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Abstract: The mathematical model of computer virus infection with new saturated incidence, vaccination and 

nonlinear treatments is a new issue addressed in this study. This paper deals with comprehending how the two 

treatments, vaccination in susceptible classes (antivirus installation) and treatment in infected classes (reinstall 

operation system), affect the spread of the virus on the network. The investigation of the basic reproduction number 

and the best treatment control showed that combined treatments produced the best performance. Some numerical 

examples support the suggested results. 
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1. INTRODUCTION 

Mathematical modelling in epidemiology has been developed into a potent and vital tool to 

understand infectious computer network virus dynamics better and improve population infection 
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management. The concept for developing these models comes from the similarity between 

biological viruses and computer viruses. A mathematical model that can predict any potential virus 

outbreak and successfully slow its spread constitutes a good model.  

The epidemic model that is often used to study computer virus spread is the SIR model (see [3, 21, 

25, 18]). Computers on the internet are divided into three categories: 𝑆 or susceptible computers 

(those vulnerable to virus infection), 𝐼 or infected computers, and 𝑅 or recovered computers. 

Susceptible computers had a likelihood of getting tainted by infected computers. Users of 

contaminated computers became mindful of the infection and had a likelihood of changing their 

computers back into vulnerable ones by introducing an antivirus program or reinstalling the 

operating system. After receiving treatment, an infected computer becomes a recovered computer. 

Further research by adding delay time to the model. This delay may reflect the time it takes for a 

virus to spread from one device to another or the time it takes to detect and respond to an infection 

see [1, 13, 9, 22, 24, 21, 12, 14]. Another model is the stochastic model see [19, 3]. These studies 

understand the unpredictable nature of virus propagation through networks. 

In the field of applied science, there have recently been numerous infectious disease models with 

pulse vaccination see [17] and [20]. The epidemic model introduces the concept of vaccination. 

Individuals who are vaccinated have immunity so they are not infected see [17] and [20]. In the 

model for spreading computer. viruses, the concept of vaccination has also been introduced with 

the addition of anti-virus which will change a susceptible computer into a recovered computer. 

The concept of impulsive vaccination is being employed to prevent the spread of viruses see [19, 

3].  

The incidence rate is also important factor to consider while analyzing the spread of infection. 

Depending on how the disease spreads on epidemic model the bi-linear incidence rate see [10] is 

the simplest. To include the behavioral change and crowding effect of infected individuals, the 

saturated incidence rate see [2] introduced 

(1) 𝛽𝐼(𝑡)

1 + 𝛼𝐼(𝑡)
, 

where 𝛽  is transmission rate and 𝛼  is the inhibitory coefficient. This incidence rate is an 
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increasing function of 𝑆 as well as 𝐼 , and by this incidence rate, the total growth of the infected 

population is less than the standard incidence. This type of infection shows that epidemic (taking 

appropriate preventive measures and awareness) and the rate of infection decreases as the 

inhibitory coefficient α increases. 

The development of computers nowadays is increasingly sophisticated, including in protecting 

against viruses, then this research uses infection rates with non-linear saturation modification Eq. 

(1). We apply two concepts of saturation in infection and treatment patterns. The spread of 

computer viruses is due to an inhibitory coefficient which indicates that the computer has a built-

in anti-virus. To describe the saturation phenomenon of the limited medical resources [17] recently 

presented a continuously differentiable treatment function (1). In addition, in the treatment of 

infected computers considering the limited resources the treatment of infected computers cannot 

be handled at all, this model uses the concept of non-linear saturation Eq. (1). 

Moreover, we are conscious that controlling computer viruses through vaccination by anti virus 

installation and treatment by reinstalling the operating system is essential. In this research, we 

attempt to demonstrate how impulsive vaccination, non-linear treatments, and the new saturation 

effect restrict virus propagation over networks in light of the discussion above. Organization of the 

paper is as follows. We formulated the new model in section mathematical model. Furthermore, 

we discussed the boundedness of the solutions, the equilibria and basic reproduction number in the 

Boundedness of Solutions, Equilibria and the Basic Reproduction Number section. Moreover, the 

optimal control section describes the characterization of optimal control. In addition, the numerical 

simulations are given in the numerical simulations section, and the final section provides the 

conclusions and future research. 

 

2. RESULTS AND DISCUSSION 

2.1. Mathematical Model. We govern a mathematical model with a non-linear saturation effect 

and impart treatments. Let 𝑆(𝑡), 𝐼(𝑡)  and 𝑅(𝑡)  are the number of susceptible, infected, 

recovered computers at time 𝑡 , respectively. For our objectives, the following assumptions are 
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proposed. 

1. Every computer is susceptible whenever it is accessed to the internet. And susceptible 

computers access the internet with constant rate 𝐴 >  0.  

2. Every computer leaves the network with constant rate 𝜃 >  0 is the level of nodes whose 

lifetime has expired.  

3. Every susceptible computer is infected, where 𝛽 >  0  and 𝛼 >  0  are constants. We 

modify saturation rate Eq. (1). The rate of the infected nodes is 

 𝛽𝐼(𝑡)

(1 + 𝛼𝐼(𝑡))2
, 

𝛽 is transmission rate from susceptible to infected and 𝛼 is the inhibitory coefficient of 

infection. This means that the measure of the resilience of infected nodes comes from the 

influence of the behavior of susceptible nodes when the number of infected nodes 

increases. In addition, if there are enough infected nodes, the population will experience 

a decrease in the number of contacts per unit time. If many computers are infected, 

susceptible computers will have less contact with infected computers because computers 

are getting smarter nowadays. 

4. 𝛾 is the rate at which nodes move from infected to recovered class because they have 

received treatment from the user (for example scanning with an antivirus). 𝛿 is the rate of 

nodes that leave the infected class because the nodes are infected, have been treated by the 

user but still cannot return to the computer network.  

5. Furthermore, we give 𝑢1 is vaccination means giving anti virus extra to the susceptible 

computers. While 𝑢2 is the treatment to the infected computers. 𝑟 is rate of treatments 

and 𝑏 is limitation rate of treatment resources. We modify saturation rate of Eq.(1) for 

limitation resources, then 𝑢2 cure rate is 

 𝑟𝑢2(𝑡)𝐼(𝑡)

(1 + 𝑏𝑢2(𝑡)𝐼((𝑡))2
, 

As a result, we purpose a new mathematical model as follows 
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(2) 

{
 
 
 

 
 
 
d𝑆(𝑡)

d𝑡
= 𝐴 −

𝛽𝑆(𝑡)𝐼(𝑡)

(1 + 𝛼𝐼(𝑡))
2 − 𝜃𝑆(𝑡) − 𝑢1(𝑡)𝑆(𝑡)                           

dI(𝑡)

d𝑡
=

𝛽𝑆(𝑡)𝐼(𝑡)

(1 + 𝛼𝐼(𝑡))
2 − (𝜃 + 𝛿 + 𝛾)𝐼(𝑡) −

𝑟𝑢2(𝑡)𝐼(𝑡)

(1 + 𝑏𝑢2(𝑡)𝐼((𝑡))2

dR(𝑡)

d𝑡
=

𝑟𝑢2(𝑡)𝐼(𝑡)

(1 + 𝑏𝑢2(𝑡)𝐼((𝑡))2
+ 𝛾𝐼(𝑡) + 𝑢1(𝑡)𝑆(𝑡) − 𝜃𝑅(𝑡)          

 

where 0 ≤ 𝑢1(𝑡), 𝑢2(𝑡) ≤ 1.  Furthermore, this model is a development of a [11]. Further, we 

assign the upper bound of system (1). 

2.2. Boundedness of Solutions, the Equilibria and the Basic Reproduction Number. We 

indicate that the population is finite overall by denoting a limiting solution for the entire population. 

The bounded solutions, virus-free equilibrium points and their stability, and fundamental 

reproduction numbers are all described in the inner section. We denote the limit solution for the 

entire population and then imply population as a whole is finite. Now, 𝑁(𝑡)  is the total 

populations, where 𝑁(𝑡)  =  𝑆(𝑡)  +  𝐼(𝑡)  +  𝑅(𝑡) , as follows 

 d𝑁(𝑡)

d𝑡
=
d𝑆(𝑡)

d𝑡
+
dI(𝑡)

d𝑡
+
dR(𝑡)

d𝑡
, 

      = 𝐴 − 𝜃(𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡)) − 𝛿𝐼(𝑡) = 𝐴 − 𝜃𝑁(𝑡) − 𝛿𝐼(𝑡) ≤ 𝐴 − 𝜃𝑁(𝑡) 

For 𝑡 → +∞, we have 

lim
𝑡→+∞

𝑁(𝑡) ≤
𝐴

𝜃
, 

Moreover, we will determine the virus-free equilibrium point for system (2), while the endemic 

virus equilibrium point will be determined numerically in the next section. The virus-free 

equilibrium point will be obtained for  𝐼 ̅ = 0, then first equation of system (2) as follows. 

𝐴 − 𝜃𝑆̅ − 𝑢1𝑆̅ = 0 → 𝑆̅ =
𝐴

𝜃 + 𝑢1
 .  

While the third equation of the system (2) becomes 

𝑢1𝑆̅ − 𝜃�̅� = 0 → �̅� =
𝑢1𝑆̅

𝜃
.  

So, we get 

�̅� =
𝑢1𝑆̅

𝜃
=
𝑢1 (

𝐴
𝜃 + 𝑢1

)

𝜃
=

𝐴𝑢1
𝜃(𝜃 + 𝑢1)

. 
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The virus-free equilibrium point is (𝑆̅, 𝐼,̅ �̅�) = (
𝐴

𝑑+𝑢1
, 0,

𝐴𝑢1

𝜃(𝑑+𝑢1)
).  

Moreover, we analyze the stability of the linearized system around free equilibrium point through 

the Jacobian matrix as follows. 

𝑃 = (

𝛽𝑆 − 𝜃 − 𝑢1 −𝛽𝑆 0

𝛽𝑆 𝛽𝑆 − (𝜃 + 𝛿 + 𝛾) − 𝑟𝑢2 0
𝑢1 𝑟𝑢2 + 𝛾 −𝜃

). 
 

Local stability around the free equilibrium point is determined by examining the real part of eigen 

values matrix 𝑃 as follows. 

 
|

𝛽𝑆 − 𝜃 − 𝑢1 − 𝜆 −𝛽𝑆 0

𝛽𝑆 𝛽𝑆 − (𝜃 + 𝛿 + 𝛾) − 𝑟𝑢2 − 𝜆 0
𝑢1 𝑟𝑢2 + 𝛾 −𝜃 − 𝜆

| = 0 

(−𝜃 − 𝜆) |
𝛽𝑆 − 𝜃 − 𝑢1 − 𝜆 −𝛽𝑆

𝛽𝑆 𝛽𝑆 − (𝜃 + 𝛿 + 𝛾) − 𝑟𝑢2 − 𝜆
| = 0  

(−𝜃 − 𝜆)((𝛽𝑆 − 𝜃 − 𝑢1 − 𝜆)(𝛽𝑆 − (𝜃 + 𝛿 + 𝛾) − 𝑟𝑢2 − 𝜆) + (𝛽𝑆)
2) = 0  

(3) (−𝜃 − 𝜆)(𝜆2 + 𝑎1𝜆 + 𝑎2) = 0, 

where 

𝑎1 = 𝑟𝑢2 + 𝜃 + 𝛿 + 𝛾 + 𝛽𝑆 + 𝑢1 + 𝜃 − 1  

𝑎2 = 2(𝛽𝑆)2 − 𝛽𝑆(𝛿 + 𝜃 + 𝛾) − 𝛽𝑆𝑟𝑢2 − 𝛽𝑆 − 𝛽𝑆𝜃 − 𝜃(𝛿 + 𝜃 + 𝛾)

+ 𝜃𝑟𝑢2 − 𝑢1𝛽𝑆 + 𝑢1(𝛿 + 𝜃 + 𝛾) + 𝑟𝑢1𝑢2,  

 

Following equation (3), System (2) is asymptotic stable for  

𝜆1 = −𝜃 < 0. 

By Routh Hurwitz table as follows 

𝑎0 = 1 𝑎2 

𝑎1  

System (2) will be asymptotic stable when the first column has the same sign. Because the value 

of 𝑎0 = 1 > 0 (positive), so 𝑎1 must be positive. In other words, we say 

𝑟𝑢2 + 𝜃 + 𝛿 + 𝛾 + 𝛽𝑆 + 𝑢1 + 𝜃 > 1. 

Furthermore, we determine the basic reproduction number of system (2), which is a level of the 

secondary virus infection rate. 𝑅0 is the largest eigenvalue of the next-generation matrix, where 

𝑅0 = 𝐹𝑉
−1 is a representation matrix that adds infected classes, while 𝑉 is a matrix that reduces 
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infected classes.  

𝑅0 = 𝐹𝑉−1 =
𝛽𝐴

(𝜃 + 𝑢1)(𝜃 + 𝛿 + 𝛾 + 𝑟𝑢2)
. 

When 𝑅0  <  1  indicates that the computer network will be free of viruses. However, when 

𝑅0  >  1, the computer network will be endemic. For a geometric interpretation regarding the 

spread of viruses on computer networks by considering the value of 𝑅0 is shown in Figure 1. 

This means that there are infected nodes, then these two nodes transmit to other nodes, and so on. 

 

 

 

 

 

 

 

 

Figure 1. Basic Reproduction Number 

2.3. Control Optimal Analyze. In this model, we have considered two controls, one control 

variable is used for vaccinating the susceptible populations (𝑢1 is extra anti virus installations) 

and other control variable is used for treatment efforts for infected individuals (𝑢2 is reinstalling 

operating system). We assume that both vaccination and treatment controls are the continuous 

functions of time t as they are applied according to the necessity. Our main objective is to minimize 

the total loss occurs due to the presence of infection and the cost due to vaccination of susceptible 

individuals and treatment of infected individuals. Thus, the strategy of the optimal control is to 

minimize the susceptible and infected individuals as well as the cost of implementing the two 

controls. Thus, we construct the objective functional to be minimized as follows: 

𝐽(𝑢1. 𝑢2) = ∫(𝐵1𝑆 + 𝐵2𝐼 +
𝐵3
2
𝑢1
2 +

𝐵4
2
𝑢2
2)

𝑇

0

𝑑𝑡, 

 where 0 ≤ 𝑢1, 𝑢2 ≤ 1, 𝑢1, 𝑢2 are Lebesgue Integrable with  

𝑈 = {(𝑢1(𝑡), 𝑢2(𝑡)|0 ≤ 𝑢1, 𝑢2 ≤ 1, 𝑡 ∈ [0, 𝑇])}. 

. 

. 

. 

. 

. 

. 

 

. 

. 

. 

. 

. 

. 

 

Population 

Infected Nodes 

Suspected Nodes 

. 

. 

. 

. 

. 

. 

 

. 

. 

 

. 

. 

. 
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The problem is to find optimal functions (𝑢1
∗, 𝑢2

∗), such that 

𝐽 = min{𝐽(𝑢1, 𝑢2) with (𝑢1, 𝑢2) ∈ 𝑈} .  

where the constants 𝐵1 and 𝐵2 are respectively the per capita loss due to presence of susceptible 

and infected population at any time instant. Also, the constants 𝐵3 and 𝐵4, respectively, represent 

the costs associated with vaccination (costs to anti virus extra installation) and treatment of infected 

individuals. The Lagrangian of the problem is given by 

𝐿 = 𝐵1𝑆 + 𝐵2𝐼 +
𝐵3
2
𝑢1
2 +

𝐵4
2
𝑢2
2. 

Furthermore, we govern the Hamiltonian 𝐻 as follows 

𝐻(𝑆, 𝐼, 𝑅, 𝑢1, 𝑢2, 𝜆𝑆, 𝜆𝐼 , 𝜆𝑅) = 𝐵1𝑆 + 𝐵2𝐼 +
𝐵3
2
𝑢1
2 +

𝐵4
2
𝑢2
2  

   +𝜆𝑆 (𝐴 −
𝛽𝑆(𝑡)𝐼(𝑡)

(1 + 𝛼𝐼(𝑡))
2 − 𝜃𝑆(𝑡) − 𝑢1(𝑡)𝑆(𝑡))  

                            +𝜆𝐼 (
𝛽𝑆(𝑡)𝐼(𝑡)

(1 + 𝛼𝐼(𝑡))
2 − (𝜃 + 𝛿 + 𝛾)𝐼(𝑡) −

𝑟𝑢2(𝑡)𝐼(𝑡)

(1 + 𝑏𝑢2(𝑡)𝐼(𝑡))
2)  

                     +𝜆𝑅 (
𝑟𝑢2(𝑡)𝐼(𝑡)

(1 + 𝑏𝑢2(𝑡)𝐼(𝑡))
2 + 𝛾𝐼(𝑡) + 𝑢1(𝑡)𝑆(𝑡) − 𝜃𝑅(𝑡)) . 

 

In order to determine the adjoint equations and transversally conditions, we use Pontryagins 

Maximum Principle refer to [17] and [20] which gives 

d𝜆𝑆(𝑡)

d𝑡
= −

𝜕𝐻

𝜕𝑆
,   
d𝜆𝐼(𝑡)

d𝑡
= −

𝜕𝐻

𝜕𝐼
,   
d𝜆𝑅(𝑡)

d𝑡
= −

𝜕𝐻

𝜕𝑅
 .  

We have as follows 

{
 
 
 
 
 

 
 
 
 
 

 

d𝜆𝑆
d𝑡

= −𝐵1 − 𝜆𝑆 (
𝛽𝐼

(1 + 𝛼𝐼)2
+ 𝛿 + 𝑢1) − 𝜆𝐼 (

𝛽𝐼

(1 + 𝛼𝐼)2
) − 𝜆𝑅𝑢1

d𝜆𝐼
d𝑡

= −𝐵2 − 𝜆𝑆 (
𝛽𝑆(1 − (𝛼𝐼)2)

(1 + 𝛼𝐼)4
)                                                         

+𝜆𝐼 ((𝜃 + 𝛿 + 𝛾) +
𝑟𝑢2(1 − (𝑏𝑢2𝐼)

2)

(1 + 𝑏𝑢2𝐼)4
−
𝛽𝑆(1 − (𝛼𝐼)2)

(1 + 𝛼𝐼)4
)

−𝜆𝑅 (
𝑟𝑢2(1 − (𝑏𝑢2𝐼)

2)

(1 + 𝑏𝑢2𝐼)4
+ 𝛾)                                                     

d𝜆𝑅
d𝑡

= 𝜃𝜆𝑅                                                                                                  

, 
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with the transversally conditions 

𝜆𝑆(𝑇) = 𝜆𝐼(𝑇) = 𝜆𝑅(𝑇) = 0. 

Now, using the optimality conditions 

𝜕𝐻

𝜕𝑢1
=
𝜕𝐻

𝜕𝑢2
= 0.  

So, we get 

                           
𝜕𝐻

𝜕𝑢1
= 0 

 

 

𝐵3𝑢1̅̅ ̅ − 𝑆𝜆𝑆 + 𝑆𝜆𝑅 = 0 

                                                𝑢1̅̅ ̅ =
𝑆(𝜆𝑆 + 𝜆𝑅)

𝐵3
, 

 

 

Furthermore, the optimum of  𝑢1 as follows 

𝑢1
∗ = max {0,min {

𝑆(𝜆𝑆 + 𝜆𝑅)

𝐵3
, 1}}. 

 

While  

 𝜕𝐻

𝜕𝑢2
= 0 

 𝐵4𝑢2 +
𝑟𝐼𝜆𝐼(𝑏𝑢2𝐼 − 1)

(1 + 𝑏𝑢2𝐼)3
+
𝑟𝐼𝜆𝑅(1 − 3𝑏𝑢2𝐼)

(1 + 𝑏𝑢2𝐼)3
= 0 

(5) 𝑐1𝑢2
4 + 𝑐2𝑢2

3 + 𝑐3𝑢2
2 + 𝑐4𝑢2 + 𝑐5 = 0, 

With 

𝑐1 = 𝑏3𝐵4𝐼
3 𝑐2 = 3𝐵4𝑏

2𝐼2 𝑐3 = 3𝑏𝐵4𝐼 

𝑐4 = 𝐵4 + 𝑟𝑏𝐼
2𝜆𝐼 − 3𝑟𝑏𝐼

2𝜆𝑅 𝑐5 = 𝑟𝐼(𝜆𝑅 − 𝜆𝐼),  

Moreover, by using [16], we determine 𝑢2. Equation (5) divide by 𝑐1, we have 

(6) 𝑢2
4 + 𝑓1𝑢2

3 + 𝑓2𝑢2
2 + 𝑓3𝑢2 + 𝑓4 = 0. 

where 𝑓1 =
𝑐2

𝑐1
, 𝑓2 = 

𝑐3

𝑐1
, 𝑓3 =

𝑐4

𝑐1
, 𝑓4 =

𝑐5

𝑐1
. For 𝑢2 = 𝑣2 −

𝑓1

4
, we have 

(7) 𝑣2
4 + 𝑔1𝑣2

2 + 𝑔2𝑣2 + 𝑔3 = 0. 

Where 

𝑔1 = 𝑓2 −
3𝑓1

2

8
, 𝑔2 = 𝑓2 +

𝑓1
3

8
−
𝑓1𝑓2
2
, 𝑔3 = 𝑓4 −

3𝑓2
4

256
+
𝑓1
2𝑓2
16

−
𝑓1𝑓3
4
. 
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Further more, we factorize equation (6) and transform to equation (7). 

𝑤2
3 − 𝑓2𝑤2

2 + (𝑓1𝑓3 − 4𝑓4)𝑤2 + (4𝑓2𝑓4 − 𝑓3
2 − 𝑓1

2𝑓4) = 0.  

For 𝑤20 is real root of equation (6) , we have  

�̅�2
1 = −

𝑓1
4
+
1

2
(𝐴 + 𝐵)  

�̅�2
2 = −

𝑓1
4
+
1

2
(𝐴 − 𝐵)  

�̅�2
3 = −

𝑓1
4
−
1

2
(𝐴 − 𝐶)  

�̅�2
4 = −

𝑓1
4
−
1

2
(𝐴 + 𝐶),  

where 

                   𝐴 = √
1

4
𝑓1
2 − 𝑓2 +𝑤20 

𝐵 =

{
 
 

 
 
√
3

4
𝑓1
2 − 2𝑓2 + 2√𝑤20

2 − 4𝑓4                                 , for 𝐴 = 0

√
3

4
𝑓1
2 − 𝐴2 − 2𝑓2 +

1

4
(4𝑓1𝑓2 − 8𝑓3 − 𝑓1

3)𝐴−1 , for 𝐴 ≠ 0

 

𝐶 =

{
 
 

 
 
√
3

4
𝑓1
2 − 2𝑓2 − 2√𝑤20

2 − 4𝑓4                                 , for 𝐴 = 0

√
3

4
𝑓1
2 − 𝐴2 − 2𝑓2 −

1

4
(4𝑓1𝑓2 − 8𝑓3 − 𝑓1

3)𝐴−1 , for 𝐴 ≠ 0,

 

For �̅�2 is positive real root equation (6), we have 

(8) 𝑢2
∗ = max {0,min{�̅�2

𝑘, 1}} , for 𝑘 = 1,2,3,4. 

Therefore, the optimal problem is minimum at controls 𝑢1
∗ and 𝑢2

∗  where 

𝑢1
∗ = max {0,min {

𝑆(𝜆𝑆+𝜆𝑅)

𝐵3
, 1}} , where �̅�2 is positive real root equation (8). Here,(𝑆∗, 𝐼∗, 𝑅∗) 

are respectively the optimum values of 𝑆, 𝐼, 𝑅 and (𝜆1
∗ , 𝜆2

∗ , 𝜆3
∗) is the solution of the system (2) 

with the condition (8).  
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3. SIMULATION 

To establish the effectiveness of optimal control, we have employed a fourth order Runge–Kutta 

method for the state system (2) and system (4) and the transversely conditions.  The simulation 

which we performed out by utilizing the parameters referred to [11] is given in Table 1 with the 

initial conditions both around the free equilibrium point (Figure 2) and infected equilibrium point 

(Figure 3,4,5). We vary the 𝛽 , which indicates the virusss exposure level. Figure 2 shows a 

simulation of 𝑅0 < 1. These results suggest that the optimal combination of the two treatments 

causes the network to be free from the spread of the virus with minimal costs. 

The second case explains that the primary reproduction number is more than one at a time without 

control, so the infected equilibrium point is stable. Then there will be the continuous spread of the 

virus. Figure 3 implements the 𝑢1 control, while Figure 4 implements the 𝑢2 management other 

Figure 5 implements both 𝑢1 and 𝑢2 control strategies. 

Figure 2 show the time series of the susceptible (𝑆), infected (𝐼) and recovered (𝑅) individuals 

with optimum control both vaccination and treatment. From Fig. 2, we see that optimal controls 

due to vaccination and treatment are very effective for reducing the number of susceptible and 

infected individuals and so enhancing the number of recovered individuals significantly. In this 

paper, we have considered two controls, one is vaccination control 𝑢1  and other is treatment 

control 𝑢2.  

Table 1. Parameters value 

Notation The parameter on free 

equilibrium point 

Ref The parameter on endemic 

equilibrium point 

 Ref 

𝐴 10 Assumption 100 [11] 

𝛽 0.001 Assumption 0.1 [11] 

𝜃 0.004 [11] 0.004 [11] 

𝛿 0.8 Assumption 0.02 [11] 

𝛾 0.7 [11] 0.7 [11] 

𝑟 0.4 [11] 0.4 [11] 

𝛼 0.5 [11] 0.5 [11] 

𝑏 0.5 [11] 0.05 Assumption 

𝑢1
∗ 0.19 Calculation 0.19 Calculation 

𝑢2
∗  0.2625 Calculation  0.2625 Calculation 
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Based on table (1) second column, we have a basic reproduction number 𝑅0 = 0.46. This means 

that infected nodes will not infect other nodes then the virus will disappear from the population. 

Meanwhile, the virus-free equilibrium point is (37.52, 0, 2462.34). 

Furthermore, from the characteristic equation in Equation (3), obtained 

(−0.004 − 𝜆)(𝜆2 + 0.8840𝜆 + 0.3050) = 0  

𝜆1 = −0.004    or     𝜆2 = −0.442 + 0.331𝑖   or     𝜆3 = −0.442 − 0.331𝑖.  

Since real part of 𝜆1, 𝜆2, dan 𝜆3 are negative, then the free equilibrium point is asymptotic stable. 

 

Figure 2. Simulation of free virus equilibrium point 

The number of susceptible nodes to viruses over time continues to decrease towards to 37.52 

nodes, following the analytical calculations that have been carried out. Meanwhile, the number of 

infected nodes continues to decline and converge to 0 . This indicates that there are no virus-

infected nodes in a computer network. In contrast, this situation differs from the number of nodes 

in the recovered class, which continues to increase, and then converges to 2462.34  nodes. 

Furthermore, the simulations carried out are under analytical calculations. 

Figure 2 shows a scenario where the virus spreads uncontrolled; we examine the impact of the two 

controls and simulate the optimal control value determined by the calculations in the preceding 

section. The parameter value pertains to column three of table (x), where the basic reproduction 

number  is 46.90. One afflicted node can infect as many as 46 to 47 more nodes. Additionally, 
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46 to 47 nodes will become infected by those 46 or 47 nodes. Furthermore, we calculate the 

eigenvalues to determine the stability of the linearized system using equation (3). The 

characteristic equation is as follows.  

(−0.004 − 𝜆)(𝜆2 + 37.089𝜆 + 2738.684) = 0  

𝜆1 = −0.004    or     𝜆2 = −18.7949 + 48.840𝑖    or     𝜆3 = 18.7949 − 48.840𝑖.  

The endemic virus equilibrium point is locally asymptotically stable because all real elements of 

𝜆1, 𝜆2, dan 𝜆3 are negative. Furthermore, the number of nodes from vulnerable, infected, and 

recovered classes over time will have a specific value. Moreover, we carry out three strategies to 

determine effectiveness of the control variables. 

First Strategy.  Installing IDS and IPS on a computer network, but when there is an infected 

computer, it is not uninstalled. Applying a vaccination strategy without curing the infected. 

 

Figure 3. Simulation of infected populations with First Strategy 

Figure 3 shows that installing IDS and IPS is effective enough to control computer network 

malware. Two plots of graphs show that without control  (𝑢1 = 𝑢2 = 0)  and with control 𝑢1 =

0.19  dan 𝑢2 = 0 . The number of infected nodes experienced a significant increase when 

uncontrolled. However, in the controlled model, at the initial time, it increases and then stabilizes 

towards a particular value. The model with control more realistic conclusions because the number 

of infected nodes is quite a bit compared to the model without control. 
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Second Strategy. Not installing IDS and IPS on a computer network but reinstalling infected 

computers. Treating the infected but without vaccination strategy. 

 

Figure 4. Simulation of Infected Populations with Second Strategy 

Giving a control treatment of 0.2625, as shown in Figure 4, has little impact on the number of 

infected nodes. The number of nodes in both control and uncontrol has steadily expanded. Healthy 

computers revert to susceptibility and become infected. 

Third Strategy. Install IDS and IPS on a computer network and reinstall an infected computer. 

 

Figure 5. Simulation of infected populations with Strategi III 
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Figure 6. Simulation of infected populations with all strategy compared to uncontrol 

Figure 5 shows the third strategy, installing IPS and IDS and reinstalling the infected computer 

𝑢1 = 0.19, 𝑢2 = 0.2625, which did not significantly reduce the infected population compared to 

the first strategy (installing IPS and IDS, 𝑢1 = 0.19, 𝑢2 = 0 ) but was significantly different 

compared to uncontrol (𝑢1 = 0, 𝑢2 = 0). This shows that vaccination is very important to reduce 

the infected population. Figure 6 supports that reinstalling the infected computer is not enough to 

prevent the virus from spreading in the network. The provision of antivirus plays an essential role 

in the spread of computer viruses in the network. Installing an antivirus accompanied by treating 

an infected computer can slightly reduce the spread of the virus compared to just installing an 

antivirus. This situation occurs in cases where the basic reproduction number is more than one, 

meaning that the infected equilibrium point is stable and the virus spreads. Although both antivirus 

and reinstalled infected computers, the virus still spread in reality. A non-linear model with 

vaccination and saturation can model this phenomenon. Installing an antivirus can significantly 

reduce infected computers, referring to the parameter data in Table 1. 

 

5. CONCLUSIONS 

This study applies the vaccination and special saturated function in modelling the infection of virus 

in computer network. We intend to emphasize that the virus in computer networks can be 

significantly decreased by vaccination. Curing an infected computer is not enough to get a healthy 
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computer network. So this model is suitable for reality. We apply optimal control to get a 

recommended treatment. We compare the first strategy, second strategy, and third strategy. Based 

on the analysis results, we conclude that installing the anti virus provides an effective treatment 

for a good computer network. Based on the results and discussion, we suggest developing a method 

that considers the delay on the computer network. We can consider implementing and developing 

the delay model because virus screening in the susceptible group by anti virus takes time. This 

filter determines whether the computer enters recovery or is infected. This time is mathematically 

the time delay, which in this study was still ignored. 
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