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Abstract. A mathematical model of influenza and COVID-19 coinfection is considered. We add a vaccinated

subpopulation, where the vaccine is applied to both diseases. We analyse the solution’s positivity and the local

stability of the equilibrium. The basic reproduction ratio is calculated using the next-generation matrix resulting

in a maximum value between the basic reproduction ratio of influenza and COVID-19. It is found that the non-

endemic equilibrium point is locally asymptotically stable if the basic reproduction ratio is less than one. Some

numerical simulations are performed, and a sensitivity analysis is given. The result suggests that the regulator

needs to pay attention to curbing the interaction of infected subpopulations and boosting the influenza recovery

rate to control the disease spread.
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1. INTRODUCTION

Influenza and COVID-19 are contagious respiratory illnesses that have been the focus of

extensive scientific investigations. Mathematical modelling is crucial for comprehending the

dynamics of disease transmission, as well as for assessing and forecasting the course of the

epidemic and measures for controlling it. Mathematical models of influenza or COVID-19

transmission are crucial for research because of the progressive nature of the disease and the

continuous advancements in science and technology.

By conducting modelling studies and analysing the dynamics of influenza dissemination, re-

searchers can gain insights into its transmission and develop effective prevention techniques

[1]. The dynamics of influenza propagation are intricate and can be counterintuitive, making it

challenging to explain using basic influenza models. However, the model can be evaluated to

ensure its accuracy [2]. An influenza infection overview presents a comprehensive account of

the initial symptoms, recurrent infections, and their impact on the human body [3]. To com-

prehend the dynamics of influenza and bird flu, it is imperative to investigate the transmission

variables and subpopulations associated with their distribution model. This is because both dis-

eases exhibit nearly identical distribution patterns [4]. The human respiratory system serves as

the pathway for viral infections to enter the human body. Therefore, it is crucial to maintain a

sanitary environment in the vicinity of the nose and mouth [5]. Individuals who are afflicted

with influenza and do not receive proper treatment or fail to complete a course of antibiotics,

may develop resistance to influenza medications [6].

Vaccination is a more effective method than therapy for preventing the spread of influenza

[7]. In order to address influenza that is resistant to anti-influenza medications, mathemat-

ical analysis has determined that effective pharmaceuticals must be utilised for therapy [8].

The management of influenza can be revolutionised by using impulse-based control techniques,

which offer optimal therapeutic innovations [9].

Over the past few years, the emergence of the novel coronavirus SARS-CoV-2, often known

as COVID-19, has had an unprecedented influence on global issues. Several meticulous sci-

entific investigations and analyses have been conducted to comprehend its dynamics, in order

to contribute to public health policy. To comprehensively understand and effectively manage
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the transmission of the virus, it is imperative for mathematical scientists to engage in collab-

orative efforts with the health sector to conduct preliminary analysis. This early study serves

as a crucial step in addressing the challenges posed by COVID-19. Research has been con-

ducted to examine the dynamics of COVID-19 and the effectiveness of preventative measures,

such as social restrictions, lockdowns, and treatment, in reducing the death rate caused by the

disease. The aim of these studies is to provide recommendations on how to effectively prevent

COVID-19 [10].

Mathematical studies that aim to forecast the transmission of COVID-19 can provide out-

comes that carry substantial consequences for public health strategies and the distribution of

resources for response efforts [11]. In Indonesia, researchers have conducted studies on dis-

tribution prediction models using the Susceptible-Infected-Recovered (SIR) model [12]. They

have also performed sensitivity analysis to examine the impact of comorbid disease factors on

disease spread [13]. Additionally, they have explored the selection of recruitment in suscepti-

ble subpopulations using logistic growth [14]. The field of mathematical epidemiology in the

context of COVID-19 provides an overview of the essential factors and compartments involved

in the transmission of the virus. This knowledge serves as a foundation for developing effective

strategies to manage the ongoing pandemic [15].

Furthermore, mathematical modelling plays a crucial role in comprehending the interactions

between SARS-CoV-2 and other viruses. Specifically, it aims to elucidate the dynamics of

the intricate viral interference, which is a critical factor in understanding the co-infection of

COVID-19 and other respiratory diseases. Mathematical modelling has been used to analyse

the interactions between different infectious agents [16]. It is necessary to study the co-infection

of COVID-19 and influenza in order to determine the most suitable healthcare system for allo-

cating resources during simultaneous epidemics [17].

Research is examined to study the impact of vaccine interventions on the spread of COVID-

19. It also highlighted the significant significance of vaccination campaigns in raising aware-

ness about the need of immunisation in preventing the disease from spreading further [18]. A

study was conducted to investigate the impact of health protocol campaigns on the prevention

of COVID-19 and influenza co-infection. Nonlinear models were used to analyse the spread of
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both diseases and determine the optimal control measures. The study examined the effects of

preventive strategies on each disease separately as well as when they occur together [19]. This

research expands upon the model examined by Bhowmick (2023) [17] by including subpopula-

tions related to vaccination. The inclusion of the vaccine component is crucial as immunisation

serves as a highly effective measure in mitigating the transmission of COVID-19 or influenza.

This is consistent with research undertaken in other studies [7, 14, 18, 19].

2. THE MODEL

We consider a coinfection model of COVID-19 and Influenza by extending the model in

Bhowmick (2023) [17] by adding a vaccinated subpopulation.

Suppose a population, denoted by N which is assumed to be a constant, is divided into six sub-

populations. The susceptible subpopulation denoted by S refers to persons who are currently in

good health but are at risk of contracting either COVID-19 or influenza. The vaccinated subpop-

ulation denoted by V refers to persons who are susceptible to influenza and COVID-19 despite

being vaccinated with the influenza vaccine and COVID-19 vaccine. The influenza-infected

subpopulation denoted by IF refers to persons who are only infected by the influenza virus.

The COVID-19-infected subpopulation denoted by IC refers to persons who are only infected

by the COVID-19 virus. The influenza and COVID-19 co-infected subpopulation denoted by

IFC refers to persons who are infected by both influenza and COVID-19 viruses. The recovered

subpopulation denoted by R are persons who have acquired immunity either by vaccination,

spontaneous infection, or recovery from treatment.

The transmission diagram of the population is given in Fig. 1. The explanation of the figure

is as follows:

1. All subpopulations have a natural death rate µ .

2. S has a recruitment rate Λ, a influenza infection transition rate β1/N, a COVID-19 infection

transition rate β2/N, a influenza vaccination rate ψ , and a COVID-19 vaccination rate ω .

3. V has influenza infection transition rate β3/N and a COVID-19 infection transition rate

β4/N. V can be fully recovered from influenza at the rate r1 and from COVID-19 at the

rate r2.
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4. IF has a coinfection rate with COVID-19 at γ and can be fully recovered by another factor

except for vaccination at the rate σ .

5. IC has a coinfection rate with influenza at δ , a death rate caused by COVID-19 at d1, and can

be fully recovered by another factor except for vaccination at the rate τ .

6. IFC can be fully recovered by another factor except for vaccination at the rate ϕ and has a

death rate caused by the coinfection at d2.

FIGURE 1. The transmission of the coinfection of influenza and COVID-19.

Based on the above explanation of the coinfection dynamics of influenza and COVID-19, we

have the following system of differential equations:

(1)



dS
dt = Λ−

(
β1
N IF + β2

N IC +ψ +ω +µ

)
S

dV
dt = (ψ +ω)S−

(
β3
N IF + β4

N IC + r1 + r2 +µ

)
V

dIF
dt =

(
β1
N S+ β3

N V
)

IF − (γ +σ +µ)IF

dIC
dt =

(
β2
N S+ β4

N V
)

IC− (d1 +δ + τ +µ)IC

dIFC
dt = γIF +δ IC− (ϕ +d2 +µ)IFC

dR
dt = (r1 + r2)V +σ IF + τIC +ϕIFC−µR

The total population is N = S+V + IF + IC + IFC +R. In Table 1, we provide the parameters’

description, value (for simulation purposes), and reference.
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TABLE 1. The description and value of the parameters.

Parameter Description Value Ref.

Λ Recruitment rate 1.2×104 [19]

β1 Influenza infection transition rate from susceptible sub-

population

0.203 [19]

β2 COVID-19 infection transition rate from susceptible

subpopulation

0.5249 [19]

ψ Influenza vaccination rate 0.00027 [19]

ω COVID-19 vaccination rate 0.0203 [19]

β3 Influenza infection transition rate from vaccinated sub-

population

0.035 [17]

β4 COVID-19 infection transition rate from vaccinated sub-

population

0.021 [17]

r1 Vaccinated subpopulation recovery rate from influenza 0.7 Assumed

r2 Vaccinated subpopulation recovery rate from COVID-19 0.011 [19]

γ Influenza-infected coinfection rate with COVID-19 0.088 [19]

σ Recovery rate of the influenza-infected subpopulation by

another factor except for vaccination

0.77 Assumed

δ COVID-19-infected coinfection rate with influenza 0.4 Assumed

d1 Death rate caused by COVID-19 0.008 [19]

τ Recovery rate of the COVID-19-infected subpopulation

by another factor except for vaccination

0.1398 [19]

ϕ Recovery rate of the coinfected subpopulation by another

factor except for vaccination

0.125 Assumed

d2 Death rate caused by the coinfection 0.021 Assumed

µ Natural death rate 0.00004 Assumed

We assume that all parameters are non-negative and the initial value of all subpopulations are

non-negative except S(0)> 0.
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2.1. Stability Analysis. We have the following theorem about the non-negativity of the sys-

tem (1) solutions.

Theorem 2.1. Given S(0)> 0 and V (0), IF(0), IC(0), IFC(0),R(0)≥ 0, the solutions of system

(1) are non-negative, that is S(t),V (t), IF(t), IC(t), IFC(t),R(t)≥ 0 for all t > 0.

Proof. Let t̃ = sup{t > 0|S(0),V (0), IF(0), IC(0), IFC(0),R(0) > 0} ∈ [0, t]. From the first dif-

ferential equation in (1), we have

dS
dt
≥ Λ−

(
β1

N
IF +

β2

N
IC +µ

)
S.

By using a factor integration technique, the solution of the above inequality is

S(t̃)≥
[

S(0)+
∫ t̃

0
Λexp

(
µ t̃ +

∫ t̃

0
(ξ1(u)+ξ2(u))du

)
dt̃
]

exp
[
−
(

µ t̃ +
∫ t̃

0
(ξ1(s)+ξ2(s))ds

)]
.

This means that S(t̃) > 0, for all t > 0. In the same way, we can obtain

V (t̃), IF(t̃), IC(t̃), IFC(t̃),R(t̃)≥ 0, for all t > 0. �

The non-endemic equilibrium can be obtained if the infected subpopulations are zero. We

get

E0 =

(
Λ

ψ +ω +µ
,

Λ(ψ +ω)

(ψ +ω +µ)(r1 + r2 +µ)
,0,0,0,

Λ(ψ +ω)(r1 + r2)

µ(ψ +ω +µ)(r1 + r2 +µ)

)
.

The magnitude of the expansion or contraction of a disease’s transmission within a popu-

lation can be ascertained by examining the value of the basic reproduction ratio. The basic

reproduction ratio, denoted by R0, represents the average number of infected people that arise

from a single infected individual entering each susceptible subpopulation. The basic reproduc-

tion ratio of system (1) is determined using the next-generation matrix approach [20]. Firstly,

let us examine the Jacobian matrix of a system consisting of infected individuals who are in

contact with susceptibles at the non-endemic equilibrium point.

F =



β1Λ

N(γ+σ+µ) +
β3Λ(ψ+ω)

N(ψ+ω+µ)(r1+r2+µ) 0 0 0

0 β2Λ

N(γ+σ+µ) +
β4Λ(ψ+ω)

N(ψ+ω+µ)(r1+r2+µ) 0 0

0 0 0 0

0 0 0 0
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The Jacobian matrix of which individuals are exiting the system without coming into touch

with infected individuals is given below

V =


γ +σ +µ 0 0 0

0 d1 +δ + τ +µ 0 0

−γ −δ ϕ +d2 +µ

−σ −τ −ϕ µ


The basic reproduction number of system (1) is obtained by calculating the spectral radius

of the matrix FV−1. Since there are two infectious diseases, influenza and COVID-19, then we

have

R0 = max{R0F ,R0C},

where

R0F =

(
µ

γ +σ +µ

)(
β1

γ +σ +µ
+

β3(ψ +ω)

(ψ +ω +µ)(r1 + r2 +µ)

)
is the basic reproduction ratio of influenza, and

R0C =

(
µ

d1 +δ + τ +µ

)(
β2

γ +σ +µ
+

β4(ψ +ω)

(ψ +ω +µ)(r1 + r2 +µ)

)
is the basic reproduction ratio of COVID-19.

The connection between the stability of the non-endemic equilibrium point and the basic

reproduction ratio is given in the following theorem.

Theorem 2.2. The non-endemic equilibrium point E0 is locally asymptotically stable if R0 < 1,

and unstable otherwise.

Proof. Consider the Jacobian matrix of system (1) evaluated at E0,

J(E0) =



−a 0 −β1µ

a −β2µ

a 0 0

ψ +ω −b −β3µ(ψ+ω)
ab −β4µ(ψ+ω)

ab 0 0

0 0 µβ1
a + β3µ(ψ+ω)

ab − c 0 0 0

0 0 0 µβ2
a + β4µ(ψ+ω)

ab −d 0 0

0 0 γ δ −e 0

0 r1 + r2 σ τ ϕ −µ
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where a = ψ +ω +µ , b = r1 + r2 +µ , c = γ +σ +µ , d = d1 +δ +τ +µ , and e = ϕ +d2 +µ .

Note that a,b,c,d,e > 0. The eigenvalues of the Jacobian matrix J(E0) are obtained as follows

λ1 =−e, λ2 =−µ, λ3 =−b, λ4 =
µβ2

a
+

β4µ(ψ +ω)

ab
−d

λ5 =
µβ1

a
+

β3µ(ψ +ω)

ab
− c, λ6 =−a.

If d > µβ2
a + β4µ(ψ+ω)

ab and c > µβ1
a + β3µ(ψ+ω)

ab , then all the eigenvalues are negative which

means that E0 is stable. One can observe that these two conditions are equivalent with R0 < 1.

Thus, E0 is stable if R0 < 1. �

The study of the endemic equilibrium is not presented in this paper, because it has long

expression and requires comprehensive analysis. We leave it for further study.

3. SIMULATIONS AND SENSITIVITY ANALYSIS

In this section, we perform some simulations of the system (1) solution and also provide a

sensitivity analysis to observe which parameter is the most sensitive or influential to the disease

spread.

We use the parameters’ value from Table 1 and the following initial conditions that are only

chosen for simulation purposes: S(0) = 2×108,V (0) = 1.5×108, IF(0) = 3.1×105, IC(0) =

3.2×105, IFC(0) = 1×103, R(0) = 5.4×106. First, we simulate the system’s time series solu-

tion in Fig. 2a for the non-infected subpopulations S, V , and R, and in Fig. 2b for the infected

subpopulations IF , IC, and IFC. The susceptible and vaccinated subpopulations tend to de-

crease, on the other hand, the recovered subpopulation tends to grow until reaching its steady

state. The influenza-infected and COVID-19-infected subpopulations tend to decrease from the

start, meanwhile, the coinfected subpopulation tends to grow initially but decreases after that.

These three infected subpopulations converge to zero at the end. This is confirmed by the basic

reproduction ratio which is less than one. For another representation of the system (1) solu-

tion, in Fig. 3, we present a phase diagram of the vaccinated subpopulation V with the infected

subpopulation IF , IC, and IFC. The simulation is performed with various initial conditions.
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(A) (B)

FIGURE 2. The solution of system (1) (a) for non-infected subpopulations S, V ,

and R, and (b) for infected subpopulations IF , IC, and IFC.

(A) (B) (C)

FIGURE 3. The phase diagram of the vaccinated subpopulation V versus the

infected subpopulations (a) IF , (b) IC, and (c) IFC. The simulation uses various

initial values.

3.1. Sensitivity Analysis. One of the important analyses in mathematical epidemiology is

sensitivity analysis which is to observe the most influential parameters that contribute to the

disease spread. The sensitivity analysis that we considered here is an elasticity index which is

defined as follows

E =
∂R0

∂P
× P

R0
,

where P is the parameter that appear in R0. In this paper, we have

P ∈ {β1,β2,ψ,ω,β3,β4,r1,r2,γ,σ ,δ ,d1,τ,µ}.
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The calculation result of the elasticity index is given in Table 2. Bu using the parameters’

value from Table 1, we have the result comparison of the elasticity index of all parameters given

in Fig. 4. From the figure, we can observe that parameter µ is the most sensitive, followed by

parameters β2, σ , and β1.

TABLE 2. Elasticity index calculation.

Parameter Elasticity index

β1
µ

(γ+µ+σ)2

β2
µ

(γ+µ+σ)(d1+δ+µ+τ)

ψ max

 µ

(
β3

(µ+ω+ψ)(µ+r1+r2)
− β3(ω+ψ)

(µ+ω+ψ)2(µ+r1+r2)

)
γ+µ+σ

,
µ

(
β4

(µ+ω+ψ)(µ+r1+r2)
− β4(ω+ψ)

(µ+ω+ψ)2(µ+r1+r2)

)
d1+δ+µ+τ


ω max

 µ

(
β3

(µ+ω+ψ)(µ+r1+r2)
− β3(ω+ψ)

(µ+ω+ψ)2(µ+r1+r2)

)
γ+µ+σ

,
µ

(
β4

(µ+ω+ψ)(µ+r1+r2)
− β4(ω+ψ)

(µ+ω+ψ)2(µ+r1+r2)

)
d1+δ+µ+τ


β3

µ(ω+ψ)
(γ+µ+σ)(µ+ω+ψ)(µ+r1+r2)

β4
µ(ω+ψ)

(µ+ω+ψ)(µ+r1+r2)(d1+δ+µ+τ)

r1 max
{

β3µ(ω+ψ)
(γ+µ+σ)(µ+ω+ψ)(µ+r1+r2)2 ,

β4µ(ω+ψ)
(µ+ω+ψ)(µ+r1+r2)2(d1+δ+µ+τ)

}
r2 max

{
β3µ(ω+ψ)

(γ+µ+σ)(µ+ω+ψ)(µ+r1+r2)2 ,
β4µ(ω+ψ)

(µ+ω+ψ)(µ+r1+r2)2(d1+δ+µ+τ)

}
γ max

{
µ

(
β1

γ+µ+σ
+

β3(ω+ψ)

(µ+ω+ψ)(µ+r1+r2)

)
(γ+µ+σ)2 − β1µ

(γ+µ+σ)3 ,− β2µ

(γ+µ+σ)2(d1+δ+µ+τ)

}

σ max

{
−

µ

(
β1

γ+µ+σ
+

β3(ω+ψ)

(µ+ω+ψ)(µ+r1+r2)

)
(γ+µ+σ)2 − β1µ

(γ+µ+σ)3 ,− β2µ

(γ+µ+σ)2(d1+δ+µ+τ)

}
δ

µ

(
β2

γ+µ+σ
+

β4(ω+ψ)
(µ+ω+ψ)(µ+r1+r2)

)
(d1+δ+µ+τ)2

d1 −
µ

(
β2

γ+µ+σ
+

β4(ω+ψ)
(µ+ω+ψ)(µ+r1+r2)

)
(d1+δ+µ+τ)2

τ −
µ

(
β2

γ+µ+σ
+

β4(ω+ψ)
(µ+ω+ψ)(µ+r1+r2)

)
(d1+δ+µ+τ)2

µ max

{
β1

γ+µ+σ
+ β3(ω+ψ)

(µ+ω+ψ)(µ+r1+r2)
−

µ

(
β1

γ+µ+σ
+

β3(ω+ψ)

(µ+ω+ψ)(µ+r1+r2)

)
(γ+µ+σ)2

−
µ

(
β1

(γ+µ+σ)2
+

β3(ω+ψ)

(µ+ω+ψ)(µ+r1+r2)
2 +

β3(ω+ψ)

(µ+ω+ψ)2(µ+r1+r2)

)
γ+µ+σ

,

β2
γ+µ+σ

+ β4(ω+ψ)
(µ+ω+ψ)(µ+r1+r2)

−
µ

(
β2

γ+µ+σ
+

β4(ω+ψ)
(µ+ω+ψ)(µ+r1+r2)

)
(d1+δ+µ+τ)2

−
µ

(
β2

(γ+µ+σ)2
+

β4(ω+ψ)

(µ+ω+ψ)(µ+r1+r2)
2 +

β4(ω+ψ)

(µ+ω+ψ)2(µ+r1+r2)

)
d1+δ+µ+τ
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FIGURE 4. The elasticity index of the basic reproduction ration R0 for all pa-

rameters that appear in R0.

4. CONCLUSION

Based on the given parameters’ value, to overcome the disease spread, we should pay atten-

tion to the natural death rate, COVID-19 infection transition rate, recovery rate of the influenza-

infected, and influenza infection transition rate. Indeed, as the health regulator, they can not

control the natural death rate. Still, they can make regulations to curb the COVID-19 and in-

fluenza infection transition rates and also boost the recovery rate of influenza-infected people.
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