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Abstract. Type 2 diabetes (T2D) is a chronic illness that affects how well the body uses glucose, an essential

energy source. Individuals with type 2 diabetes do not produce enough insulin or do not respond to control blood

sugar levels. Clinical trials have suggested that poor nutritional habits may contribute to an increase in the incidence

of type 2 diabetes. We investigated the dynamics of type 2 diabetes mellitus (T2D), which was formulated based

on an epidemic mathematical model. The model categorizes the population into five compartments: Susceptible

S(t), Affected A(t), Treated T (t), Healthy Lifestyle L(t), and Prevented P(t) individuals. We used the Homotopy

Analysis Method (HAM) and Homotopy Perturbation Method (HPM) to provide a thorough analytical study of
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this distinct model. To confirm the region of convergence in the HAM solutions for our model, the h-curves are

provided. MATLAB coding was used for comparison with HAM and HPM to verify the accuracy and efficacy

of the obtained solutions. We noticed no substantial difference between the analytical and numerical results.

Moreover, in order to examine the behavior of the model individuals, we varied each parameter. Through this

analysis, we obtained valuable insights into the responses of the type 2 diabetes model under various conditions

and scenarios. This research offers valuable insights into the utilization of semi-analytical methods for analyzing

epidemiological models related to infectious diseases, providing significant utility for researchers in the field.

Keywords: type 2 diabetes (T2D); epidemic mathematical model; numerical analysis; homotopy analysis method

(HAM); homotopy perturbation method (HPM); h-curves.
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1. INTRODUCTION

High blood sugar levels are a defining indicators of type 2 diabetes, which is a chronic meta-

bolic illness. Genetic factors, lack of physical activity, unhealthy diet, obesity, and aging are

risk factors. Unlike type 1 diabetes, which often manifests in childhood, type 2 diabetes is as-

sociated with insulin resistance, and typically develops later in life. Increased thirst, frequent

urination, weight loss, exhaustion, and visual issues are some of these symptoms. Changes in

lifestyle, medicine, or insulin treatment are all part of management. If left untreated, type 2

diabetes can lead to damage to the kidneys and heart failure, highlighting the significance of

regular monitoring and a healthy lifestyle [1]–[4].

The prevalence of type 2 diabetes worldwide, need for early identification and prevention, re-

quirement for individualized care, and possible advantages of continuous glucose monitoring

systems. [5] provides estimates of the global incidence of diabetes for 2019, as well as projec-

tions for 2030 and 2045, highlighting the greater incidence in high-income countries and met-

ropolitan regions. A significant proportion of people with diabetes are oblivious to their illness,

and comprehensive estimates for various geographic areas and socioeconomic classes indicate

that the number of people with diabetes may increase if timely measures are not implemented.

A person with diabetes has a twofold higher chance of developing different vascular illnesses.

The relationship between fasting blood glucose concentration and vascular risk is nonlinear,

and in individuals without a history of diabetes, the addition of information about multiple con-

ventional risk factors to that about fasting blood glucose level or poor fasting glucose status
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does not significantly enhance the prediction of vascular disease. The need to identify gender

and sex variations in the different elements of type 2 diabetes mellitus (T2DM) is pointed out,

underscoring the necessity of customized therapy that takes into account variations in biology,

genetics, hormones, and the environment. With an emphasis on sex-specific outcomes, special

attention is given to the management of diabetes during pregnancy, highlighting its influence on

progeny health. In addition to encouraging a deeper investigation of the underlying processes,

the demand for comprehensive biomedical research seeks to address gender-based differences

in the burden of T2DM throughout different life stages [6]–[9].

A strong negative link between type 2 diabetes risk and physical activity was found in a meta-

analysis that focused on the role of decreased adiposity in mediating this association. With 5-7

hours of varied activities per week, there is a noticeable decrease in risk, indicating an ideal

threshold for risk reduction [10].

Statistical modelling is a fundamental epidemiological framework used to visualize the spread

of illnesses. Mathematical techniques are used to analyze and forecast the distribution and

transmission of diseases within a population. The abbreviation ”SIR” is used to categorize

individuals in the population into three categories: Susceptible, Infected, and Recovered. To

provide a mathematical framework for comprehending these viruses, a number of models, such

as those for COVID-19, Ebola, Zika, and other diseases, have been developed with modified

versions of epidemiology. These models are essential for understanding, predicting, and plan-

ning disease management and prevention initiatives [11]–[16]. In alignment with this concept,

the T2D model was structured as a SATLP epidemic model, which denotes Susceptible, Af-

fected, Treated, Healthy Lifestyle, and Prevented individuals. This study explored the impact

of lifestyle interventions on individuals through the development of an ordinary differential

equation model. This study introduces a comprehensive model that integrates the dynamics of

T2D by incorporating a control variable known as healthy lifestyle [17].

In scientific and technical applications, semi-analytical approaches play a crucial role in re-

solving intricate mathematical issues by providing a compromise between the numerical ver-

satility and analytical accuracy. These approaches are useful, especially when nonlinearity or
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system complexity makes analytical solutions difficult. Semi-analytical techniques offer a pre-

cise and effective method to solve practical issues in a range of domains by merging analytical

expressions with numerical computations. A wide variety of semi-analytical methods, includ-

ing the Differential Transform Method (DTM), Adomian Decomposition Method (ADM), Ak-

bari Ganji’s Method (AGM), Laplace Adomian Decomposition Method (LADM), Taylor Se-

ries Method (TSM), and Variation Iteration Method (VIM), have been used to address complex

mathematical problems [18]–[29]. The Homotopy Analysis Method (HAM) and Homotopy

Perturbation Method (HPM) are highly effective semi-analytical methods for solving nonlinear

equations. These approaches provide accurate responses by combining analytical and numer-

ical techniques, making them useful for solving a wide range of mathematics and engineering

problems, owing to their versatility and efficacy [30]–[34].

This study aimed to provide semi-analytical solutions using HAM and HPM for a type 2 di-

abetes model. To examine the dynamics of the system and its preventive measures in T2D,

parameter variations were performed. This paper is organized as follows: In Section 2, the

mathematical model of type 2 diabetes is explained through an in-depth description of the gov-

erning equations. A numerical analysis (HAM and HPM) of the governing system of nonlinear

differential equations is presented in Section 3. Section 4 presents the results of the numerical

analysis (Figures and Tables) along with a discussion of the findings. Section 5 presents the

conclusions of the study.

2. TYPE 2 DIABETES MODEL

In this study, we consider type 2 diabetes (T2D) model developed by Anika Ferdous [17]. The

entire population of individuals aged 20 to 79, denoted as N(t), is subsequently categorized into

five classes. All adults are assumed to be potentially susceptible S(t) and those in this category

with healthy lifestyles are designated as L(t). Affected adults are classified as A(t), and once

they start treatment, they are called T (t). P(t) is a category for those who have prevented or

recovered from T2D. Thus, the system of ordinary differential equations of the type 2 diabetes

(T2D) model is given as:

dS
dt

= Ω− (η +θ +κ)S
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(1)

dA
dt

= θS− (σ +η +δ1)A+ζ L

dT
dt

= σA− (η +δ2)T

dL
dt

= κS− (ζ +η +φ)L

dP
dt

= φL−ηP

with the initial conditions:

(2) S(0) = q1, A(0) = q2, T (0) = q3 ,L(0) = q4 ,P(0) = q5

where parameter η represents the natural mortality rate and Ω represents the birth rate. Param-

eters θ and ζ symbolize the diabetes rates from the susceptible and healthy lifestyle compart-

ments, respectively. The parameter σ represents the treatment rate, whereas κ denotes the rate

of susceptible adults maintaining a healthy lifestyle. Finally, φ represents the rate at which the

healthy lifestyle population transitions to the prevented class. Adults can die from diabetes-

related complications in classes A (t) and T (t) at the rates δ1 and δ2, respectively. Therefore,

Aδ1 +T δ2 can be used to compute the number of adult deaths from diabetes each year. Fur-

thermore, given that the treated people in class T have a lower mortality rate than the afflicted

persons in class A, it is anticipated that δ2 < δ1.

In the absence of an exact solution, we present semi-analytical solutions to Equation (1) using

HAM and HPM. Both MATLAB and MAPLE were used to conduct a thorough and in-depth

analysis of the model.

FIGURE 1. Flow chart of T2D model
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TABLE 1. Parameters and values

Parameters Values (unit: per year) Source

Ω 0.621 [17]

η 0.0138 [17]

θ 0.142 [17]

φ 0.3 [17]

κ 0.2 [17]

σ 0.565 [17]

ζ 0.05 [17]

δ1 0.04 [17]

δ2 0.002 [17]

TABLE 2. Initial conditions are assumed at t = 0

Initial values Values

S(0) 20

A(0) 10

T (0) 5

L(0) 5

P(0) 5

3. NUMERICAL TECHNIQUES FOR THE T2D MODEL

The Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM) are

related techniques used for solving nonlinear differential equations. HPM and HAM are com-

monly used because they are simple and efficient in dealing with nonlinearities, especially when

there is strong nonlinearity or singular aspects. These techniques generate semi-analytical so-

lutions in the form of convergent series, which helps to understand the solution’s behaviour.

Both methods rely on constructing a homotopy; HAM aims to provide accurate approximations

of the solution using the homotopy curve (h-curve), which serves as a visual depiction of the

solution’s convergence behavior. It attempts to improve the convergence region and rate by in-

corporating the auxiliary parameters. On the other hand, HPM uses a perturbation parameter p

to iteratively improve the solution.
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3.1. Homotopy Analysis Method (HAM). In this subsection, we apply HAM for the T2D

model (1). To apply the HAM, we fix S(0) = S0(t) = q1, A(0) = A0(t) = q2, T (0) = T0(t) = q3,

L(0) = L0(t) = q4, P(0) = P0(t) = q5, as initial approximation of S(t), A(t), T (t), L(t), and

P(t).

Let Ψ ∈ [0,1] presumed as an embedding parameter. The continuous mappings for HAM can

be defined as:

(3)

S(t)→Φ1(t;Ψ)

A(t)→Φ2(t;Ψ)

T (t)→Φ3(t;Ψ)

L(t)→Φ4(t;Ψ)

P(t)→Φ5(t;Ψ)

In a way that rises with embedding parameter Ψ from 0 to 1, Φ(t;Ψ) differs from the initial

iterations to exact findings. We choose linear operator as

(4) Li[Φi(t;Ψ)] =
∂Φi(t;Ψ)

∂ t
, i = 1,2,3,4,5

which satisfies Li[ci], where ci are integral constants. Now, the nonlinear operators are defined

as follows:

(5)

N1[Φi(t;Ψ)] =
∂Φi(t;Ψ)

∂ t
−Ω+(η +θ +κ)Φi(t;Ψ)

N2[Φi(t;Ψ)] =
∂Φi(t;Ψ)

∂ t
−θΦ1(t;Ψ)+(σ +η +δ1)Φi(t;Ψ)−ζ Φ4(t;Ψ)

N3[Φi(t;Ψ)] =
∂Φi(t;Ψ)

∂ t
−σΦ2(t;Ψ)+(η +δ2)Φi(t;Ψ)

N4[Φi(t;Ψ)] =
∂Φi(t;Ψ)

∂ t
−κΦ1(t;Ψ)+(ζ +η +φ)Φi(t;Ψ)

N5[Φi(t;Ψ)] =
∂Φi(t;Ψ)

∂ t
−φΦ4(t;Ψ)+ηΦi(t;Ψ)

Let hi 6= 0 presumed as an auxiliary parameter and Hi(t) 6= 0 presumed as an auxiliary function.

By employing the embedded parameter Φ, we reformulate a system of equations as:
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(6)

(1−Ψ)L[Φ1(t;Ψ)−S0(t)] = Ψh1H1(t)N1[Φ1(t;Ψ)]

(1−Ψ)L[Φ2(t;Ψ)−A0(t)] = Ψh2H2(t)N2[Φ1(t;Ψ)]

(1−Ψ)L[Φ3(t;Ψ)−T0(t)] = Ψh3H3(t)N3[Φ1(t;Ψ)]

(1−Ψ)L[Φ4(t;Ψ)−L0(t)] = Ψh4H4(t)N4[Φ1(t;Ψ)]

(1−Ψ)L[Φ5(t;Ψ)−P0(t)] = Ψh5H5(t)N5[Φ1(t;Ψ)]

initial conditions:

(7) Φ1(0;Ψ) = S0, Φ2(0;Ψ) = A0, Φ3(0;Ψ) = T0, Φ4(0;Ψ) = L0, Φ5(0;Ψ) = P0,

By utilizing the Taylor’s theorem and power series expansion in HAM and the mth order defor-

mation in our model, we obtain:

(8)

L[Sm(t)−Sm−1(t)] = h1H1(t)[
dSm−1

dt
−Ω+(η +θ +κ)Sm−1]

L[Am(t)−Am−1(t)] = h2H2(t)[
dAm−1

dt
−θSm−1 +(σ +η +δ1)Am−1−ζ Lm−1]

L[Tm(t)−Tm−1(t)] = h3H3(t)[
dTm−1

dt
−σAm−1 +(η +δ2)Tm−1]

L[Lm(t)−Lm−1(t)] = h4H4(t)[
dLm−1

dt
−κSm−1 +(ζ +η +φ)Lm−1]

L[Pm(t)−Pm−1(t)] = h5H5(t)[
dPm−1

dt
−φLm−1 +ηPm−1]

By fixing Hi(t) = 1, the generalized mth order deformation in our model for m≥ 1 becomes:

(9)

Sm = χmSm−1 +h
∫ t

0
[
dSm−1

dt
−Ω+(η +θ +κ)Sm−1]dt

Am = χmAm−1 +h
∫ t

0
[
dAm−1

dt
−θSm−1 +(σ +η +δ1)Am−1−ζ Lm−1]dt

Tm = χmTm−1 +h
∫ t

0
[
dTm−1

dt
−σAm−1 +(η +δ2)Tm−1]dt

Lm = χmLm−1 +h
∫ t

0
[
dLm−1

dt
−κSm−1 +(ζ +η +φ)Lm−1]dt

Pm = χmPm−1 +h
∫ t

0
[
dPm−1

dt
−φLm−1 +ηPm−1]dt

It is acceptable to use the h-curve as hi = −1 and by substituting the parameter values in

Table 1, and Initial values in Table 2, we obtain the following approximations.
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Initial approximation:

(10)

S0 = 20

A0 = 10

T0 = 5

L0 = 5

P0 = 5

First approximation:

(11)

S1(t) =
1

∑
m=0

Sm(t) = 20−6.4950t

A1(t) =
1

∑
m=0

Am(t) = 10−3.0980t

T1(t) =
1

∑
m=0

Tm(t) = 5+5.5710t

L1(t) =
1

∑
m=0

Lm(t) = 5+2.1810t

P1(t) =
1

∑
m=0

Pm(t) = 5+1.4310t

Second approximation:

(12)

S2(t) =
2

∑
m=0

Sm(t) = 20−6.4950t +1.155460500t2

A2(t) =
2

∑
m=0

Am(t) = 10−3.0980t +0.5519012000t2

T2(t) =
2

∑
m=0

Tm(t) = 5+5.5710t−0.9191959000t2

L2(t) =
2

∑
m=0

Lm(t) = 5+2.1810t−1.046223900t2

P2(t) =
2

∑
m=0

Pm(t) = 5+1.4310t +0.3172761000t2

Similarly, using the MAPLE program, we calculate the following approximations in infinite

series:
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(13)
S(t) = 20−6.4950t +1.155460500t2−0.1370376153t3 +0.01218949588t4−0.0008674045268t5

+0.00005143708843t6−2.614473723×10−6t7 +1.162787188×10−7t8 + ...

A(t) = 10−3.0980t +0.5519012000t2−0.07658408890t3 +0.009531508019t4−0.001087406140t5

+0.0001110813615t6−9.994153103×10−6t7 +7.912145250×10−7t8 + ...

T (t) = 5+5.5710t−0.9191959000t2 +0.1087824911t3−0.01124719339t4 +0.001112601537t5

−0.0001053272622t6 +9.203591428×10−6t7−7.240141561×10−7t8 + ...

L(t) = 5+2.1810t−1.046223900t2 +0.2039027849t3−0.02539683904t4 +0.002335453844t5

−0.0001705198356t6 +0.00001033179055t7−5.352000185×10−7t8 + ...

P(t) = 5+1.4310t +0.3172761000t2−0.1060818601t3 +0.01565869129t4−0.001567028330t5

+0.0001203768574t6−7.545307329×10−6t7 +4.004578008×10−7t8 + ...

3.2. Homotopy Perturbation Method. In this subsection, we apply Homotopy perturbation

method for the T2D model. First we constract the Homotopy for (1).

(14)

(1− p)
dS
dt

+ p[
dS
dt
−Ω+(η +θ +κ)S = 0]

(1− p)
dA
dt

+ p[
dA
dt
−θS+(σ +η +δ1)A−ζ L = 0]

(1− p)
dT
dt

+ p[
dT
dt
−σA+(η +δ2)T = 0]

(1− p)
dL
dt

+ p[
dL
dt
−κS+(ζ +η +φ)L = 0]

(1− p)
dP
dt

+ p[
dP
dt
−φL+ηP = 0]

Essentially, the solution to Equation (1) is presumed to be a series in powers of p.

S(t) = S0 + pS1 + p2S2 + ...

A(t) = A0 + pA1 + p2A2 + ...

T (t) = T0 + pT1 + p2T2 + ...

L(t) = L0 + pL1 + p2L2 + ...
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P(t) = P0 + pP1 + p2P2 + ...

Examine the equivalent powers of p, we obtain:

(15)

p0 :S
′
0 = 0

p1 :S
′
1−Ω+(η +θ +κ)S0 = 0

p2 :S
′
2 +(η +θ +κ)S1 = 0

(16)

p0 :A
′
0 = 0

p1 :A
′
1−θS0 +(σ +η +δ1)A0−ζ L0 = 0

p2 :A
′
2−θS1 +(σ +η +δ1)A1−ζ L1 = 0

(17)

p0 :T
′

0 = 0

p1 :T
′

1−σA0 +(η +δ2)T0 = 0

p2 :T
′

2−σA1 +(η +δ2)T1 = 0

(18)

p0 :L
′
0 = 0

p1 :L
′
1−κS0 +(ζ +η +φ)L0 = 0

p2 :L
′
2−κS1 +(ζ +η +φ)L1 = 0

(19)

p0 :P
′
0 = 0

p1 :P
′
1−φL0 +ηP0 = 0

p2 :P
′
2−φL1 +ηP1 = 0

Solving (15)-(19) by direct integration method for p0 using Table 1 and Table 2 values, we

obtain:

S0 = 20

A0 = 10



12 JEEVA, DHARMALINGAM, NASIR, ET AL.

(20)

T0 = 5

L0 = 5

P0 = 5

Substituting (20) into (15)-(19) and solve by direct integration method for p1, we obtain:

(21)

S1 = 6.4950t

A1 = 3.0980t

T1 = 5.5710t

L1 = 2.1810t

P1 = 1.4310t

Substituting (21) into (15)-(19) and solve by direct integration method for p2, we obtain:

(22)

S2 = 1.155460500t2

A2 = 0.5519012000t2

T2 =−0.9191959000t2

L2 =−1.046223900t2

P2 = 0.3172761000t2

Similarly, we make use of the MAPLE software to compute the approximations in infinite

series:

S(t) = 20−6.4950t +1.155460500t2−0.1370376153t3 +0.01218949588t4−0.0008674045268t5

+0.00005143708843t6−2.614473723×10−6t7 +1.162787188×10−7t8 + ...

A(t) = 10−3.0980t +0.5519012000t2−0.07658408890t3 +0.009531508019t4−0.001087406140t5

+0.0001110813615t6−9.994153103×10−6t7 +7.912145250×10−7t8 + ...

T (t) = 5+5.5710t−0.9191959000t2 +0.1087824911t3−0.01124719339t4 +0.001112601537t5

−0.0001053272622t6 +9.203591428×10−6t7−7.240141561×10−7t8 + ...



NUMERICAL TECHNIQUES FOR ANALYZING TYPE 2 DIABETES MODEL 13

(23)
L(t) = 5+2.1810t−1.046223900t2 +0.2039027849t3−0.02539683904t4 +0.002335453844t5

−0.0001705198356t6 +0.00001033179055t7−5.352000185×10−7t8 + ...

P(t) = 5+1.4310t +0.3172761000t2−0.1060818601t3 +0.01565869129t4−0.001567028330t5

+0.0001203768574t6−7.545307329×10−6t7 +4.004578008×10−7t8 + ...

4. DISCUSSION OF RESULTS

The concentration profiles S, A, T , L, and P in T2D were determined by solving the system of

equations using HAM and HPM. The analytical solutions for T2D are represented by Equations

(13) and (23). Notably, when setting h =−1 in HAM, it is evident that both the HAM and HPM

solutions are same. Utilizing the Runge-Kutta method, a numerical implementation of a system

of equations (1) is developed. The numerical simulations were performed using MATLAB. In

this analysis, we assume the initial populations of 20 individuals in the Susceptible class, 10

individuals in the Affected class, 5 individuals in the Treated class, 5 individuals in the Healthy

Lifestyle class, and 5 individuals in the Prevented class, thereby establishing the system’s initial

conditions as S(0) = 20, A(0) = 10, T (0) = 5, L(0) = 5, P(0) = 5, as outlined in Table 2. The

parameter values listed in Table 1 were used in the analysis. Figures 2.a-2.e depicts graphical

representations illustrating the efficiency of the HPM and HAM solutions for the concentrations

S, A, T , L, and P, along with the corresponding numerical results considering the parameter

values in Table 1. Tables 3, 4, 5, 6, and 7 show the accuracy of our analytical expressions for

concentrations S, A, T , L, and R. The comparison reveals that the overall error between the

HAM and HPM with the numerical simulation remains below 0.1% and 0.1%, respectively.

From the figures and tables, it is clear that both methods consistently offer a more accurate

approximation even within a limited time interval.
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4.1. Behaviour of the parameters in T2D. As the parameters Ω and η increased, Figures

3.a-3. b indicates a corresponding increase in the susceptible class. Conversely, an increase in

parameters θ and κ is associated with a decrease in the susceptible class, as shown in Figures

3.c-3.d. Figure 13 shows the surface plots of S(t) with respect to (a) Ω and time, (b) η and

time, (c) θ and time, and (d) κ and time. Similarly, Figures 4.a-4.b shows that an increase in

parameters θ and ζ leads to an increase in the affected class. On the other hand, an increase

in the parameters σ , η , and δ1 results in a decrease in the affected class, as depicted in Figures

4.c-4.e. Figure 14 presents surface plots for A(t) with respect to (a) θ and time, (b) ζ and time,

(c) σ and time, (d) η and time, and (e) δ1 and time. Furthermore, an increase in the parameters

σ and η corresponds to an increase in the treated class, as shown in Figures 5.a-5.b, while an

increase in the parameter δ2 leads to a decrease in the treated class, as observed in Figure 5.c.

Figure 15 shows the surface plots of T (t) with respect to (a) σ and time, (b) η and time, and (c)

δ2 and time. Additionally, an increase in the parameter κ is associated with an increase in the

healthy lifestyle class, as indicated in Figure 6.a. However, an increase in the parameters ζ , η ,

and φ leads to a decrease in the healthy lifestyle class, as shown in Figures 6.b-6.d. Figure 16

illustrates surface plots for L(t) with respect to (a) κ and time, (b) ζ and time, (c) η and time,

and (d) φ and time. Finally, an increase in parameter φ results in an increase in the prevented

class, as shown in Figure 7.a, whereas an increase in the parameter η corresponds to a decrease

in the prevented class, as depicted in Figure 7.b. Figure 17 presents surface plots for P(t) with

respect to (a) φ and time, and (b) η and time.

4.2. h-curve. The convergence and accuracy of the resulting series are controlled by the aux-

iliary parameter h. Multiple h-curves are displayed to designate a region such that the resulting

series is independent of h. The complete convergence region was defined as the common re-

gion between and its derivatives. To observe how h influences the convergence of the solution,

h-curves are produced for each concentration S, A, T , L, and P. Figure 8 shows the h-curve of

3rd and 4th order approximate solutions of S(t) and S′(t) at t = 0.3, where the horizontal line

denotes the convergence region. Similarly, Figure 9 shows the corresponding h-curve of A(t)

at t = 0.6. Figure 10 shows the corresponding h-curve of T (t) at t = 0.6. Figure 11 shows the

corresponding h-curve of L(t) at t = 0.2, and Figure 12 shows the corresponding h-curve of P(t)
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at t = 0.65. For the corresponding function, the convergence region is the horizontal line that

represents the region where the concentrations S, A, T , L, and P versus h are found and clearly

shows that the range of h that is valid is approximately (−1.1 to −0.7) in our T2D model, as

shown in Table 8.

5. CONCLUSION

This study examined an ordinary differential equation describing an epidemiological model

of type 2 diabetes. We used both the Homotopy Analysis Method (HAM) and Homotopy Per-

turbation Method (HPM) to obtain semi-analytical solutions for the type 2 diabetes SATLP

model. Epidemiological problems are frequently solved using both the approaches. When ho-

motopy h is set to −1, both HAM and HPM yield identical outcomes. This is due to the fact

that at h = −1, the original equation in the homotopy formulation equals the target linear and

nonlinear equation, leading to convergence. A comparison was made between the analytical

and numerical simulation findings, and good agreement was obtained. Using the h-curves, the

convergence region in the HAM was established. To determine the behavior of the model, pa-

rameter values were computed using both semi-analytical methods and numerical simulations.

Furthermore, we observed that the increase in diabetes rate from susceptibility over time led to

an increase in the affected population and an increase in the treatment rate over time, leading

to a decrease in the affected population and an increase in the recovered population. A healthy

lifestyle can help delay or avoid the development of T2D, slow disease progression, and reduce

the effects of the disease by using appropriate control strategies and therapies.
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(a) S(t) (b) A(t)

(c) T (t) (d) L(t)

(e) P(t)

FIGURE 2. Graphical representation of analytical expressions obtained by HPM

and HAM with numerical simulation for the parameter values provided in Table

1 and initial values in Table 2.
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(a) Ω changes (b) η changes

(c) θ changes (d) κ changes

FIGURE 3. Behavior of parameters in S(t) when (a) Ω = 0.3,0.6,0.9,1.2,1.5,

(b) η = 0.01,0.03,0.05,0.07,0.09, (c) θ = 0.09,0.14,0.22,0.35,0.50, (d) κ =

0.1,0.2,0.4,0.6,0.9.
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(a) δ2 changes (b) σ changes

(c) η changes

FIGURE 5. Behavior of parameters in T (t) when

(a) δ2 = 0.01,0.03,0.05,0.07,0.09, (b) σ = 0.2,0.3,0.5,0.7,0.8,

(c) η = 0.01,0.03,0.05,0.07,0.09.
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(a) η changes (b) κ changes

(c) φ changes (d) ζ changes

FIGURE 6. Behavior of parameters in L(t) when

(a) η = 0.01,0.03,0.05,0.07,0.09, (b) κ = 0.1,0.2,0.4,0.6,0.9,

(c) φ = 0.1,0.3,0.5,0.7,0.9, (d) ζ = 0.01,0.03,0.05,0.07,0.09.
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(a) η changes (b) φ changes

FIGURE 7. Behavior of parameters in P(t) when

(a) η = 0.01,0.03,0.05,0.07,0.09, (b) φ = 0.1,0.3,0.5,0.7,0.9.

(a) 3rd approximation S(0.3) (b) 3rd approximation S
′
(0.3)

(c) 4th approximation S(0.3) (d) 4th approximation S
′
(0.3)

FIGURE 8. h-curves in S(t).
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(a) 3rd approximation A(0.6) (b) 3rd approximation A
′
(0.6)

(c) 4th approximation A(0.6) (d) 4th approximation A
′
(0.6)

FIGURE 9. h-curves in A(t).
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(a) 3rd approximation T (0.6) (b) 3rd approximation T
′
(0.6)

(c) 4th approximation T (0.6) (d) 4th approximation T
′
(0.6)

FIGURE 10. h-curves in T (t).
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(a) 3rd approximation L(0.35) (b) 3rd approximation L
′
(0.35)

(c) 4th approximation L(0.35) (d) 4th approximation L
′
(0.35)

FIGURE 11. h-curves in L(t).
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(a) 3rd approximation P(0.65) (b) 3rd approximation P
′
(0.65)

(c) 4th approximation P(0.65) (d) 4th approximation P
′
(0.65)

FIGURE 12. h-curves in P(t).
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(a) Ω (b) η

(c) θ (d) κ

FIGURE 13. Susceptible T2D model using different values of the parameters Ω,

η , θ , and κ .
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(a) δ1 (b) η

(c) σ (d) θ

(e) ζ

FIGURE 14. Affected T2D model using different values of the parameters δ1,

η , σ , θ , and ζ .
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(a) δ2 (b) σ

(c) η

FIGURE 15. Treated T2D model using different values of the parameters δ2, η ,

and σ .
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(a) η (b) κ

(c) φ (d) ζ

FIGURE 16. Healthy Lifestyle T2D model using different values of the param-

eters κ , η , φ , and ζ .
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(a) η (b) φ

FIGURE 17. Prevented T2D model using different values of the parameters η

and φ .

TABLE 3. Comparison of HAM and HPM with numerical results for the con-

centration profile S

Susceptible class S(t)

t Num. HAM HPM
HAM

Error%

HPM

Error%

0 20.0000 20.0000 20.0000 0.0000 0.0000

0.1 19.3619 19.3619 19.3619 0.0000 0.0000

0.2 18.7461 18.7461 18.7461 0.0000 0.0000

0.3 18.1519 18.1519 18.1519 0.0000 0.0000

0.4 17.5784 17.5784 17.5784 0.0000 0.0000

0.5 17.0250 17.0250 17.0250 0.0000 0.0000

0.6 16.4909 16.4909 16.4909 0.0000 0.0000

0.7 15.9755 15.9756 15.9756 0.0006 0.0006

0.8 15.4781 15.4783 15.4783 0.0013 0.0013

0.9 14.9980 14.9985 14.9985 0.0033 0.0033

1 14.5348 14.5356 14.5356 0.0055 0.0055

Average error % 0.0009 0.0009
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(a) δ1 changes (b) η changes

(c) σ changes (d) θ changes

(e) ζ changes

FIGURE 4. Behavior of parameters in A(t) when

(a) δ1 = 0.02,0.04,0.06,0.08,0.1, (b) η = 0.01,0.03,0.05,0.07,0.09,

(c) σ = 0.2,0.3,0.5,0.7,0.8, (d) θ = 0.09,0.14,0.22,0.35,0.50,

(e) ζ = 0.01,0.03,0.05,0.07,0.09.



NUMERICAL TECHNIQUES FOR ANALYZING TYPE 2 DIABETES MODEL 31

TABLE 4. Comparison of HAM and HPM with numerical results for the con-

centration profile A

Affected class A(t)

t Num. HAM HPM
HAM

Error%

HPM

Error%

0 10.0000 10.0000 10.0000 0.0000 0.0000

0.1 9.6985 9.6956 9.6956 0.0299 0.0299

0.2 9.4056 9.4019 9.4019 0.0393 0.0393

0.3 9.1227 9.1183 9.1183 0.0482 0.0482

0.4 8.8492 8.8444 8.8444 0.0542 0.0542

0.5 8.5849 8.5800 8.5800 0.0571 0.0571

0.6 8.3294 8.3246 8.3246 0.0576 0.0576

0.7 8.0821 8.0779 8.0779 0.0520 0.0520

0.8 7.8427 7.8395 7.8395 0.0408 0.0408

0.9 7.6108 7.6093 7.6093 0.0197 0.0197

1 7.3858 7.3868 7.3868 0.0135 0.0135

Average error % 0.0374 0.0374

TABLE 5. Comparison of HAM and HPM with numerical results for the con-

centration profile T

Treated class T(t)

t Num. HAM HPM
HAM

Error%

HPM

Error%

0 5.0000 5.0000 5.0000 0.0000 0.0000

0.1 5.5480 5.5480 5.5480 0.0000 0.0000

0.2 6.0783 6.0783 6.0783 0.0000 0.0000

0.3 6.5914 6.5914 6.5914 0.0000 0.0000

0.4 7.0880 7.0880 7.0880 0.0000 0.0000

0.5 7.5687 7.5686 7.5686 0.0013 0.0013

0.6 8.0339 8.0337 8.0337 0.0025 0.0025

0.7 8.4841 8.4839 8.4839 0.0024 0.0024

0.8 8.9200 8.9196 8.9196 0.0045 0.0045

0.9 9.3420 9.3413 9.3413 0.0075 0.0075

1 9.7504 9.7493 9.7493 0.0113 0.0113

Average error % 0.0026 0.0026
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TABLE 6. Comparison of HAM and HPM with numerical results for the con-

centration profile L

Healthy Lifestyle class L(t)

t Num. HAM HPM
HAM

Error%

HPM

Error%

0 5.0000 5.0000 5.0000 0.0000 0.0000

0.1 5.2078 5.2078 5.2078 0.0000 0.0000

0.2 5.3960 5.3959 5.3959 0.0019 0.0019

0.3 5.5655 5.5654 5.5654 0.0018 0.0018

0.4 5.7175 5.7174 5.7174 0.0017 0.0017

0.5 5.8529 5.8528 5.8528 0.0017 0.0017

0.6 5.9729 5.9727 5.9727 0.0033 0.0033

0.7 6.0782 6.0779 6.0779 0.0049 0.0049

0.8 6.1699 6.1692 6.1692 0.0113 0.0113

0.9 6.2486 6.2474 6.2474 0.0192 0.0192

1 6.3153 6.3133 6.3133 0.0317 0.0317

Average error % 0.0071 0.0071

TABLE 7. Comparison of HAM and HPM with numerical results for the con-

centration profile P

Prevented class P(t)

t Num. HAM HPM
HAM

Error%

HPM

Error%

0 5.0000 5.0000 5.0000 0.0000 0.0000

0.1 5.1462 5.1462 5.1462 0.0000 0.0000

0.2 5.2980 5.2981 5.2981 0.0019 0.0019

0.3 5.4551 5.4551 5.4551 0.0000 0.0000

0.4 5.6167 5.6168 5.6168 0.0018 0.0018

0.5 5.7824 5.7825 5.7825 0.0017 0.0017

0.6 5.9517 5.9519 5.9519 0.0034 0.0034

0.7 6.1242 6.1245 6.1245 0.0049 0.0049

0.8 6.2993 6.3000 6.3000 0.0111 0.0111

0.9 6.4768 6.4778 6.4778 0.0154 0.0154

1 6.6562 6.6579 6.6579 0.0255 0.0255

Average error % 0.0059 0.0059
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TABLE 8. The accepted range of h obtained from Figures 8 to 12

Variables h-curve range

S(t) −1.2≤ h≤−0.7

A(t) −1.1≤ h≤−0.6

T (t) −1.2≤ h≤−0.6

L(t) −1.1≤ h≤−0.6

P(t) −1.3≤ h≤−0.7
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