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Abstract: In this paper, an eco-epidemiological model consisting of a diseased predator with hunting cooperation and 

anti-predator property is formulated and studied as a three-dimensional system of ordinary differential equations. The 

solution’s properties such as existence, uniqueness, and bounded are discussed. The conditions for the extinction of 

populations and the existence of equilibria are found, and the local and global stabilities are investigated. The 

possibility of the occurrence of local bifurcation was also studied. The conditions of occurrence of Hopf bifurcation 

are determined. To study the global dynamics and how changing parameters affect the system's asymptotic behavior, 

numerical simulation has been used. 

Keywords: eco-epidemiological; hunting cooperation; anti-predator; harvest; Hopf- bifurcation. 

2020 AMS Subject Classification: 92D40, 34D20, 37G10. 

 

1. INTRODUCTION 

The predation process assumes an essential part in advancing life evolution and maintaining 

ecological balance and biodiversity [1]. The interaction between prey and predator is an important 

topic of research in the study of ecological communities. This interaction varies in nature due to 

existence of infectious diseases that affect some or all species. Understanding the dynamics of 

prey-predator pathogens requires the use of mathematical modeling to formulate the model and 
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then analyze the proposed model where one or more of the main populations become infected with 

an infection. The term eco-epidemiological model is used to describe models that incorporate 

diseases in ecological communities [2]. Anderson and May [3] introduced the first eco-

epidemiological model including an infectious disease in prey. Later, Eco-epidemiological models 

incorporating a variety of biological factors were presented and investigated by several researcher; 

see [4-11]. It has been observed that the spread of diseases among a population is the main reason 

for the species extinction. 

Prey-predator models have been used to explain a wide range of animal behavior, including the 

hunting and predation behaviors exhibited by predators and prey [12-14]. Straightforward of 

mathematical, ecological, and eco-epidemiological models, many studies have studied the 

implications of intra-species cooperation. For illustration, cooperative hunting can change how 

predator-prey models behave and may result in intricate patterns with several periodic cycles [15-

22]. Therefore, studying and analyzing species interactions and population dynamics requires 

taking into the function of cooperation in ecological and eco-epidemiological systems. In recent 

years, various predator-prey mathematical models with hunting cooperation and the presence of 

disease have been proposed and studied [23-27]. 

Prey-predator interactions to avoid prey extinctions were studied, taking prey behavior in 

defending against predation pressure, called anti-predator behavior. Anti-predator behavior, which 

is a natural response of the prey, occurs when the prey is threatened, one at the expense of certain 

body parts [28-31].Most of the above studies use mathematical modeling to consider the impact 

of the hunting cooperation capability of the predators and the anti-predator capability of the prey 

on the prey-predator model dynamics separately. 

In addition, one of the most important factors in population ecology is the effect of harvesting a 

natural population. Harvesting means a reduction of the population due to hunting or capturing 

individuals. It harms the harvested population size. Consequently, it is important to understand the 

effect of harvesting on the multi-species ecological systems dynamics, for example [2,5,32]. 

Furthermore, the effect of harvesting a particular species on its dynamic behavior is also studied. 

The existence of harvesting on some interacting species is beneficial from both ecological as well 

as economic. Since the pioneering work by Clark [33] that investigated the role of harvesting, few 

studies of the effect of harvesting on the dynamics of prey-predator systems in the existence of 

hunting cooperation and anti-predator properties have been done using different types of 

harvesting functions, for example, see the recent work [34] and the references therein.  
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The present research attempts to create and investigate an eco-epidemiological model of prey-

predator that incorporates anti-predator, cooperative hunting, and harvesting. We present the 

mathematical formulation in the section that follows. In section 2, we examine the boundedness of 

the model and the properties of it’s solution. In section3.  looks into the model's equilibria and 

local stability (LS) analysis. Persistence is examined in Section 4. Section 5 examines the system's 

global stability (GS). Hopf-bifurcation (HB) analysis and the stability of limit cycles are covered 

in Sections 6 and 7. Local bifurcation (LB) (such as saddle-node(SNB), pitchfork(PB), and a 

transcritical bifurcation (TB)) near the equilibrium points (EPs) of system (1) are investigated. The 

numerical results are provided to support our theoretical analysis in Section 8. 

 

2. MODEL FORMULATION 

An eco-epidemiological system with a prey-predator interaction that involves an infectious disease 

in the predator population is offered and examined. There are two population classes within the 

predator population: the susceptible and the infected predator classes, illustrated by 𝑆(𝑡)  and 

𝐼(𝑡)  appropriately. In comparison, 𝑋(𝑡)  indicates the density of the prey population. The 

identified system is mathematically expressed by the following hypotheses. 

• The disease is disseminated only within the predator population. In addition, the disease in 

predator limits their ability to hunt prey.   

• The susceptible predator is expected to consume the prey depending on the Lotka-Volterra 

functional response. In the predator's absence, the prey population grows logistically.  

• Predators exhibit cooperative hunting to capture and secure prey efficiently. The 

cooperation term can enhance the predator population attack rate 𝑐1 > 0 to become (𝑐1 +

𝑎1𝑆), where 𝑎1 ≥ 0 represents the predator's cooperation in hunting,  

• An external force imposes harvesting on the prey population. 

• Prey has an anti-predator ability that decreases predation.  

Therefore, the following nonlinear first-order differential equations system may describe the 

dynamics of the given eco-epidemiological system. 

𝑑𝑋

𝑑𝑇
= 𝑟 (1 −

𝑋

𝑘
)𝑋 − (𝑐1 + 𝑎1𝑆)𝑋𝑆 − 𝑞𝐸𝑋, 

𝑑𝑆

𝑑𝑇
= 𝑒1(𝑐1 + 𝑎1𝑆)𝑋𝑆 − 𝑎2𝑋𝑆 − 𝛽𝑆𝐼 − 𝑑1𝑆,                                  (1) 

𝑑𝐼

𝑑𝑇
= 𝛽𝑆𝐼 − 𝑑2𝐼, 
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where 𝑋(0) = 𝑋0 ≥ 0, 𝑆(0) = 𝑆0 ≥ 0, and 𝐼(0) = 𝐼0 ≥ 0, the system’s initial condition of the 

system (1), and all parameters are nonnegative and may be understood from Table 1.  

Table 1: The description of the parameter. 

Therefore, the system (1) has the following domain 

               𝑅+
3 = {(𝑋, 𝑆, 𝐼) ∈ 𝑅3, 𝑋 ≥ 0, 𝑆 ≥ 0, 𝐼 ≥ 0}|  

System (1) has a unique solution due to the continuity of its interaction functions along with the 

continuity of its partial derivatives. Consequently, these functions are Lipschitizian on 𝑅+ 
3 . In the 

following theorem, the bound of the solution is established. 

Theorem 1. All solutions to the system (1) are uniformly bounded. 

Proof. Let 𝑊1 = 𝑋 + 𝑆 + 𝐼, then 
𝑑𝑊1

𝑑𝑇
 can be written as 

𝑑𝑊1

𝑑𝑇
≤ 𝑟 (1 −

𝑋

𝑘
)𝑋 − 𝑞𝐸𝑋 − 𝑑1𝑆 − 𝑑2𝐼 ≤

𝑟𝑘

4
− 𝜇𝑊1, 

here  𝜇 = 𝑚𝑖𝑛{𝑞𝐸, 𝑑1, 𝑑2}, therefore, for 𝑇 → ∞, we have 𝑊1 ≤ 𝐿1, where 𝐿1 =
𝑟𝐾

4𝜇
.  

Therefore, all the solutions are uniformly bounded. 

 

3. ANALYSIS OF THE EXISTENCE AND LOCAL STABILITY OF EQUILIBRIUM POINTS 

The system has a maximum of four nonnegative biologically potential EPs. The conditions for the 

existence of each one are specified in this section, and then their stability analysis is studied. 

Parameters Description 

 

𝑟 The intrinsic growth in the prey population 

𝑘 Environmental carrying capacity 

𝑎1 Hunting cooperation rate 

𝑐1 The predation rate of prey 

𝑏1 Hunting cooperative effort between predators. 

𝑒1 The conversion rate of devouring prey by predator 

𝑎2 The anti-predator rate 

𝛽 The infection rate 

𝑑1 The mortality rate of susceptible predators in their native environment 

𝑑2 The mortality rate of infected predator    

𝐸, 𝑞 Harvest rate  
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• The total extinction equilibrium point (TEEP), �̌�0 = (0,0,0), exists without restriction. 

• The axial equilibrium point (AEP), �̂�1 = (�̂�, 0,0) , where �̂� =
𝑘(𝑟−𝑞𝐸)

𝑟
, exists provided 

that  

                           𝑞𝐸 < 𝑟                                          (2) 

 Note that, condition (2) represents the survival condition of the prey species.  

• The predator-free equilibrium point (PFEP), �̅�2 = (𝑋,̅ 𝑆,̅ 0), where    

                         �̅� =
𝑑1

𝑒1(𝑐1+𝑎1�̅�)−𝑎2
,                        (3) 

while 𝑆̅ is a positive root of the following 3𝑟𝑑order polynomial equation: 

                        𝐵3𝑆
3 + 𝐵2𝑆

2 + 𝐵1𝑆 + 𝐵0 = 0,                           (4) 

where 

             𝐵3 =  𝑘𝑎1
2𝑒1 > 0.       

             𝐵2 =  𝑘𝑎1(2𝑒1𝑐1 − 𝑎2) > 0. 

             𝐵1 = 𝑘[𝑐1(𝑒1𝑐1 − 𝑎2) − 𝑒1𝑎1(𝑟 − 𝑞𝐸)]. 

             𝐵0 = 𝑘[−(𝑒1𝑐1 − 𝑎2)(𝑟 − 𝑞𝐸) + 𝑟𝑑1].  

The survival condition (2) with the use of the Descartes rule of signs, which specifies the 

number of positive roots under certain conditions, Eq. (4) has a unique positive root that is 

represented by 𝑆̅  and hence �̅�2  exists uniquely in the interior of positive quadrant 

𝑋𝑆 −plane if  

              (𝑒1𝑐1 − 𝑎2)(𝑟 − 𝑞𝐸) > 𝑟𝑑1.                                (5) 

• The interior equilibrium point (IEP), 𝑃3
∗ = (𝑋∗, 𝑆∗, 𝐼∗), where  

             

𝑆∗ =
𝑑2

𝛽
,                                                                                         

𝑋∗ =
𝑘(𝑟𝛽2−𝑞𝛽3𝐸−𝛽𝑐1𝑑2−𝑎2𝑑2

2)

𝑟𝛽2
,                                                  

𝐼∗ =
𝐾(𝑟𝛽2−𝑞𝛽3𝐸−𝛽𝑐1𝑑2−𝑎2𝑑2

2)[𝛽(𝑐1𝑒1−𝑎2)+𝑎1𝑑2𝑒1]

𝑟𝛽4
− 𝑑1𝑟𝛽

3,}
 
 

 
 

        (6) 

exists uniquely in the interior of positive octant provided that the following conditions are 

held.            

                    𝑟𝛽2 > 𝑞𝛽3𝐸 + 𝛽𝑐1𝑑2 + 𝑎2𝑑2
2.            (7)  

                  𝛽𝑐1𝑒1 + 𝑎1𝑑2𝑒1 > 𝛽𝑎2.             (8) 

The Jacobian matrix (JM) that is utilized to analyze the LS of the potential EPs stated earlier can 

be represented as: 

                           𝐽 = (ℎ𝑖𝑗)3×3.                                (9)  



6 

WALAA MADHAT ALWAN, HUDA ABDUL SATAR 

where 

 ℎ11 =
−𝑟𝑋

𝑘
+ 𝑟 (1 −

𝑋

𝑘
) − 𝑞𝐸 − (𝑐1 + 𝑎1𝑆)𝑆; ℎ12 = −(𝑐1 + 2𝑎1𝑆)𝑋; ℎ13 = 0.  

 ℎ21 = [−𝑎2 + 𝑒1(𝑐1 + 𝑎1𝑆)]𝑆; ℎ22 = 𝑎1𝑒1𝑋𝑆 + [𝑒1(𝑐1 + 𝑎1𝑆) − 𝑎2]𝑋 − 𝛽𝐼 − 𝑑1; 

 ℎ23 = −𝛽𝑆; ℎ31 = 0; ℎ32 = 𝛽𝐼; ℎ33 = 𝛽𝑆 − 𝑑2       

Therefore, at  �̌�0 = (0,0,0), JM given by Eq. (10) converts to: 

                     𝐽(�̌�0) = [

𝑟 − 𝑞𝐸 0 0
0 −𝑑1 0
0 0 −𝑑2

].                 (10) 

Consequently, the eigenvalues of 𝐽(�̌�0) are given by the following:  

         𝜆01 = 𝑟 − 𝑞𝐸, 𝜆02 = −𝑑1 < 0, 𝜆03 = −𝑑2 < 0.                          (11) 

So if the following condition is fulfilled, �̌�0 becomes local asymptotic stability (LAS) if the next 

condition holds 

                                    𝑟 < 𝑞𝐸.                          (12) 

At  �̂�1 = (�̂�, 0,0), the JM given by (9) becomes. 

                  𝐽(�̂�1) =

[
 
 
 −𝑟 + 𝑞𝐸 −

𝑘(𝑟−𝑞𝐸)𝑐1

𝑟
0

0 −𝑑1 +
𝑘(𝑟−𝑞𝐸)(𝑐1𝑒1−𝑎2)

𝑟
0

0 0 −𝑑2]
 
 
 

.               (13) 

Consequently, the eigenvalues of 𝐽(�̂�1) provided by the following:   

𝜆11 = −𝑟 + 𝑞𝐸, 𝜆12 = −𝑑1 +
𝑘(𝑟−𝑞𝐸)(𝑐1𝑒1−𝑎2)

𝑟
, 𝜆13 = −𝑑2 .                     (14) 

Therefore, by using the existence condition (2) of �̂�1, the following condition guarantees the LAS 

of 𝑃1.   

               𝑘(𝑟 − 𝑞𝐸)(𝑐1𝑒1 − 𝑎2) < 𝑟𝑑1.                          (15) 

For the EP, �̅�2 = (�̅�, 𝑆̅, 0), the JM given by (9) turns into 

 𝐽(�̅�2) = [

−
𝑟�̅�

𝑘
−(𝑐1 + 2𝑎1𝑆̅)�̅� 0

(−𝑎2 + 𝑒1(𝑐1 + 𝑎1𝑆̅))𝑆̅ 𝑎1𝑒1�̅�𝑆̅ −𝛽𝑆̅

0 0 𝛽𝑆̅ − 𝑑2

] .                (16)  

Thus, The characteristic equation of the 𝐽(�̅�2) can be written as: 

                 [𝜆2
2 − 𝑇1𝜆2 + 𝐷1](𝛽𝑆̅ − 𝑑2 − 𝜆2) = 0,                        (17) 

where 

       𝐷1 = (−
𝑟�̅�

𝑘
) 𝑎1𝑒1�̅�𝑆̅ + (𝑐1+2𝑎1𝑆̅)[−𝑎2𝑆̅ + 𝑒1(𝑐1 + 𝑎1𝑆̅)]�̅�𝑆̅.        
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          𝑇1 = −
𝑟�̅�

𝑘
+ 𝑎1𝑒1�̅�𝑆̅.                                               

The roots of this equation are as follows:  

           𝜆21 =
𝑇1

2
+
1

2
√𝑇1

2 − 4𝐷1;  𝜆22 =
𝑇1

2
−
1

2
√𝑇1

2 − 4𝐷1, 𝜆23 = 𝛽𝑆̅ − 𝑑2.       (18)       

 The eigenvalues 𝜆21, 𝜆22 and 𝜆23 have negative real-parts, indicating that �̅�2 is LAS under the 

following conditions: 

                            𝛽𝑆̅ < 𝑑2.                                  (19) 

                         𝑎1𝑒1𝑆̅ <
𝑟

𝑘
.                                      (20) 

 (
𝑟

𝑘
) 𝑎1𝑒1�̅� + 𝑎2𝑆̅(𝑐1+2𝑎1𝑆̅) < (𝑐1+2𝑎1𝑆̅)(𝑐1 + 𝑎1𝑆̅)𝑒1                            (21) 

Lastly, the evaluation of the Jacobin matrix at the IEP, 𝑃3
∗ is provided by: 

 𝐽(𝑃3
∗) = [

−
𝑟𝑋∗

𝐾
−(𝑐1 + 2𝑎1𝑆

∗)𝑋∗ 0

−𝑎2𝑆
∗ + 𝑒1(𝑐1 + 𝑎1𝑆

∗)𝑆∗ 𝑎1𝑒1𝑋
∗𝑆∗ −𝛽𝑆∗

0 𝛽𝐼∗ 0

] = [ℎ𝑖𝑗].       (22) 

Then the characteristic equation of 𝐽(𝑃3
∗) becomes 

            𝜆3
3 + 𝐴1𝜆3

2 + 𝐴2𝜆3 + 𝐴3 = 0,                                       (23)                                              

where  

𝐴1 = −(ℎ11 + ℎ22) =
𝑟𝑋∗

𝐾
− 𝑎1𝑒1𝑋

∗𝑆∗   

            

            𝐴2 = (ℎ11ℎ22 − ℎ12ℎ21) − ℎ23ℎ32                                                                                          

                 = [−
𝑟𝑋∗

𝐾
𝑎1𝑒1 − 𝑎2(𝑐1 + 2𝑎1𝑆

∗) + 𝑒1(𝑐1 + 2𝑎1𝑆
∗)(𝑐1 + 𝑎1𝑆

∗)] 𝑋∗𝑆∗ + 𝛽2𝑆∗𝐼∗
           

     𝐴3 = ℎ11ℎ23ℎ32 = 𝛽2𝑆∗𝐼∗
𝑟𝑋∗

𝐾
> 0 

with 

∆= 𝐴1𝐴2 − 𝐴3 = −(ℎ11 + ℎ22)[ℎ11ℎ22 − ℎ12ℎ21] + ℎ22ℎ23ℎ32. 

Based on the “Routh-Hurwitz criterion”, the equilibrium point is LAS, with three eigenvalues 

having negative real parts if  𝐴1 > 0, 𝐴3 > 0, and ∆= 𝐴1𝐴2 − 𝐴3 > 0. The following theorem 

concerns the LS of the IEP. 

Theorem 2. The IEP of the system (1) is LAS if the following condition is satisfied. 

            𝑎1𝑒1𝑋
∗𝑆∗ <

𝑟𝑋∗

𝐾
.                                       (24) 
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𝑟𝑋∗

𝐾
𝑎1𝑒1 + 𝑎2(𝑐1 + 2𝑎1𝑆

∗) < 𝑒1(𝑐1 + 2𝑎1𝑆
∗)(𝑐1 + 𝑎1𝑆

∗).                     (25) 

𝛽2𝑎1𝑒1𝑋
∗𝑆∗2𝐼∗ < (

𝑟𝑋∗

𝐾
− 𝑎1𝑒1𝑋

∗𝑆∗)                                                                     

[−
𝑟𝑋∗

𝐾
𝑎1𝑒1 − 𝑎2(𝑐1 + 2𝑎1𝑆

∗) + 𝑒1(𝑐1 + 2𝑎1𝑆
∗)(𝑐1 + 𝑎1𝑆

∗)] 𝑋∗𝑆∗ > 0
        (26) 

Proof: According to the “Routh–Hurwitz criterion”, the roots of the 𝐽(ℎ𝑖𝑗) have negative real 

parts provided that 𝐴1 > 0, 𝐴3 > 0, and ∆> 0. Direct computation shows that conditions (24)-

(26) guarantee the satisfaction of “Routh–Hurwitz criterion” requirements. 

 

4. PERSISTENCE 

An eco-epidemiological model's persistence and extinction properties are examined in this section. 

The goal is to look into how hunting cooperation and anti-predator behavior affect the persistence 

and extinction of system species. It is necessary to comprehend the dynamics at the system's 

boundary levels to identify the conditions that guarantee continuation. 

Now the following subsystem is obtained  

    

𝑑𝑋

𝑑𝑡
= 𝑟 (1 −

𝑋

𝑘
)𝑋 − (𝑐1 + 𝑎1𝑆)𝑋𝑆 − 𝑞𝐸𝑋 = ℓ1(𝑋, 𝑆),          

 𝑑𝑆

𝑑𝑡
= 𝑒1(𝑐1 + 𝑎1𝑆)𝑋𝑆 − 𝑎2𝑋𝑆 − 𝑑1𝑆 = ℓ2(𝑋, 𝑆).                  

                         

                      (27) 

Now, to investigate the existence of periodic dynamics in the 𝐼𝑛𝑡. ℝ+
2  of 𝑋𝑆 − plane, define the 

Dulac function as ℒ1(𝑋, 𝑆) =
1

𝑋𝑆
  that satisfies  ℒ1(𝑋, 𝑆) > 0 and 𝐶1  function. Hence, it is 

obtained that  

  ℒ1ℓ1 =
1

𝑆
[𝑟 (1 −

𝑋

𝑘
) − (𝑐1 + 𝑎1𝑆)𝑆 − 𝑞𝐸],and ℒ1ℓ2 =

1

𝑋
[ 𝑒1(𝑐1 + 𝑎1𝑆)𝑋 − 𝑎2𝑋 − 𝑑1]. 

Thus, it is obtained that  

        ∆(𝑥, 𝑦) =
𝜕(ℒ1ℓ1)

𝜕𝑋
+
𝜕(ℒ1ℓ2)

𝜕𝑆
= −

𝑟

𝑘𝑆
+ 𝑒1𝑎1. 

It’s clear that ∆ has the same sign and does not equal zero under the following conditions (28). 

Therefore, due to “Dulac-Bendixon criterion”, a subsystem (27) does not have periodic dynamics 

in 𝑋𝑆 −plane provided that: 

                               

𝑒1𝑎1 >
𝑟

𝑘𝑆

𝑂𝑅

𝑒1𝑎1 <
𝑟

𝑘𝑆

                             (28) 

Hence, according to the “Bendixson–Dulac theorem,” there are no periodic dynamics in the 

interior of the positive quadrant of the 𝑋𝑆 − plane. As a result, the “Poincare-Bendixon theorem” 
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asserts that whenever the border 𝑋𝑆 −plane is L.A.S, the unique EP in 𝑖𝑛𝑡.ℝ+ 
2 is G.A.S  

Theorem 3. Assume that the condition (28) are met then system (1) is uniformly persistent if 

                      
𝑒1𝑐1�̂� > 𝑎2�̂� + 𝑑1

𝛽𝑆̅ > 𝑑2
                                     (29) 

Proof. Define ℋ(𝑋, 𝑆, 𝐼) = 𝑋𝜏1𝑆𝜏2𝐼𝜏3 , where 𝜏1, 𝜏2, and 𝜏3 are positive constants. It is clear 

that ℋ(𝑋, 𝑆, 𝐼) > 0  for each (𝑋, 𝑆, 𝐼) ∈ 𝐼𝑛𝑡 ℝ+
3 , and ℋ(𝑋, 𝑆, 𝐼) = 0 𝑖𝑓 𝑋, 𝑆, or 𝐼  approaches 

zero. Consequently, it is obtained that 

Φ(𝑋, 𝑆, 𝐼) =
ℋ′(𝑋, 𝑆, 𝐼)

ℋ(𝑋, 𝑆, 𝐼)
= 𝜏1 [𝑟 (1 −

𝑋

𝑘
) − (𝑐1 + 𝑎1𝑆)𝑆 − 𝑞𝐸]              

                                                               +𝜏2[𝑒1(𝑐1 + 𝑎1𝑆)𝑋 − 𝑎2𝑋 − 𝑑1] + 𝜏3[𝛽𝑆 − 𝑑2]

 

Now, due to “average Lyapunov function” the proof will follows if and only if   𝛷(𝑃𝑖) > 0 for 

every boundary points 𝑃𝑖. 

Now, 

   𝛷(�̌�0) = 𝜏1(𝑟 − 𝑞𝐸) − 𝜏2𝑑1 − 𝜏3𝑑2

𝛷(�̂�1) = 𝜏2(𝑒1𝑐1�̂� − 𝑎2�̂� − 𝑑1) −

 𝛷(�̅�2) = 𝜏3(𝛽𝑆̅ − 𝑑2)                        

𝜏3𝑑2  

Then the first expression is positive as the positive constants 𝜏1, 𝜏2, and 𝜏3 are arbitrary constants 

and we are always can choose that 𝜏1  is sufficiently larger than 𝜏2 and 𝜏3.  Hence, the 

requirements of the Lyapunov average method are met provided that the conditions (29) hold, 

which means the system (1) is uniformly persistent. 

 

5. GLOBAL STABILITY ANALYSIS 

The following theorems show that the GS of all EPs is investigated in this part using the Lyapunov 

method. 

Theorem 4. The TEEP, �̌�0 of the system (1) is GAS in 𝑅+
3 , assuming that condition (12) is met.  

Proof. Let the following function  

  𝜔0 = 𝜁1𝑋 + 𝜁2𝑆 + 𝜁3𝐼, 

where 𝜔0  is 𝐶1 function, which is a positive definite real-valued function, and 𝜁𝑖 ; 𝑖 = 1,2,3 are 

positive constants to be determined. Then we have 

𝑑𝜔0
𝑑𝑇

= 𝜁1𝑟𝑋 − 𝜁1
𝑟𝑋2

𝑘
− 𝜁1(𝑐1 + 𝑎1𝑆)𝑋𝑆 − 𝜁1𝑞𝐸𝑋 + 𝜁2𝑒1(𝑐1 + 𝑎1𝑆)𝑋𝑆 − 𝜁2𝑎2𝑋𝑆 − 𝜁2𝛽𝑆𝐼

− 𝜁2𝑑1𝑆 + 𝜁3𝛽𝑆𝐼 − 𝜁3𝑑2𝐼 

So, by selecting  𝜁1 = 𝑒1, 𝜁2 = 𝜁3 = 1, we get that.  
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𝑑𝜔0
𝑑𝑇

≤ −𝑒1(𝑞𝐸 − 𝑟)𝑋 − 𝑑1𝑆 − 𝑑2𝐼 

Therefore, 
𝑑𝜔0

𝑑𝑇
 is negative definite due to the above given condition (12). Hence, the TEEP is a 

GAS. 

Theorem 5. The AEP, �̂�1 of the system (1) is GAS in 𝑅+
3 , assuming that the following condition 

is met 

                         𝑒1�̂�(𝑐1 + 𝑎1𝐿1) < 𝑑1,                               (30) 

where 𝐿1 is the upper bound given in Theorem 1.  

Proof. Let the following function  

𝜔1 = 𝜁4 (𝑋 − �̂� − �̂� 𝑙𝑛
𝑋

�̂�
) + 𝜁5𝑆 + 𝜁6𝐼,  

where 𝜔1  is 𝐶1 function, which is a positive definite real-valued function and 𝜁𝑖; 𝑖 = 4,5,6 are 

positive constants to be determined. Then we have. 

𝑑𝜔1
𝑑𝑇

= −𝜁4
𝑟

𝑘
(𝑋 − �̂�)

2
− 𝜁4(𝑐1 + 𝑎1𝑆)𝑋𝑆 + 𝜁4(𝑐1 + 𝑎1𝑆)�̂�𝑆 + 𝜁5𝑒1(𝑐1 + 𝑎1𝑆)𝑋𝑆 − 𝜁5𝑎2𝑋𝑆

− 𝜁5𝛽𝑆𝐼 − 𝜁5𝑑1𝑆 + 𝜁6𝛽𝑆𝐼 − 𝜁6𝑑2𝐼 

So, by selecting  𝜁4 = 𝑒1 , 𝜁5 = 𝜁6 = 1 we get that 

             
𝑑𝜔1

𝑑𝑇
≤ −

𝑟𝑒1

𝑘
(𝑋 − �̂�)

2
− [𝑑1 − 𝑒1�̂�(𝑐1 + 𝑎1𝑆)]𝑆 − 𝑑2𝐼 

Therefore, 
𝑑𝜔1

𝑑𝑇
 is negative definite due to the above-given condition (30). Hence, the AEP is a 

GAS. 

Theorem 6. The PFEP, �̅�2  of the system (1) is GAS in 𝑅+
3  , assuming that the following 

conditions is met 

                        

(𝑎1�̅�+𝑎2)

2
> 𝑒1𝑎1𝑋 ̅

 𝑑2 > 𝛽𝑆̅
                                       (31)   

Proof. Let the following function 

𝜔2 = 𝜁7 (𝑋 − �̅� − �̅� 𝑙𝑛
𝑋

�̅�
) + 𝜁8 (𝑆 − 𝑆̅ − 𝑆̅ 𝑙𝑛

𝑆

�̅�
) + 𝜁9𝐼,  

where 𝜔2  is 𝐶1 function, which is a non-negative definite and real-valued function and 𝜁𝑖; 𝑖 =

7,8,9 are positive constants then we have 

𝑑𝜔2
𝑑𝑇

= −
𝜁7𝑟

𝑘
(𝑋 − �̅�)2 − 𝜁7𝑐1(𝑋 − �̅�)(𝑆 − 𝑆̅) − 𝜁7𝑎1(𝑆 + 𝑆̅)(𝑋 − �̅�)(𝑆 − 𝑆̅)

+ 𝜁8𝑒1𝑐1(𝑋 − �̅�)(𝑆 − 𝑆̅) + 𝜁8𝑒1𝑎1�̅�(𝑆 − 𝑆̅)
2 + 𝜁8𝑒1𝑎1𝑆(𝑋 − �̅�)(𝑆 − 𝑆̅)

− 𝜁8𝑎2(𝑋 − �̅�)(𝑆 − 𝑆̅) − 𝜁8𝛽𝑆𝐼 + 𝜁8𝛽𝑆̅𝐼 + 𝜁9𝛽𝑆𝐼 − 𝜁9𝑑2𝐼 
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So, by selecting,  𝜁7 = 𝑒1, 𝜁8 = 𝜁9 = 1, we get that: 

𝑑𝜔2
𝑑𝑇

≤ −
𝑟𝑒1
𝑘
(𝑋 − �̅�)2 −

(𝑎1𝑆̅ + 𝑎2)

2
(𝑋 − �̅�)2 −

(𝑎1𝑆̅ + 𝑎2)

2
(𝑆 − 𝑆̅)2

+𝑒1𝑎1�̅�(𝑆 − 𝑆̅)
2 − (𝑑2 − 𝛽𝑆̅)𝐼.

 

Thus 

𝑑𝜔2

𝑑𝑇
≤ −[

𝑟𝑒1

𝑘
+
(𝑎1�̅�+𝑎2)

2
] (𝑋 − �̅�)2 − [

(𝑎1�̅�+𝑎2)

2
− 𝑒1𝑎1�̅�] (𝑆 − 𝑆̅)

2 − (𝑑2 − 𝛽𝑆̅)𝐼. 

Therefore,  
𝑑𝜔1

𝑑𝑇
 is negative definite due to the above-given conditions (31). Hence, the PFEP is 

a GAS. 

Theorem 7. The IEP, 𝑃3
∗ of the system (1) is GAS in 𝑅+

3 , assuming that the following conditions 

is met 

                       
(𝑒1𝑎1𝑆

∗+𝑎2)

2
> 𝑒1𝑎1𝑋

∗                                    (32) 

Proof. Let the following function 

𝜔3 = 𝑒1 (𝑋 − 𝑋
∗ − 𝑋∗ 𝑙𝑛

𝑋

𝑋∗
) + (𝑆 − 𝑆∗ − 𝑆∗ 𝑙𝑛

𝑆

𝑆∗
) + (𝐼 − 𝐼∗ − 𝐼∗ 𝑙𝑛

𝐼

𝐼∗
), 

where 𝜔3  is 𝐶1 function, which is a non-negative, definite and real-valued function, then we 

have 

𝑑𝜔3
𝑑𝑇

= [−
𝑒1𝑟

𝑘
(𝑋 − 𝑋∗)2 − (𝑒1𝑎1𝑆

∗ + 𝑎2)(𝑋 − 𝑋
∗)(𝑆 − 𝑆∗)] + 𝑒1𝑎1𝑋

∗(𝑆 − 𝑆∗)2 

Further simplification leads to the following. 

   
𝑑𝜔3

𝑑𝑇
≤ −

𝑒1𝑟

𝑘
(𝑋 − 𝑋∗)2 −

(𝑒1𝑎1𝑆
∗+𝑎2)

2
(𝑋 − 𝑋∗)2 −

(𝑒1𝑎1𝑆
∗+𝑎2)

2
(𝑆 − 𝑆∗)2 + 𝑒1𝑎1𝑋

∗(𝑆 − 𝑆∗)2 

≤ − [
𝑒1𝑟

𝑘
+
(𝑒1𝑎1𝑆

∗ + 𝑎2)

2
] (𝑋 − 𝑋∗)2 − [

(𝑒1𝑎1𝑆
∗ + 𝑎2)

2
− 𝑒1𝑎1𝑋

∗] (𝑆 − 𝑆∗)2       

Therefore, the IEP, 𝑃3
∗ is a stable point under the condition (32). Now since the only invariant set 

that satisfies 
𝑑𝜔3

𝑑𝑡
 ac= 0  is given by 𝑃3

∗  then cording to “LaSalle's invariance principle”, it's 

attracting. Hence, 𝑃3
∗ is a GAS. 

 

 

6. BIFURCATION ANALYSIS 

This section examines how varying a control parameter causes a qualitative change in the system's 

(1) dynamic behavior (local bifurcation). Since the EPs non-hyperbolic property is necessary but 

insufficient for the occurrence of bifurcation, the parameter selected changes the EP from 

https://en.wikipedia.org/wiki/LaSalle%27s_invariance_principle
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hyperbolic to non-hyperbolic. This influence is examined with the use of the Sotomayor theorem 

[35]. 

In order to simplify the notations, recast system (1) in vector form as follows  

           
𝑑𝑋

𝑑𝑇
= 𝐺(𝑋), 𝑋 =  (𝑋, 𝑆, 𝐼)𝑇 and  𝐺 = (𝑋𝑔1, 𝑆𝑔2, 𝐼𝑔3)

𝑇.                  (33) 

Then, using the JM of the system (1) at the point (𝑋, 𝑆, 𝐼), that is simple to confirm for any vector 

𝑁 = (𝑛1, 𝑛2, 𝑛3)
𝑇, we have that  

                 𝐷2𝐺(𝑋)(𝑁,𝑁) = [𝑚𝑖𝑗]3×1,                              (34) 

where  

𝑚11 = −2 [
𝑟𝑛1

2 + 𝑘(𝑐1 + 2𝑎1𝑆)𝑛1𝑛2 + 𝑘𝑎1𝑋𝑛2
2

𝑘
] 

𝑚21 = 2[(−𝑎2 + 𝑒1(𝑐1 + 2𝑎1𝑆))𝑛1𝑛2 + 𝑒1𝑎1𝑋𝑛2
2 − 𝛽𝑛2𝑛3] 

𝑚31 = 2𝛽𝑛2𝑛3 

Furthermore, we have also 

                 𝐷3𝐺(𝑋)(𝑁,𝑁,𝑁) = [𝑠𝑖𝑗]3×1,                      (35) 

where  

𝑠11 = −6𝑎1𝑛1𝑛2
2 

𝑠21 = 6𝑒1𝑎1𝑛1𝑛2
2 

𝑠31 = 0 

The LB that occurs at the EPs, �̌�0, �̂�1, �̅�2, and 𝑃3
∗ is examined in the corresponding theorems that 

follow. 

Theorem 8. The system (1) at the TEEP, �̌�0 undergoes a TB at 𝑟 = 𝑞𝐸 = 𝑟∗. 

Proof. When  𝑟 = 𝑞𝐸 = 𝑟∗, it is obvious that JM given by (10) becomes  

             𝐽0
∗ = 𝐽∗(�̌�0, 𝑟

∗) = [
0 0 0
0 −𝑑1 0
0 0 −𝑑2

] 

So 𝜆01
∗ = 0, 𝜆02

∗ = −𝑑1  and 𝜆03
∗ = −𝑑2  are the eigenvalues for 𝐽0

∗ . As a result, �̌�0  is a non-

hyperbolic point, which is a prerequisite for LB. 

Let 𝑁1 = (𝑛11, 𝑛12, 𝑛13)
𝑇  be 𝐽0

∗  's eigenvector that corresponds to  𝜆01
∗ = 0 , then basic 

computation results in that 𝑁1 = (𝑛11, 0,0)
𝑇, where 𝑛11 represents any nonzero real number. 

Let 𝛹1 = (𝜓11, 𝜓12, 𝜓13)
𝑇  be 𝐽0

∗𝑇  's eigenvector that corresponds to 𝜆01
∗ = 0 . Then, it is 

obtained 𝛹1 = (𝜓11, 0,0)
𝑇, where  𝜓11 is any nonzero real number. 
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Because   
𝜕𝐺

𝜕𝑟
= 𝐺𝑟 = (𝑋 −

𝑋2

𝑘
, 0,0)𝑇, we get that  𝐺𝑟(�̌�0, 𝑟

∗) = (0,0,0)𝑇, which produces 

              𝛹1
𝑇[𝐺𝑟(�̌�0, 𝑟

∗)] = 0. 

As a result, the "Sotomayor theorem" rules out the SNB at �̌�0. In addition, we have  

              𝛹1
𝑇[𝐷𝐺𝑟(�̌�0, 𝑟

∗)𝑁1] = 𝑛11𝜓11 ≠ 0,  

where 𝐷𝐺𝑟 represents the derivative of 𝐺𝑟 w.r.t. 𝑋. So, by using Eq. (34) at (�̌�0, 𝑟
∗) with 𝑁1, 

we get that 

              𝛹1
𝑇[𝐷2𝐺(�̌�0, 𝑟

∗)(𝑁1, 𝑁1)] =
−2𝑟∗

𝑘
𝑛11
2 𝜓11 ≠ 0. 

After that, a TB take place; nevertheless, the "Sotomayor theorem" state that a PB cannot occur 

around �̌�0 with 𝑟 = 𝑟∗. 

Theorem 9. The system (1) at the AEP, �̂�1undergoes a TB at 𝑒1 =
𝑑1𝑟+𝑘𝑎2(𝑟−𝑞𝐸)

𝑘𝑐1(𝑟−𝑞𝐸)
= 𝑒1

∗ if the 

following condition is met  

𝑘𝑐1

𝑟
(𝑎2 − 𝑒1

∗𝑐1) ≠ 𝑒1
∗𝑎1�̂�.                                      (36) 

Otherwise, PB takes place. 

Proof. The JM that is given by (13) for 𝑒1 = 𝑒1
∗ becomes:             

𝐽1
∗ = 𝐽∗(�̂�1, 𝑒1

∗) = [
−𝑟 + 𝑞𝐸 −

𝑘(𝑟−𝑞𝐸)𝑐1

𝑟
0

0 0 0
0 0 −𝑑2

]. 

So 𝜆11
∗ = −𝑟 + 𝑞𝐸, 𝜆12

∗ = 0  and 𝜆13
∗ = −𝑑2  are the eigenvalues for 𝐽1

∗ . As a result, �̂�1  is a 

non-hyperbolic point and is a prerequisite for LB. 

Let 𝑁2 = (𝑛21, 𝑛22, 𝑛23)
𝑇  be 𝐽1

∗  's eigenvector that corresponds to  𝜆12
∗ = 0 , then basic 

computation results in that 𝑁2 = (
−𝑘𝑐1

𝑟
𝑛22, 𝑛22, 0)

𝑇

 , where 𝑛22  represents any nonzero real 

number. 

Let 𝛹2 = (𝜓21, 𝜓22, 𝜓23)
𝑇  be  𝐽1

∗𝑇  's eigenvector that corresponds to 𝜆12
∗ = 0 . Then, direct 

computation shows that 𝛹2 = (0, 𝜓22, 0)
𝑇, where  𝜓22  is any nonzero real number. 

Because
𝜕𝐺

𝜕𝑒1
= 𝐺𝑒1 = (0, (𝑐1 + 𝑎1𝑆)𝑋𝑆, 0)

𝑇 , we get that  𝐺𝑒1(�̂�1, 𝑒1
∗) = (0,0,0)𝑇 ,which produces 

              𝛹2
𝑇[𝐺𝑒1(�̂�1, 𝑒1

∗)] = 0. 

As a result, the "Sotomayor theorem" rules out the SNB at �̂�1. In addition, we have  
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              𝛹2
𝑇[𝐷𝐺𝑒1(�̂�1, 𝑒1

∗)𝑁2] = −𝑐1�̂�𝑛22𝜓22 ≠ 0,  

So, by using Eq. (34) at (𝑃1, 𝑒1
∗) with 𝑁2 we get that by using condition (34) that:  

              𝛹2
𝑇[𝐷2𝐺(�̂�1, 𝑒1

∗)(𝑁2, 𝑁2)] = 2 [
−𝑘𝑐1

𝑟
(−𝑎2 + 𝑒1

∗𝑐1) + 𝑒1
∗𝑎1�̂�] 𝑛22

2𝜓22 ≠ 0. 

After that, a TB takes place. 

Assume that condition (36) is not satisfied, then by using Eq. (35) at (�̂�1, 𝑒1
∗) with 𝑁2 we get 

that 

 𝛹2
𝑇[𝐷3𝐺(�̂�1, 𝑒1

∗)(𝑁2, 𝑁2, 𝑁2)] = −6𝑒1
∗𝑎1

𝑘𝑐1

𝑟
𝑛22

3𝜓22 ≠ 0 

Therefore, a PB occurs around �̂�1 with 𝑒1 = 𝑒1
∗. 

Theorem 10. The system (1) at the PFEP, �̅�2 undergoes a TB at 𝑑2 = 𝛽𝑆̅ = 𝑑2
∗. 

Proof. we get the Jacobin matrix for 𝑑2 = 𝛽𝑆̅ = 𝑑2
∗, as            

 𝐽2
∗ = 𝐽∗(�̅�2, 𝑑2

∗) = [
−
𝑟�̅�

𝑘
−(𝑐1 + 2𝑎1𝑆̅)�̅� 0

[−𝑎2 + (𝑐1 + 𝑎1𝑆̅)𝑒1]𝑆̅ 𝑎1𝑒1�̅�𝑆̅ −𝛽𝑆̅

0 0 0

] = [𝑏𝑖𝑗]3×3 

So, the eigenvalues 𝜆21 and 𝜆22, which are given by Eq. (18), and 𝜆23
∗ = 0. As a result, �̅�2 is a 

non-hyperbolic point, which is a prerequisite for LB to occur.  

Let 𝑁3 = (𝑛31, 𝑛32, 𝑛33)
𝑇  be 𝐽2

∗  's eigenvector that corresponds to  𝜆23
∗ = 0 , then basic 

computation results in that 𝑁3 = (𝛾1𝑛33, 𝛾2𝑛33, 𝑛33)
𝑇 , where 𝑣33  represents any nonzero real 

number and 𝛾1 =
𝑏12𝑏23

𝑏11𝑏22−𝑏21𝑏12
, 𝛾2 = −

𝑏11𝑏23

𝑏11𝑏22−𝑏21𝑏12
. 

Let 𝛹3 = (𝜓31, 𝜓32, 𝜓33)
𝑇 be  𝐽2

∗𝑇 's eigenvector that corresponds to 𝜆23
∗ = 0. Then, it results 

that 𝛹3 = (0, 0, 𝜓33)
𝑇, where  𝜓33  is any nonzero real number. 

Because 
𝜕𝐺

𝜕𝑑2
= 𝐺𝑑2 = (0,0, −𝐼)

𝑇, we get that 𝐺𝑑2(�̅�2, 𝑑2
∗) = (0,0,0)𝑇, which produces 

              𝛹3
𝑇[𝐺𝑑2(�̅�2, 𝑑2

∗)] = 0. 

As a result, the "Sotomayor theorem" rules out the SNB at �̅�2. In addition, we have  

              𝛹3
𝑇[𝐷𝐺𝑑2(�̅�2, 𝑑2

∗)𝑁3] = −𝑛33𝜓33 ≠ 0,  

Therefore, by using Eq. (34) at (�̅�2, 𝑑2
∗) with 𝑁3 we get that 

              𝛹2
𝑇[𝐷2𝐺(�̅�2, 𝑑2

∗)(𝑁3, 𝑁3)] = 2𝛽𝛾2𝑛33
2 𝜓33 ≠ 0. 

Therefore, a TB occurs around �̅�2 when the parameter  𝑑2 = 𝑑2
∗. 

Finally, because the determinant of 𝐽(𝑃3
∗), which is given by 𝐴3 in Eq. (24), is always positive, 
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then there is no possibility for the IEP to be a non-hyperbolic point and hence there is no possibility 

for LB to occur. 

 

7. HOPF BIFURCATION 

In this section, HB occurs if an EP of a system loses its stability, meanwhile, a pair of complex 

conjugate eigenvalues of the linearization around the EP crosses the imaginary axis in a complex 

plan [36-38]. The following theorem gives to conditions under which this type of bifurcation. 

Theorem 11. If the following conditions hold   

                         𝑒1(𝑐1 + 𝑎1𝑆
∗) > 𝜌1                                   (37) 

             𝐴3
′ (𝑎2

∗) > 𝐴2
′ (𝑎2

∗)√𝐴2(𝑎2
∗) + 2(𝐴1(𝑎2

∗))
2
                            (38)         

then as the parameter 𝑎2  passes through the positive value 𝑎2 =
ℎ22ℎ23ℎ32−ℎ11ℎ22(ℎ11+ℎ22)

𝑆∗ℎ12(ℎ11+ℎ22)
+

𝑒1(𝑐1 + 𝑎1𝑆
∗) = 𝑎2

∗ , where ℎ𝑖𝑗; 𝑖, 𝑗 = 1,2,3 represent the JM elements that are given in Eq.(22), 

while 𝐴𝑖; 𝑖 = 1,2,3 are the coefficients of the characteristic Eq.(23), the system (1) possesses an 

HB at the IEP. 

Proof. System (1) will undergo an HB at 𝑎2 = 𝑎2
∗ = 𝑒1(𝑐1 + 𝑎1𝑆

∗) − 𝜌1,  where 𝜌1 =

ℎ11ℎ22(ℎ11+ℎ22)−ℎ22ℎ23ℎ32

𝑆∗ℎ12(ℎ11+ℎ22)
,  then the Jacobian matrix at the EP has a simple pair of complex 

eigenvalues, say 𝜆1,2 = 𝛿1(𝑎2) ±  𝑖𝛿2(𝑎2), such that they become purely imaginary at 𝑎2 = 𝑎2
∗. 

 Moreover, 
𝑑𝛿1(𝑎2)

𝑑
|
𝑎2=𝑎2

∗
≠ 0  should be held. Hence, substituting 𝜆 = 𝛿1(𝑎2) ±  𝑖𝛿2(𝑎2) , in 

Eq.(23), then calculating the derivative w.r.t. the bifurcation parameter 𝑎2 we get  

   
Θ(𝑎2)𝛿1

′(𝑎2) − Φ(𝑎2)𝛿2
′(𝑎2) = −θ(𝑎2)

Φ(𝑎2)𝛿1
′(𝑎2) + Θ(𝑎2)𝛿2

′(𝑎2) = −Γ(𝑎2)
}                                (39) 

where  

θ(𝑎2) = 𝐴1
′ (𝑎2)[𝛿1(𝑎2)]

2 − 𝐴1
′ (𝑎2)[𝛿2(𝑎2)]

2 + 𝐴2
′ (𝑎2)𝛿1(𝑎2) + 𝐴3

′ (𝑎2). 

Θ(𝑎2) = 3[𝛿1(𝑎2)]
2 + 2𝐴1(𝑎2)𝛿1(𝑎2) − 3[𝛿2(𝑎2)]

2 + 𝐴2(𝑎2). 

Γ(𝑎2) = 2𝐴1
′ (𝑎2)𝛿1(𝑎2)𝛿2(𝑎2) + 𝐴2

′ (𝑎2)𝛿2(𝑎2). 

Φ(𝑎2) = 6𝛿1(𝑎2)𝛿2(𝑎2) + 2𝐴1(𝑎2)𝛿2(𝑎2). 

Solving the liner system (39) then it gives that 

𝛿1
′(𝑎2) = −

θ(𝑎2)Θ(𝑎2)+Γ(𝑎2)Φ(𝑎2)

[Θ(𝑎2)]2+[Φ(𝑎2)]2
, 𝛿2
′(𝑎2) = −

Γ(𝑎2)Θ(𝑎2)−θ(𝑎2)Φ(𝑎2)

[Θ(𝑎2)]2+[Φ(𝑎2)]2
. 

Notices that 𝛿1(𝑎2
∗) = 0  and 𝛿2(𝑎2

∗) = √𝐴2(𝑎2
∗) , then at 𝑎2 = 𝑎2

∗   the coefficients of system 

(39) are written as 
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Θ(𝑎2
∗) = −2𝐴2(𝑎2

∗),

Φ(𝑎2
∗) = 2𝐴1(𝑎2

∗)√𝐴2(𝑎2
∗),

𝜃(𝑎2
∗) = 𝐴2

′ (𝑎2
∗)[𝐴1(𝑎2

∗) − √𝐴2(𝑎2
∗)],

Γ(𝑎2
∗) = 2𝐴1(𝑎2

∗)√𝐴2(𝜔4
∗).

 

Therefore, it is obtained that 

𝜃(𝑎2
∗)Θ(𝑎2

∗) + Γ(𝑎2
∗)Φ(𝑎2

∗) = −2𝐴2(𝑎2
∗) [𝐴3

′ (𝑎2
∗) − 𝐴2

′ (𝑎2
∗)√𝐴2(𝑎2

∗) − 2(𝐴1(𝑎2
∗))

2
] 

As a result, under condition (38), 𝛿1
′(𝑎2

∗) > 0, and then the system (2) undergoes HB at 𝑎2 = 𝑎2
∗  . 

 

8. NUMERICAL SIMULATIONS 

In this section, numerical simulations have been performed to validate our analytical findings of 

previous sections, we have used MATHLAB version 14 for our numerical simulation portion. 

Accordingly, System (1) with the following hypothetical fixed parameters Dataset is investigated. 

𝑟 = 2.5, 𝑘 = 20, 𝑐1 = 0.5, 𝑎1 = 0.1, 𝐸 = 0.2, 𝑞 = 0.1, 𝑒1 = 0.6, 𝑎2 = 0.1, 𝛽 = 0.15,  

                          𝑑1 = 0.05, 𝑑2 = 0.15                               (40) 

It is obtained that, the trajectory of the system (1) utilizing the parameters set (40) is approached 

to the IEP, 𝑃3
∗ = (15.03,1.25.73) starting from different initial points, see Figure (1).  

 

Figure 1. For Dataset (40), the solutions of system (1) approach to 𝑃3
∗ = (15.03,1,25.73) with 

multiple initial conditions. (a) 3D Phase portrait.  (b) The populations against time. 

Now, the impact of changing 𝑟 value on the system's dynamic (1) is examined, and the findings 

are shown in Figure (2) for a selection of values. It is obtained that, for 𝑟 < 0.02 the solution of 

system (1) still approaches asymptotically to the TEEP, and for 𝑟 ∈ [0.02,0.5]  the system’s 

solution converges asymptotically to 2𝐷 period attractor, while the system’s solution converges 

asymptotically to 3𝐷  period attractor, 𝑟 ∈ [0.6,1.7] and 𝑟 ≥ 3.23 . Otherwise the solution of 

system (2) approaches to the IEP for 𝑟 ∈ [1.71,3.22], as illustrated in Fig. (1). 
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Figure 2. The trajectory of system (1) for parameters (40) with different values 𝑟. (a) Approach 

to �̌�0 = (0,0,0) for 𝑟 = 0.01. (b) Time series for 𝑟 = 0.01. (c) (Periodic dynamics in  𝑋𝑆 −

plane for 𝑟 = 0.4. (f) Time series for 𝑟 = 0.4  (c). (e) Periodic dynamics in  ℛ+
3  for 𝑟 = 1.6. 

(f) Time series for 𝑟 = 1.6. 

It is observed further that for 𝑘 ≤ 0.25 the solution of system (1) approaches to the AEP and the 

system’s solution converges to 3𝐷 period attractor when 𝑘 ≥ 26.55, as illustrated in Fig. (3). 

While for 0.26 ≤ 𝑘 < 26.55 the solution of system (1) approaches to IEP, as illustrated in Figure 

(1). 
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Figure 3. The trajectory of the system (1) for parameters set (40) with different values 𝑘.  (a) 

Approach asymptotically to �̂�1 = (0.19,0,0)  for 𝑘 = 0.2.  (b) Time series for 𝑘 = 0.2 . (c) 

Periodic dynamics in  ℛ+
3  for 𝑘 = 30. (d) Time series for 𝑘 = 30. (e) Projection on the  𝑋𝐼 −

plane for 𝑘 = 30. 

The influence of varying 𝑐1 is studied numerically on the system's dynamic (1), and it is observed 

that for 𝑐1 ≤ 0.1 the system approaches to AEP. For 𝑐1 ∈ [0.2,0.44], the system approaches to a 

stable limit cycle. However, for 𝑐1 ≥ 2.37 , the system’s solution converges to 2𝐷  period 

attractor, as illustrated n in Figure (4). while 𝑐1 ∈ [0.45,2.36] the system approaches to the IEP, 
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as illustrated in Figure (1). 

 

 

 

 Figure 4. The trajectory of the system (1) for parameters set (40) with different values 𝑐1. (a) 

Approach asymptotically to �̂�1 = (19.8,0,0) for 𝑐1 = 0.2. (b) Time series for 𝑐1 = 0.2. (c) 

Periodic dynamics in  ℛ+
3  for 𝑐1 = 0.4. (d) Time series for 𝑐1 = 0.4. (e) Periodic dynamics 

in  𝑋𝑆 − plane for 𝑐1 = 2.9. (f) Time series for 𝑐1 = 2.9. 
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Now, the influence of altering 𝑎1is explored through Figure (5) 

 

Figure 5. The trajectory of the system (1) for parameters set (40) with different values 

𝑎1. (a)Periodic dynamics in  ℛ+
3  for 𝑎1 = 0.2. (d) Time series for 𝑎1 = 0.2..  

Clearly, increasing the value 𝑎1 ≥ 0.14  leads to periodic dynamics in ℛ+
3   , while decreasing 

𝑎1 ≤ 0.13.  it further leads to IEP as illustrated in Figure (1).  

The influence of varying 𝑒1 is numerically studied on the dynamic of the system (1), and it is 

observed that for 𝑒1 ≤ 0.20, the system approaches to AEP, for 𝑒1 ∈ [0.21,0.32] and 𝑒1 ≥ 0.84, 

the system approaches to a stable limit cycle as illustrated in Figure (6). while for 𝑒1 ∈

[0.33,0.83], the system approaches to a IEP, as illustrated in Figure (1). 
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Figure 6. The trajectory of system (1) for dataset (40) with different values 𝑒1. 2 . (a) Approach 

to �̂�1 = (0.19,0,0) for 𝑒1 = 0.2. (b) Time series for 𝑒1 = 0.2. (c) Periodic dynamics in  ℛ+
3  

for 𝑒1 = 0.3. (d) Time series for 𝑒1 = 0.2. 

The influence of 𝑎2 on the dynamic of system (1) in studied numerically and the obtained results 

give the following. for 𝑎2 ≤ 0.15, the system approaches to the IEP, as illustrated in Figure (1). 

In figure (7), shows the HB of system (1) when 𝑎2 ∈ [0.16,0.29]. However, for 𝑎2 ≥ 0.3,  the 

system (1) approach approaches to AEP. 

 

 

 

Figure 7. Dynamics of the trajectory showing the existence of limit cycle from the HB of system 

(1) (a) limit cycle behavior of solution for 𝑎2 = 0.16. (b) Time series for 𝑎2 = 0.16. (c) limit 
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cycle behavior for 𝑎2 = 0.2.  (d) Time series for 𝑎2 = 0.2.  (e) limit cycle behavior for 𝑎2 =

0.25. (f) Time series for 𝑎2 = 0.25. 

The biological interpretation of the HB is that the prey with the predator, exhibits oscillatory 

behavior. Indeed, we observe that if increasing parameter 𝑎2, we have periodic fluctuation of prey 

and predator species: Figure (7a)-(7f) show the existence of a limit cycle resulting from the HB.    

The effect of varying the parameters 𝑞, 𝐸, and 𝑑1 has a quantitative impact on the position of IEP. 

Finally, for 𝛽 ≤ 0.09 and 𝛽 ≥ 0.23  with the rest of the parameters as in (40), the trajectories of 

system (1) approach to a stable limit cycle, as illustrated in Figure (8). However, system (1) 

approaches the IEP otherwise, as illustrated in Figure (1). It is observed that the parameter 𝑑2 

has a similar influence on the dynamic of system (1) as that obtained for 𝛽. 

 

Figure 8. The trajectory of the system (1) for dataset (40) with different values 𝑐1. (a). Periodic 

dynamics in  ℛ+
3   for 𝛽 = 0.08 . (b) Time series for 𝛽 = 0.08 . (c) Projection on the  𝑋𝑆 −

plane for 𝛽 = 0.08. 
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9. CONCLUSION  

The effects of infected hunting cooperation, anti-predator, and harvest effect on the dynamics of 

the prey-predator eco-epidemiological system were studied in this work. The proposed 

mathematical model contains at most four EPs. The local and global stability analysis near EPs are 

studied. However, bifurcation analysis is used to understand the effects of varying the system 

parameters. Moreover, we have described the conditions of existence of the HB to analyze to what 

extent changes will influence the trajectories in the predation rate. We used a numerical simulation 

to confirm the analytical findings and understand the impact of parameters on the system dynamics 

(1).  

It is observed that the system is very sensitive to changes in most of the system’s (1) parameters 

so it has different types of attractors including point attractors and periodic attractors. Increasing 

the intrinsic growth in the prey, carrying capacity, hunting cooperation rate, conversion rate, 

infection rate, or mortality rate of infected predators above a vital value destabilizes the system 

and keeps its persistence. On the other hand, increasing the predation rate or the anti-predator rate 

above a vital point causes a loss of the persistence of the system. Decreasing the hunting 

cooperation rate or anti-predator rate below a vital point stabilizes the system. Finally, the 

harvesting rate and mortality rate of susceptible predators have a quantitative effect on the dynamic 

behavior of the system. 
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