
Available online at http://scik.org

Commun. Math. Biol. Neurosci. 2024, 2024:88

https://doi.org/10.28919/cmbn/8686

ISSN: 2052-2541

THE PERFORMANCE OF LONG MEMORY FRACTIONAL SERIES PRICE
MODEL OF ESSENTIAL TRACE ELEMENT ZINC

ERMAN ARIF1, ELIN HERLINAWATI2, DODI DEVIANTO3,∗, MUTIA YOLLANDA3, AFRIMAYANI

AFRIMAYANI4

1Information System Study Program, Universitas Terbuka, Tangerang Selatan 15418, Indonesia

2Mathematics study program, Universitas Terbuka, Tangerang Selatan 15418, Indonesia

3Department of Mathematics and Data Science, Universitas Andalas, Padang 25163, Indonesia

4Mathematics Study Program, UIN Imam Bonjol Padang, Padang 25171, Indonesia

Copyright © 2024 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Zinc is an essential trace element metal commodity that plays an important role in the economy because

it is used as a raw material in various industries such as medicine, biological process, electronic devices, building

construction, cement, and textiles. This study aims to build the pattern of zinc futures price movement in the form

of linear and nonlinear model. An autoregressive fractionally integrated moving average (ARFIMA) and Double

Exponential Smoothing (DES) as linear models were developed for time series data containing the exponential

and long memory effects where the order can be formed fractionally, respectively. In contrast, Long Short-Term

Memory as nonlinear model demonstrating the neurons system function also utilized to build the model of zinc

price. In determining the prefered model of zinc price, three models of ARFIMA, DES, and LSTM are then

compared by using MAE, RMSE, and MAPE, while AIC and BIC are used to measure the best selection model in

ARFIMA model. Zinc futures price data shows the ARFIMA and LSTM models with a long memory effect with

a high accuracy value, which are better than the classical model of DES. The result shows that zinc futures price

has an important role in the industry because the price tends to be stable with a long memory effect as an industrial

raw material.
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1. INTRODUCTION

Zinc is an essential trace element metal commodity that plays an essential role in the econ-

omy. Zinc is widely used as a raw material in various industries such as medicine, biological

process, electronic devices, building construction, cement, and textiles [1, 2, 3, 4, 5]. Accord-

ing to the London Metal Exchange, every metal needs to fulfill strict quality, lot size, and shape

specifications. Zinc contracts demand physical asset delivery for settlement, and the contract’s

deliverable assets are 25 tons of high-grade zinc. This extensive use of zinc has an impact on

its demand that gets higher in each country, rising to the fluctuations in the price of zinc and

the industrial production goods using zinc as their raw materials. Even the fluctuations of zinc

are affected the industrial processes and economies in a country on a large scale. Therefore, the

risk of the fluctuation of zinc price should be minimized by analyzing its pattern data so that

a statistical method is required. The movement of zinc price ordered by time can be built into

its statistical method using the time series model. Time series data tends to have a recurring

pattern, where past periods will repeat themselves in the present or future. Time series model

analysis aims to find a short-term or long-term pattern to be applied to decision-making based

on forecasting in the next period [6].

The time series data with a short-memory pattern has a unique characteristic: there is a

weak correlation of the data in the short period. The most popular model is the Autoregressive

Integrated Moving Average (ARIMA). In the ARIMA model, the stationary data in the mean

applies the differencing using the non-negative integer number of d [7]. This ARIMA model

can be applied using the data on inflation, stocks, and commodity prices [8]. This is because the

data tends to be observed based on the order of time to obtain predictions of future data so that

policymakers can know the actions that need to be taken for interested parties in the field. In

this particular case, the characteristic of the long-memory pattern is a strong correlation in the

period. Using the autocorrelation function (ACF), the long-memory pattern that decays slowly

over time can be detected. Besides, the stationary data in the mean applies the differencing using

the fractional or the non-negative real number of d between 0 and 0.5. This advanced ARIMA
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model with fractional integration order d and containing the long-memory effect is well known

as Autoregressive Fractional Integrated Moving Average (ARFIMA) model. The stationary

process of the ARFIMA model in the mean may estimate its fractional integration order d by

using the Geweke and Porter Hudak (GPH) method [9]. The GPH method is used because

it can estimate parameters d directly without having to know the value of the autoregressive

order (p) and the order of the moving average (q) first [10]. Since the residual assumptions

in ARFIMA model has to be fulfilled, this condition sometimes obstructs the researcher to

process the data easily and has to pay the attention about the pattern of the data whether the

pattern can be classified to be the time series. Fortunately, residual assumptions can be avoided

by using a nonlinear model that employs iteration or numerical processing. There are numerous

nonlinear techniques that can be categorized as nonlinear models. In this study, recurrent long

short-term memory is chosen because its parameters can be adjusted to acquire the optimal

weights for each unit. In econometrics, there is also the Vector Autoreggressive that is utilized

in economics issue to determine whether one variable to other variable has the impact in each

other [11, 12]. This method is usually applied if the number of time series data greater than or

equal to two series data.

Research on metal commodity prices has been conducted in [13, 14], finding that zinc has

different price movements than most other metal commodities. Further research has compared

ARIMA and ARFIMA models to forecast gold prices in Malaysia using MAE, RMSE, and

MAPE [15]. The MAE, RMSE, and MAPE results indicate that the ARFIMA model performs

better in forecasting gold prices than the ARIMA model. In an advanced case, the ARFIMA

model can be combined with the Poisson distribution by ascertaining non-negative credibility

per period in the affine prediction of frequency risks [16]. Therefore, in this study the zinc price

model is then applied ARFIMA model than ARIMA model. Beside, the previous research about

nonlinear model, especially neural networks as the machine learning methods, are already pub-

lished. According to the backpropagation methods as the part of neural networks methods, the

parameters of weights are adjusted by using numerical processing so that the optimal weights

are obtained [17, 18].
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In the environment of the nervous system study, the neuroscience is widely used in demon-

strating how the human brain working to process the information and interpretating the results

to the problem. Neural networks is one of the neurosciece that is applied the nervous system

using some iteration to have the optimal weights that is associated to their input unit. Long

Short-Term Memory (LSTM) model, belonging to the category of recurrent neural network,

effectively overcomes the challenge of vanishing gradients that often arise in training. Its ver-

satility allows for application across various topics, including the intricate and volatile financial

market [19], and specific cases such as asset pricing in the Chinese stock market [20], due to its

ability to mitigate error propagation during iterations. Neural network also finds usefulness in

predicting energy demand and CO2 emissions [21]. In this study, a fusion of a multiobjective

mathematical model with data-driven machine learning algorithms enhances the accuracy of

energy demand and CO2 emissions forecasts in the transportation sector.

The development of the ARFIMA model on various commodity prices provides essential

information about the effects of long-memory data. The change in zinc price is detected as

having a long-memory pattern based on the autocorrelation function that decays slowly and

forms the cosine function. Beside, this pattern is also proceed by using the machine learning

method of long-short term memory (LSTM) model. Therefore, this study will analyze the zinc

price model using the ARFIMA, DES, and Recurrent LSTM models to detect the effect of

long memory on zinc price movements. Then, the preferred model will be chosen by using the

measurement accuracy of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and

Mean Absolute Percentage Error (MAPE).

2. MATERIAL AND METHODS

2.1. Data Source. In this study, the secondary data of zinc price with a monthly period is

accessed on the investing website, www.investing.com, which started from October 2015 to

April 2024.

2.2. The Building of Classical Autoregressive Fractional Integrated Moving Average

Model. A random variable series {Xt} is characterized as a sequence of white noise while

an independent random variable with a specified distribution maintains a constant mean of zero
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and a constant variance of Var(Xt) = σ2 for k 6= 0. ARIMA, a classical time series model, com-

bines AR and MA models after integer differencing. ARIMA evolved into ARFIMA, which

incorporated ARFIMA features. ARFIMA has the same structure as ARIMA but uses frac-

tional values for differencing rather than integer differencing. Let φp(B) as AR components,

θq(B) as MA components, B as the operator of backward shift, and (1−B)dXt indicates the

d-order differenced stationary time series with 0 < d < 0.5, the process is labeled ARFIMA(p,

d, q) [22]:

(1) φp(B)(1−B)dXt = θq(B)εt

with

φp(B) = (1−φ1B−φ2B2−·· ·−φpBp)

θq(B) = (1−θ1B−θ2B2−·· ·−θqBq)

where p, q, and B are the positive integer values. The ARFIMA model is built in the following

phases.

(1) Examining the data’s stationarity in terms of variance. Since the data was not stationary,

data transformation was used to get a rounded value (λ ). Assuming that the data Xt

is non-stationary in terms of variance, it can be transformed employing the formula

T (Xt) = (Xλ−1
t )/λ , where λ is the transformation parameter. Since λ = 1, a rounded

value process is obtained, and stationarity is achieved [10].

(2) Identifying the ARFIMA model. The ARFIMA model is determined its candidate mod-

els by combining the order of MA(q) and AR(p) using the significant lag of ACF and

PACF, respectively.

(3) Employing the Geweke and Porter-Hudak models, calculate the differentiating parame-

ters using the following formula [10]:

d̂GPH =
∑

m
j=1(x j− x̄)(y j− ȳ)

∑
m
j=1(x j− x̄)2(2)

The least maximum square method is used to determine the value of dGPH , which is

then examined using the spectral density logarithm equation. The estimated integration
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order d is more flexible because it is performed without beforehand knowing the values

of the orders p and q.

(4) Transforming the differential data using the obtained d̂GPH values.

(5) Performing parameter estimation and signification tests of the ARFIMA model.

(6) Identifying potential ARFIMA model by combining significant orders of autoregressive

(AR) and moving average (MA) models using PACF and ACF plots of stationary data,

respectively.

(7) Estimating parameters and testing the significance of ARFIMA model. Parameter esti-

mation is performed on each model, followed by significance tests. A model is consid-

ered feasible when its parameters are significant, with probability values smaller than

α = 5%.

(8) Choosing the optimal ARFIMA model based on the least Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC).

When fitting ARFIMA model, potentially significant models were selected, and the

best model was selected. The goodness-of-fit criteria such as AIC, BIC, and HQ were

applied, using the loglikelihood function to determine the best model. Let σ̂2
ε represent

the maximum likelihood estimator of σ2
ε , k denoted the number of estimated parameters,

and n indicated the number of observations. The equations for AIC, BIC, and HQ were

systematically written as follows:

AIC = n ln(σ̂ε
2)+2k(3)

BIC = n ln(σ̂ε
2)+ kln(n)(4)

HQ = n ln(σ̂ε
2)+2kln(ln(n))(5)

The best model was selected based on the smallest value among AIC, BIC, and HQ.

Assuming there were two smallest values in any of these criteria, a nonparametric model

was required to determine the smallest rank.

(9) Testing the residual assumptions of the best ARFIMA model, including non-

autocorrelation and normality.



THE PERFORMANCE OF LONG MEMORY FRACTIONAL SERIES PRICE MODEL OF ZINC 7

The fitted ARFIMA model was then extended into a time series analysis to assess

whether the residual assumptions were met. It is important to point out that these as-

sumptions started with autocorrelation and progressed to heteroscedasticity and normal-

ity. The initial hypothesis suggested that there was no linear dependency connection in

the residual ARFIMA model. The statistic value could be expressed as follows [22]:

QLB = n(n+2)
k

∑
i=1

ρ2
i

n− i
(6)

where n is the number of data, the sample auto-correlation coefficient at lag k =

1,2,3, · · · ,K is denoted as ρ2
i , and lag length is denoted as K. The initial hypothe-

sis was rejected when the statistic value was greater than the critical value or QLB >

χ2
α(k− p−q). On the other hand, the hypothesis could be rejected assuming the prob-

ability value was less than the significance level.

The second assumption concerned the heteroscedasticity effect using the Lagrange

Multiplier (LM) test by White. The initial hypothesis of the LM test assumed that

the residual ARFIMA model exhibited homoscedasticity, where the variance of this

residual model remained constant, allowing the random fluctuated data to be ignored.

The statistic value of the LM test was the product of the determination coefficient value

R2 and the sample size n, expressed as follows:

LM = nR2(7)

The LM test followed a chi-squared distribution with degrees of freedom equal to k−1,

where k was the number of estimated parameters. The initial hypothesis was rejected

because the statistic value was greater than the critical value LM > χ2
α(k−1). However,

the hypothesis could be rejected when the probability value was less than the signifi-

cance level.

The final assumption was the normality test, where the initial hypothesis stated that

the residual skewness (S) and kurtosis (K) of ARFIMA model matched a normal distri-

bution with expected values of zero. This was determined using the Jarque-Bera (JB)

test, and the statistics test of JB could be expressed as follows [22]:



8 ARIF, HERLINAWATI, DEVIANTO, YOLLANDA, AFRIMAYANI

JB =
n
6

(
S2 +

(K−3)2

4

)
(8)

where K and S are kurtosis and skewness, respectively. The initial hypothesis was re-

jected since the statistic value was greater than the critical value JB > χ2
α(2) or when

the probability value was less than the significance level of 5%.

(10) Determining the best ARFIMA model equation and its interpretation.

2.3. The Building of The Double Exponential Smoothing. There are several techniques in

time series analysis that, while rudimentary, have retained their implicational value, notably in

the domains of forecasting and filtering, due to their simplicity and precision. A time series

dataset is forecasted using exponential smoothing. This strategy entails constant improvement

based on the most recent observations available. Several generic approaches are utilized in this

area, including the single Exponential Smoothing method [23], which is used as an effective

time series technique for time series data following a stationary model with trend term. The

principles used in this study are derived.

Since most time series data is not stationary, SES is not a useful tool for most applications.

To address this issue, Charles Holt has modified the SES to Holt’s Exponential Smoothing

or Double Exponential Smoothing (DES) or Second-Order Exponential Smoothing which can

handle these linear trends. Double Exponential Smoothing is the specified smoothing method

which handles time series data with trend. Holt smooths trend values with parameters that

are different from the parameters used in the original data smoothing. Holt method has two-

parameter double exponential smoothing, that are α and γ that are selected by the smallest value

of mean squared error. The double exponential smoothing (DES) can be calculated as follows

[24]:

Smoothing : St = αXt +(1−α)(St−1 + rt−1)(9)

Smoothing of trend : rt = γ(St +St−1)+(1− γ)rt−1(10)

Forecasting : Ft+m = St + rt(m)(11)

Initialization : S1 = X1(12)
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r1 = X2−X1(13)

where Xt is actual value or time series data in period t, St is single exponential smoothing value

in period t, St−1 is single exponential smoothing value in period (t−1), α is the parameter of

exponential smoothing for 0 < α < 1, rt is trend adjustment increment in period t, rt−1 is trend

adjustment increment in period (t−1), γ is the parameter of exponential smoothing with trend

for 0 < γ < 1, m is the number of periods for forecasting value, and Ft+m is forecasted value in

period (t +m).

The main characteristic of exponential smoothing is that it smooths the original sequence

before using the smoothed sequence to estimate future price values of the variable. This proce-

dure is most useful when the parameters linked to the time series change gradually over time.

The exponential smoothing prediction method estimates future values by taking a weighted av-

erage of previous observations. This method is useful for forecasting series revealing trends,

seasonality, or both.

2.4. The Building of Recurrent Long Short Term Memory Model. In building model of

time series, nonlinear model is an alternative method that can ignore to fulfill the residual as-

sumption. Therefore, it will make it easier to build the time series model. Nonlinear model is

widely used than linear model because the most real data can be impacted by many factors and

it can be make big difference when the indicator is changed. In order to recognize the pattern

of data, nonlinear model is required. Neuroscience is one of study that is demonstrating the

neurons system function. It means that the information that is received is then continued to be

processed until the results is obtained. Neural networks is one of nonlinear model that is ap-

plied for many problems. Because the neuron in neural networks has the relationship between

on input unit into its weight, it makes the process need the iteration and validtation to make sure

the obtained networks has a good performance [17]. In this study, one of the neural networks,

that is long short-term memory (LSTM) is applied. LSTM model can overcome the outlier

data with the iteration processing so that the error of the model getting smaller. The persistent

vanishing/exploding gradient problem resulting from long-term dependencies, even with sub-

stantial data, posed a challenge due to the random fluctuation in residuals. Consequently, the

application of LSTM neural network was deemed necessary [25].



10 ARIF, HERLINAWATI, DEVIANTO, YOLLANDA, AFRIMAYANI

In the framework of big data analysis, it was conceivable to foretell the future by recognizing

patterns in historical data. Furthermore, there was a link between the variables and the historical

data or data residuals. The artificial neural network was a device that simulated the network of

nerve cells seen in human and animal brains [17]. It also had a few hidden layers that connected

the input layer to the output layer. Weights and biases, often known as network coefficients,

specified the connections between two layers. Figure 1 represented the general construction of

the mathematical neural network model [22].

FIGURE 1. A diagram construction of mathematical neural network model

Figure 1 showed the construction of neural network that connected two layers through di-

rected links of weights or biases to determine the sign and strength of the input data. The input

data xi, representing x1,x2, · · · ,xn was then calculated as a weighted sum of its inputs on the

hidden layer, in j. Each hidden unit j transformed the input through the activation function f ,

yielding z j, expressed as follows:

(14) z j = f (in j) = f

(
n

∑
i=0

xiwi j

)
This result was then passed as input to other neurons and the activation function f scaled the

output z j into appropriate ranges. The network architecture could be classified as feed-forward

(FFNN) and recurrent neural network (RNN), commonly used for forecasting. In a feed-forward

network, each input unit received data from the layer below. Meanwhile, the outputs of a recur-

rent network became inputs in the preceding layer. The recurrent network created a dynamical
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system where inputs depended on the initial values of previous inputs, in order to simulate a sta-

ble state [22]. A common type of recurrent neural network was LSTM, designed for analyzing

time series data. LSTM was equipped to handle long-term dependencies present in time series

data, ensuring outcomes depended on previous data values.

In constructing the structural LSTM model, LSTM neural network comprised input gates,

memory cells, forget gates, and output gates. These components processed information over

longer periods. The network could selectively store and retrieve information as needed, regu-

lated by these gates that controlled the flow of data into and out of memory cells. The input gate

introduced new inputs to the cell, the forget gate maintained values for later use, and the output

gate determined the output of the cell. Common tasks for which LSTM were employed included

language translation, speech recognition, and stock price prediction. While RNN could learn

long-term dependencies in data, it was impacted by the vanishing gradient problem. LSTM

addressed this issue by using a set of gates to determine the data to retain and those to dis-

card. This allowed the model to retain more information compared to RNN, achieved through

gradient control [26]. A typical LSTM cell structure could be seen in Figure 2.

FIGURE 2. A diagram construction of mathematical long short-term memory

neural network model.
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The mathematical expressions for the inner connections of the gates in LSTM cell structure

were as follows. Let f (t), i(t),c(t), and o(t) as forget gate, input gate, modulation cell gate, and

output gate respectively with their activation functions of sigmoid, sigmoid, tanh, and sigmoid,

respectively. In the modulation cell gate, the input is updated at the present time instant. All

gates work on current input x(t) and previous values of states h(t − 1). The design of deep

network generally involved multiple hidden layers. To achieve the best results in the proposed

work, several LSTM hidden layer topologies were evaluated.

In validation model, the testing process of LSTM model has to have smaller value of model

evaluation than training process. It means that the LSTM model can recognize the new data and

can be used to forecast the next value in the next period.

2.5. Model Evaluation. In modeling, evaluation criteria were used to assess how well it pre-

dicted output values from input data [27]. The Mean Squared Error (MSE) measured the gap

between actual values and projected values. It was calculated by averaging squared differences

between expected and actual numbers. A lower MSE value indicated a more accurate model.

(15) MSE =
SSE

n
=

∑
n
t=1(yt− ŷt)

2

n

The accuracy of a model was quantified by the Mean Absolute Percentage Error (MAPE),

expressed as a percentage. It was computed by dividing the absolute difference between ex-

pected and actual values by the actual value, then averaging these percentages and calculating

the difference between predicted and actual values. A lower MAPE number indicated better

real-world prediction by the model.

(16) MAPE =
1
n

N

∑
t=1

|yt− ŷt |
yt

×100%

Another model to measure the gap between expected and actual values was the Mean Ab-

solute Error (MAE). This was calculated by finding the absolute difference between expected

and actual numbers, and then taking their average. The MAE statistic also assessed the model

accuracy, with lower MAE values indicating higher results.

(17) MAE =
1
n

N

∑
t=1
|yt− ŷt |
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After calculating the optimal model, the ratio of sums of squares of regression to sums of total

squares determined the coefficient R2. This measurement ranged from 0 to 1, and the value of

R2 close to 0 indicated the estimated model did not fit well, while a value close to 1, implied

it was well-fit. Let y be the mean of the dataset yi, where i = 1,2, · · · ,n. R2 was calculated as

follows:

R2 =
∑

n
i=1(ŷi− ȳ)2

∑
n
i=1(yi− ȳ)2(18)

The value of R2 represented the amount of variance in the response variable explained by the

predictor variable. Furthermore, it represented the squared correlation between observed values

yi and anticipated values ŷi based on data processing.

3. MAIN RESULTS

This section involved building a long-memory pattern of ARFIMA model, enhancing a long

short-term memory model, and evaluating the preferred model using certain criteria.

3.1. Building long-memory pattern of ARFIMA model. In this subsection, the modeling

process was identified by the imported dataset, firstly, the dataset can illustrate as graphically

using a monthly period of zinc price, which started on October 2015 until June 2023 in the

following Figure 3. Figure 3 shows the actual zinc price data started from October 2015 until

FIGURE 3. The commodity zinc price from October 2015 until June 2023.

June 2023 with monthly period exhibited free fluctuations. Based on Figure 3, the data did not
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fluctuate around a constant mean and variance, the data were not stationary concerning mean

and variance values. To address this non-stationarity in time series data regarding variance, data

transformation was performed using the Box-Cox transformation. The first step was determin-

ing the rounded value (λ ). Based on the transformation parameter formula, the value of λ was

0.7124, indicating non-stationarity with respect to variance. Therefore, a second-stage trans-

formation was conducted with a λ value of 1, rendering the inflation data stationary regarding

variance. The subsequent step was to check whether the data were stationary concerning mean

values using the Augmented Dickey-Fuller test, shown in Table 1.

TABLE 1. Augmented Dickey-Fuller Test.

Critical Value
ADF Test

Statistics Value p-value

1% :−3.5035

5% :−2.8935 −2.2648 0.1836

10% :−2.5838

Observations Used: 92

Lag Order: 2

From Table 1, the value of the statistic exceeded the critical value at the 5% significance

level, implying that the data were not stationary concerning the mean value. This was further

supported by the probability value of 0.1836, which was higher than the 5% significance level.

To determine the order differencing of fractional or integer, the identification pattern used the

Autocorrelation Function (ACF) to ascertain the presence of long-memory terms as shown in

Figure 4.

Figure 4 showed a gradual decrease in data over time, indicating the presence of a long-

memory pattern and suggesting a fractional order differencing for the model. Mathematically,

differencing with an order value of d was required to make the data stationary concerning the

mean, estimated using the Geweke Porter-Hudak (GPH) model. The order model determined by

the GPH model was d̂GPH = 0.4662. As d̂GPH = 0.4662 was less than 0.05, the data exhibited a

long-memory effect and could be modeled with ARFIMA. Subsequently, the order of ARFIMA
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FIGURE 4. ACF plot of zinc data exhibiting variance and mean stationarity

model was determined by identifying the number of significant lags in the ACF and PACF plots,

as shown in Figure 5.

FIGURE 5. Plot of autocorrelation and partial autocorrelation function

Based on Figure 5, the ACF coefficient reached a significant value at a lag of 6, while the

PACF coefficient reached a significant value at a lag of 2. This suggested the possibility of

forming an ARFIMA model by combining a maximum lag of 2 for parameter p and a maximum

lag of 6 for parameter q, along with a dGPH value of 0.4662. Furthermore, the parameters

for each model were estimated and from the results, a significance test was conducted. The
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probability values for each model were shown in Table 2. A model was considered significant

when the probability value of its parameter was less than 0.05.

TABLE 2. The significant estimated parameters of the ARFIMA model.

Model
Estimated Parameter Model selection

Parameter Estimate Statistic Pr(> |z|) AIC BIC

ARFIMA(0, 0.4662,1) (MA(1)) -0.4744 -6.1857 6.18E-10 604.5811 614.7115

ARFIMA(0, 0.4662,2) (MA(1)) -0.5195 -5.3523 8.69E-08 596.0423 608.7053

(MA(2)) -0.332 -3.5071 4.53E-04

ARFIMA(0, 0.4662,3) (MA(1)) -0.5264 -4.9611 7.01E-07 594.3939 609.5895

(MA(2)) -0.3379 -3.4335 5.96E-04

(MA(3)) -0.2039 -2.0238 4.30E-02

ARFIMA(0, 0.4662,5) (MA(1)) -0.5119 -4.9723 6.62E-07 586.9969 607.2577

(MA(2)) -0.3994 -3.8723 1.08E-04

(MA(3)) -0.3505 -3.3699 7.52E-04

(MA(4)) -0.3999 -3.6922 2.22E-04

(MA(5)) -0.3775 -3.3496 8.09E-04

ARFIMA(1, 0.4662,0) (AR(1)) 0.6249 7.9502 1.86E-15 587.4473 597.5777

ARFIMA(1, 0.4662,1) (AR(1)) 0.8142 9.0539 1.38E-19 585.7271 598.3901

(MA(1)) 0.3262 2.1706 3.00E-02

ARFIMA(1, 0.4662,3) (AR(1)) -0.8301 -7.089 1.35E-12 597.0106 614.7388

(MA(1)) -1.398 -9.281 1.68E-20

(MA(2)) -0.7968 -4.8999 9.58E-07

(MA(3)) -0.3531 -4.1859 2.84E-05

ARFIMA(2, 0.4662,0) (AR(1)) 0.5069 5.0139 5.33E-07 586.2801 598.9431

(AR(2)) 0.1877 1.7999 7.19E-02

Table 2 shows that the ARFIMA models that is obtained: ARFIMA(0,0.4662,1),

ARFIMA(0,0.4662,2), ARFIMA(0,0.4662,3), ARFIMA(0,0.4662,4),
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ARFIMA(1,0.4662,0), ARFIMA(1,0.4662,1), and ARFIMA(1,0.4662,3) were signifi-

cant and suitable for building an ARFIMA model. However, not all significant models were

applied in the subsequent steps. In order to identify the optimal model, a comparison was

made between the AIC and BIC values. The evaluation of these values in Table 2 for the

seven models revealed that the ARFIMA(1,0.4662,1) showed the lowest AIC and BIC values

among the available alternatives. Consequently, it can be stated that the ARFIMA(1,0.4662,1)

appeared as the most favorable choice.

Relying solely on model selection was insufficient to confirm that ARFIMA(1,0.4662,1) ad-

equately fulfilled the necessary conditions as a time series. This led to the examination of the

residual assumption of the ARFIMA(1,0.4662,1). Table 3 showed a test of residual assump-

tions for ARFIMA(1,0.4662,1).

TABLE 3. Residual assumption test of ARFIMA (1,0.4662,1) model

Residual Assumption Statistic χ2 p-value

Homoscedasticity 4.5972 0.1004

Autocorrelation [0.0004;70.5490] > 0.05

Normality 6.4230 0.0403

Upon reviewing Table 3, it became evident that the p-value of the autocorrelation test had

surpassed 0.05 at the 91st lag, indicating the absence of correlation among residuals. However,

in the heteroscedasticity and normality tests, the p-values were below 0.05. This suggested the

presence of heteroscedasticity or volatility effects on the residuals, necessitating their adjust-

ment. The normality test could be overlooked due to the rapid fluctuations in the time series

data. Therefore, ARFIMA(1,0.4662,1) was established as the best model with the following

equation:

(1−B)dXt = Φ1Xt−1 +θ1εt−1 + εt

(1−B)0.4662Xt = 0.8142Xt−1 +0.3262εt−1 + εt

The following Table 4 shows the forecaste data in the next months.
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TABLE 4. Forecasting zinc price data in one months ahead.

Date Actual Price Estimated ARFIMA Lower Upper Decision

May, 2024 322.58 307.0051 285.0336 328.9766 in interval

Table 4 presents the actual data, the estimated data using ARFIMA model, and the estimated

confidence interval of 95%. Based on Table 4, each actual value is included in the confidence

interval of 95%. It shows that the ARFIMA(1, 0.4662,1) model has the best performance to

forecast the data in the future so that it can be utilized to minimize the risk for some economic

agents or investors.

3.2. Building Double Exponential Smoothing. As the basic technique, the exponential

smoothing is utilized to estimate the actual value and then make the forecasting to determine the

value in the next period. Classical econometric methods were used to predict the development

of zinc price in this study. Considering that the trading activities of the zinc price is still spread-

ing across the world, the focus of this study is to build the model of the double exponential

smoothing (DES).

The optimal constant smoothing for this study is α = 0.9627 and γ = 0.1153, so that the DES

model can be expressed as

Smoothing : St = αXt +(1−α)(St−1 + rt−1) = 0.9627Xt +0.0373(St−1 + rt−1),

Smoothing of trend : rt = γ(St +St−1)+(1− γ)rt−1 = 0.1153(St +St−1)+0.8847rt−1,

Forecasting : Ft+m = St + rt(m),

Initialization : S1 = X1 = 180.36,

r1 = X2−X1 = 165.08−180.36 =−15.28.

Based on the model of double exponantial smoothing (DES), the DES model can be used to

forecast the new data in the next period. The following Table 5 shows the forecaste data in the

next month, May 2024.

Table 5 presents the actual data, the estimated data using DES model, and the estimated

confidence interval of 95%. Based on Table 5, each actual value is included in the confidence
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TABLE 5. Forecasting zinc price data in eight months ahead.

Date Actual Price Estimated DES Lower Upper Decision

May, 2024 322.58 304.6349 265.891 343.3788 in interval

interval of 95%. It shows that the DES model has the best performance to forecast the data in

the future so that it can be utilized to minimize the risk for some economic agents or investors.

3.3. Building Long Short-Term Memory. In building model of time series, nonlinear model

is an alternative method that can ignore to fulfill the residual assumption. Therefore, it will

make it easier to build the time series model. Nonlinear model is widely used than linear model

because the most real data can be impacted by many factors and it can be make big difference

when the indicator is changed. In order to recognize the pattern of data, nonlinear model is

required. Long short-term memory (LSTM) as the nonlinear model can overcome the outlier

data with the iteration processing so that the error of the model getting smaller. Consequently,

the application of LSTM neural network was deemed necessary.

Analysis of Zinc price showed that the data continued to exhibit considerable fluctuations,

indicating the persistence of volatility in the data. Based on the autocorrelation function of

the data, the significant impact is occured at the sixth lag. This observation implied that the

zinc price in each month was dependent on the value of the next six month. Consequently, a

preferred model aimed at mitigating the fluctuation effect would involved employing 6 as the

number of significant lags. To process the data, LSTM neural network, which was a nonlinear

model, would be applied. This model included training the network on 75% of the dataset and

testing it on the remaining 25% to evaluate performance. Parameter settings for LSTM model

were clearly shown in Table 6.

In validating the process, the networks have good performance if mean squared error of

testing is less than training. Table 7 shows how the comparison mean squared error between

training process and testing process.

Based on Table 7, the mean squared error (MSE) of testing (0.0264) is less than the training

process (0.0334). It means that the networks that is built by using the training data have a good
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TABLE 6. Parameter settings for LSTM model.

Parameters Values

Total hidden Layers 4

The number of hidden units 4

Optimization approach Adam

Total repetition (epochs) 1500

Training data 73

Testing data 22

TABLE 7. Validation data.

Process Mean Squared Error

Training 0.0334

Testing 0.0264

performance because the networks can recognize the new data (testing data). Therefore, the

networks can be used for forecasting the new data in the next period.

The following Table 8 shows the forecaste data in the next eight months.

TABLE 8. Forecasting zinc price data in eight months ahead.

Date Actual Price Estimated LSTM Lower Upper Decision

May, 2024 322.58 369.3786 306.9120 431.8451 in interval

Table 8 presents the actual data, the estimated data using LSTM model, and the estimated

confidence interval of 95%. Based on Table 8, actual value is included in the confidence

interval of 95%. It shows that the LSTM model has good performance to forecast the data

in the future so that it can be utilized to minimize the risk for some economic agents or investors.

3.4. Evaluating the Estimated Models. After building the models of zinc price, a compari-

son of ARFIMA, DES, and LSTM models was conducted to evaluate their performance. Figure
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6 graphically showed this comparison, including the actual zinc price data, ARFIMA(1, 0.4662,

1), DES and LSTM model. These four representations were respectively depicted in blue, pur-

ple, and green. A model that closely associated with the actual value and accurately tracked its

movements would likely be more accurate.

FIGURE 6. Comparison between actual data of inflation and ARFIMA-LSTM model.

The red, blue, purple, and green lines in Figure 6 represented Actual value, ARFIMA, LSTM,

and DES models, respectively. These lines smoothly estimated the red line (actual value) using

a numerical model to imitate and recognize the actual value. This indicated that the improved

models represented by the blue and purple lines closely approximated the red line than green

line. Essentially, the blue line can not be compared better than the purple line in estimating the

red line because the gap between these both lines are not significantly different, but blue and

purple lines are better than the green line because there is agap between green line and the red

line In other words, the sensitivity of the fluctuation data, could be effectively handled through

the application of numerical models, specifically LSTM neural network and ARFIMA model,

but not with DES model. The validity of this statement was supported by evaluating the model

using metrics such as MSE, MAE, and MAPE. A comparison between ARFIMA, DES, and

LSTM could be seen in Table 9

From Table 9, LSTM model yielded the smallest values for MAE and RMSE, but ARFIMA

has the smallest value for MAPE value. Overall, by using the rank method, the LSTM model be
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TABLE 9. Evaluation Model.

Model MAE RMSE MAPE

ARFIMA 2.0942 2.6699 0.6840

DES 4.6469 6.0030 1.7876

LSTM 2.0672 2.6455 1.2890

the first rank so that it can be conclude that LSTM has better performance. This outcome sug-

gested that employing the numerical model of LSTM neural network enhanced and refined the

predicted zinc price values. After adjusting the long memory pattern of zinc data, the fluctua-

tion of data went through further processing using LSTM to address the vanishing gradient issue

inherent in volatility component, often referred to as heteroscedasticity effects. Consequently,

the preferred LSTM neural network effectively improved the fluctuation of the data. Mitigating

the impact of heteroscedasticity was achieved through either linear or nonlinear models [22].

The application of DES served as a linear model, while using neural network represented the

nonlinear. Among the models,neural network of LSTM appeared to be the most effective for

addressing the fluctuation when compared to ARFIMA and DES. The results in Table 9 also

showed that the neural network employing LSTM outperformed the classical ARFIMA and

DES in terms of nonlinear modeling. The results also underscored the optimal performance

achieved through the fusion of the neural network and ARFIMA, particularly when applied to

zinc price data. The assessment was based on metrics including MSE, MAE, and MAPE.

4. CONCLUSION

In conclusion, this paper proposed three models that can be utilized to predict the zinc price.

Three models of Autoregressive Fractional Integrated Moving Average (ARFIMA), Recurrent

Long Short-Term Memory (LSTM), and Double Exponential Smoothing (DES) are then pro-

ceed to estimate the pattern of the zinc price data. To achieve stability, LSTM neural network

established a dynamic system in which the input depended on the initial values of previous

inputs based on the neuroscience working. This adaptation brought the network closer to mim-

icking brain functions while simultaneously increasing its complexity in learning from data.
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Recognizing the limitations of the classical long-memory ARFIMA in accurately predicting

inflation, this study underscored the necessity for a nonlinear model. This nonlinear strived to

approximate the gradient of ARFIMA through numerical computations until a defined threshold

error was met. As the basic method of Double Exponential Smoothing (DES) can be utilized to

estimate the pattern of the data. Despite capturing the long-pattern data inherent in zinc price,

the model did not adequately optimize zinc price prediction.

The evaluation between ARFIMA, LSTM, and DES utilize the MAE, RMSE, and MAPE

to measure the performance of the models. The results show that the recurrent long short-term

memory has the best performance to estimate the pattern data of commodity zinc price beacause

the numerical process helps the adjustment of initial parameters to be optimal parameters and

handles the vanishing gradient problem in the networks. The performance of LSTM effectively

mitigates the fluctuation issue present in ARFIMA and DES models with the learning rate and

process data that requires the iteration and the thresold value that has to be fulfilled.
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