggers competition between apex facultative 

scavengers and their competitors due to the scarcity of food sources.  

The Jacobian matrices and their associated eigenvalues have been computed to analyze the local 

stability of the steady-states of the fishery system (2). The Lyapunov function has been applied to 

analyze the global stability of the coexistence steady-state. Prey harvesting (ρ) is considered a 
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bifurcation parameter. The threshold conditions are computed and evaluated for the occurrence of 

local bifurcations which are saddle-node bifurcation and transcritical bifurcation (TB) at the 

steady-states of the fishery system (2). To prove the existence of Hopf bifurcation (HB), which is 

also a type of local bifurcation, the Hopf bifurcation theorem has been used. The bifurcation 

analysis indicates that the extreme fishery model’s dynamical behaviors are significantly 

influenced by prey harvesting activities. 

According to the bifurcation diagrams in Fig. 1, at the low level of prey harvesting rates, which 

is in the range of Region I, the periodic oscillations around the unstable coexistence steady-state 

P4 appear through the HB point. This is due to the dominance of apex facultative scavengers in the 

fishery system that acquired oversufficient food sources from prey and prey carrion. Next, at the 

intermediate level of prey harvesting rates, which is in the range of Region II, the coexistence 

steady-state P4 is stable because of the reduction of both prey carrion and apex facultative 

scavenger population densities due to the indirect effect of prey harvesting. At the range of Region 

III, where prey harvesting rates are at a high level, the bistability phenomenon appears, where both 

equilibrium P3 and P4 are stable depending on the initial conditions of interacting populations and 

prey harvesting rate values. The low initial condition values for all interacting populations and the 

low prey harvesting rate (in the range of Region III) give rise to the stability of coexistence 

equilibrium P4. As opposed to that, the high prey harvesting rate (in the range of Region III) can 

make apex facultative scavengers extinct and no prey carrion biomass formation even though the 

initial condition values of modeled populations are high. This is because the level of prey 

harvesting plays an important role in determining the prey population density level, which acts as 

the main food source for apex facultative scavengers. Besides, in this region, the saddle-node 

bifurcation occurs at the LP point, where the initially two distinct stabilities of coexistence steady-

states P4 collide and annihilate each other. 

For further increases in prey harvesting rates, which are in the range of Region IV, equilibrium 

P3 is stable because of the extirpation of apex facultative scavengers due to their lost opportunity 

to scavenge prey carrion and the reduction of prey population. At the extremely high level of prey 

harvesting (Region V), the extinction equilibrium P1 is stable, where all interacting populations 

vanish in the fishery system. Therefore, we can conclude that the rate of prey harvesting (ρ) is 

crucial to the stability of the extreme fishery system (2). The good condition is when all interacting 

populations persist together with their stable interaction in the fishery system, which is at the 

intermediate level of ρ values. Because fisheries may produce food for people and a means of 
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revenue for fishermen and the nation, it is imperative that the system remain stable. The 

preservation of threatened aquatic life can be implemented by providing marine protected areas 

for them and applying good harvesting practices that can maintain the sustainability of harvested 

marine life. 
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