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Abstract. The COVID-19 pandemic represented one of the most pressing global health crises of the 21st century, 

imposing substantial challenges upon national healthcare systems. Efforts to model this disease have become 

paramount in devising informed strategies for its containment. However, prevailing mathematical methodologies 

predominantly rely on deterministic models, which often oversimplify the complex dynamics of epidemic spread as 

they cannot quantify the uncertainty that accompanies this physical phenomenon. Notably, there is a dearth of models 

that specifically address the nuanced dynamics of hospitalized and intensive care unit (ICU) admitted cases, crucial 

for healthcare system planning. This paper, introduces a novel HCRD-R model, tailored to focus exclusively on 

hospitalized, ICU admitted, recovered and deceased cases in combination with a Kalman filter for predictive analysis 

within hospital settings. This focused approach aims to optimize resources while ensuring reliability in modeling and 

efficiently predicting critical epidemiological scenarios. The reliability of the model is examined on daily recording 

of COVID-19 in Italy, over a time interval of 106 days which takes place after the onset of the vaccination period. 

Several comparisons with deterministic and stochastic alternatives are also explored, validating the efficiency of the 

proposed epidemiological model. Finally, through our analysis we underscore the enhanced efficacy of stochastic 

epidemiological models over their deterministic counterparts, rendering them suitable for assessing the severity of 
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existing and new epidemic outbreaks. 
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1. INTRODUCTION 

   During December 2019, the world witnessed the emergence of the novel coronavirus, SARS-

CoV-2, known as COVID-19. Originating in Wuhan, China, the virus quickly traversed 

international borders, leaving an indelible mark on global health. From January 2020 till 2023, the 

World Health Organization declared this highly infectious disease a pandemic and since then, the 

recorded count indicates that over 700 million people have contracted received the infection, with 

a reported mortality exceeding 7 million  [1]. The pervasive nature of COVID-19 is underscored 

by its capacity for transmission from asymptomatic carriers, posing an insidious challenge to 

containment efforts. As nations implemented a spectrum of containment and detection strategies, 

such as vaccines, quarantines and testing, the relentless increase in diagnosed cases persisted. This 

surge placed a considerable toll on both economic and healthcare systems [2].  

    The present pandemic has been modeled in several cases, as most contagious diseases, using 

compartmental models. The most widely recognized are the SIR (Susceptible, Infected, Recovered) 

[3], SEIR (Susceptible, Exposed, Infected, Recovered) [4], [5], [6] or the SEIRD (Susceptible, 

Exposed, Infected, Recovered, Deceased) [7], [8] models. However, through the course of the 

pandemic, more notable fluctuations in disease parameters were introduced. The emergence of 

variants such as alpha, delta or omicron [9] is linked to increased contagiousness, amplified risk 

of hospitalization, ICU admission and mortality. However, prevailing studies on COVID-19 

modeling are predominantly centered around deterministic epidemiological models, describing the 

evolution of the pandemic through systems of ordinary differential equations.  

   These systems lack the capacity to incorporate stochastic behaviors inherent in the COVID-19 

pandemic, originating from errors in records and time-varying transmission behavior. Therefore, 
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a transition from deterministic to stochastic approaches is a practical consideration, aligning with 

the evolving landscape of disease modeling [10], [11], [12]. The incorporation of the Kalman filter 

in epidemiological modeling is motivated by its capabilities in handling noisy data, providing a 

methodological advantage in the context of infectious diseases, where fluctuations and 

uncertainties are inherent [13], [14], [15]. Other notable analysis which incorporate Kalman 

filtering techniques for the evaluation of the spread of infectious disease can be found in [16], [17], 

[18], [19], [20], [21]. These attempts mainly emphasize on the utilization of the extended Kalman 

filter (EKF) due to the non-linearity which is associated with the infection of susceptible 

individuals. Moreover, there are several attempts that aim to avoid the statistical assumptions that 

accompany Kalman filters, employing computational techniques derived from particle filtering 

[22], [23], [24]  [25], [26]. However, none of the aforementioned papers consider the existence of 

severe infections that may lead to hospitalizations or ICU admissions. 

    Another class of stochastic methodologies commonly referenced in literature -distinct from the 

Kalman filters- involves the application of continuous-time Markov chains. They are frequently 

utilized to model epidemiological systems of moderate complexity, typically containing 2 to 4 

states [27], [28], [29], [30], [31], [32], [33], [34], [35]. In contrast to our analysis, these models 

focus on specific epidemiological features, such as the extinction time of a disease, the final size 

(total number) of infections or deaths, the optimal revaccination time, the maximum cardinality of 

infections, etc. Once again, we underline that these schemes and respective stochastic 

epidemiological descriptors do not consider the existence of hospitalizations, ICU admissions or 

open population dynamics [2], [36], [37], [38]. 

     Aiming to address the aforementioned limitations, in this paper, we propose a novel HCRD 

(Hospitalized, ICU admitted, Recovered, Deceased) epidemiological model which is combined 

with the integration of the Kalman filter methodology with parameter estimation. This model is 

focused solely on the population within hospitals, which enriches the existing literature, where 

specialized predictions considering the subpopulation of severely infected patients which 
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transition inside or outside hospital facilities are highlighted. Additionally, the incorporation of the 

cardinality of individuals who recovered outside hospitals or ICUs provides a significant 

enhancement of the generated predictions.  

    We test the reliability of our model on reported data from Italy, covering a period of 106 days, 

providing daily estimates for hospitalized, ICU admitted, recovered and deceased cases. In the 

results section, a comprehensive comparison of the developed models was conducted to assess the 

utility of Kalman-based models. The key attribute underlying the efficacy of our approach lies in 

the integration of the Kalman filter, which enables the model to assimilate information from the 

observed data, thereby enhancing its predictive capacity amidst the intricate dynamics of the 

phenomenon. 

   Given the challenges posed by the COVID-19 pandemic, there is a significant need to 

investigate the complex dynamics of hospitalizations, as they represent a quite informative 

indicator regarding the severity of the pandemic’s infection wave. Employing mathematical 

models more focused on the effects of the pandemic within healthcare systems is essential in order 

to gain understanding of its impact. By concentrating on the specific dynamics of hospital 

admissions, these models would enable precise predictions of the strain on healthcare facilities, 

guiding proactive resource allocation and capacity planning. This targeted approach facilitates 

informed decision-making for public health interventions, such as implementing timely measures 

and optimizing vaccination strategies to mitigate the burden on hospitals. 

2. PRELIMINARIES 

2.1 Proposed HCRD and HCRD-R models 

     In this paragraph, we introduce the HCRD compartmental scheme, through which we can 

examine the impact of coronavirus on Italy’s healthcare system based on real-time records. As 

previously mentioned, our model specifically concentrates on four distinct states/compartments 

relevant to patients that are admitted to hospitals: hospitalized, ICU-admitted, recovered and 



5 

KALMAN-BASED (HCRD-R) EPIDEMIOLOGICAL APPROACH 

deceased cases. Figure 1 illustrates the transitions between the abovementioned states in the 

proposed epidemiological model, providing a visual representation of its dynamics. 

 

FIGURE 1. Diagram of the HCRD epidemiological model 

𝑑𝐻
𝑑𝑡

= 𝜂𝑁𝐶(𝑡) − 𝜆𝐻(𝑡) − 𝜅𝐻(𝑡) − 𝜇𝐻(𝑡)                           

𝑑𝐶
𝑑𝑡

=  𝜆𝐻(𝑡) − 𝜏𝐶(𝑡) − 𝜌𝐶(𝑡)                             

𝑑𝑅
𝑑𝑡

= 𝜅𝐻(𝑡) + 𝜏𝐶(𝑡)                             

𝑑𝐷
𝑑𝑡

= 𝜇𝐻(𝑡) + 𝜌𝐶(𝑡)                             

          (1) 

TABLE 1. Parameter and state definitions concerning the introduced HCRD model 

Symbol Definition of Parameter/State 

𝑁𝐶(𝑡) New cases 

𝐻(𝑡) Hospitalized 

𝐶(𝑡) ICU admitted 

𝑅(𝑡) Recovered 

𝐷(𝑡) Deceased 

𝜂 Hospitalization rate 

𝜆 Transition rate from hospital to ICU 

𝜅 Recovery rate of hospitalized cases 

𝜏 Recovery rate of ICU admitted cases 

𝜇 Death rate of hospitalized cases 

𝜌 Death rate of ICU admitted cases 
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     The HCRD model is characterized by the aforementioned continuous-time deterministic system. 

In this system, 𝐻(𝑡), 𝐶(𝑡), 𝑅(𝑡) and 𝐷(𝑡) represent the cardinality of hospitalized, ICU admitted, 

recovered and deceased compartments during the examined time interval. The model’s parametric 

space includes the transition rates 𝜆, 𝜅, 𝜇, 𝜏, 𝜌 , where 𝜆  signifies the admission rate in ICU, 𝜅, 𝜏 

denote the recovery rates from a hospital or ICU admission and 𝜇, 𝜌 represent the mortality rates 

of hospitalized and the ICU-admitted patients, respectively. Parameter 𝜂  signifies the daily 

hospitalization rate, which can be estimated from daily records. The product of this factor with the 

number of new cases (𝑁𝐶(𝑡)), signify the daily number of new hospital entries. We note that all 

parameters are non-negative constant rates, thus the system’s parametric space is (𝜂, 𝜆, 𝜅, 𝜏, 𝜇, 𝜌) ∈

ℝ+
6 . Table 1 summarizes the definitions of the notation employed for the utilized deterministic 

system of differential equations.  

     The second model, HCRD-R incorporates an additional transition to account for individuals 

who have recovered outside the hospital setting, as signified by the second “R” in its abbreviation. 

Additionally, it refines the previous epidemiological scheme by incorporating a temporal 

adaptation, selecting hospital entries from the preceding 𝑡∗ days. In each case, the researcher can 

choose 𝑡∗  to align with the characteristics of the data. In our analysis, we select 𝑡∗ = 7 𝑑𝑎𝑦𝑠 . 

However, it is essential to note that this duration may vary in different epidemics, contingent upon 

the specific characteristics of the phenomenon. The product of the parameter 𝜂 with the number of 

new cases (𝑁𝐶(𝑡 − 𝑡∗)), signify the daily number of new hospital entries.  According to the above, 

we lead to  

𝑑𝐻
𝑑𝑡

= 𝜂𝑁𝐶(𝑡 − 𝑡∗) − 𝜆𝐻(𝑡) − 𝜅𝐻(𝑡) − 𝜇𝐻(𝑡)

𝑑𝐶
𝑑𝑡

= 𝜆𝐻(𝑡) − 𝜏𝐶(𝑡) − 𝜌𝐶(𝑡)

𝑑𝑅
𝑑𝑡

= 𝜅𝐻(𝑡) + 𝜏𝐶(𝑡) + (1 − 𝜂) 𝑁𝐶(𝑡 − 𝑡∗)

𝑑𝐷
𝑑𝑡

= 𝜇𝐻(𝑡) + 𝜌𝐶(𝑡)

   .                                 (2) 

     The attributes of the continuous-time formulation need to be derived from the discrete time 
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observations of real-time data, making the discretization of the system a necessary step in this 

analysis. Commencing with the initial system, it can be discretized using finite differences, 

specifically employing the expression 
𝑑𝑢

𝑑𝑡
=

𝑢(𝑡+Δ𝑡)−𝑢(𝑡)

Δ𝑡
. This results in the transformation of the 

first ODE’s system into a state-space representation. As a result, the discrete-time system takes the 

form 

𝐻𝑡+1 = 𝜂𝑁𝐶𝑡 + (1 − 𝜆 − 𝜅 − 𝜇)𝐻𝑡       

 𝐶𝑡+1 = 𝜆𝐻𝑡 + (1 − 𝜏 − 𝜌)𝐶𝑡
        

𝑅𝑡+1 = 𝑅𝑡 + 𝜅𝐻𝑡 + 𝜏𝐶𝑡   
𝐷𝑡+1 = 𝐷𝑡 + 𝜇𝐻𝑡 + 𝜌𝐶𝑡

                    
.                            (3) 

This discretized system is more suitable for interpreting population movements within hospitals 

during discrete time steps. The states at time 𝑡 can be assembled in a vector 𝒙𝑡
𝑇 = [𝐻𝑡, 𝐶𝑡, 𝑅𝑡 , 𝐷𝑡]. 

Similarly, the second system undergoes the discretization process, following the same rationale. 

The resulting discrete-time system is given by 

𝐻𝑡+1 = 𝜂𝑁𝐶𝑡−𝑡∗ + (1 − 𝜆 − 𝜅 − 𝜇)𝐻𝑡                              

𝐶𝑡+1 = 𝜆𝐻𝑡 + (1 − 𝜏 − 𝜌)𝐶𝑡

                       𝑅𝑡+1 = 𝑅𝑡 + 𝜅𝐻𝑡 + 𝜏𝐶𝑡 + (1 − 𝜂)𝑁𝐶𝑡−𝑡∗

𝐷𝑡+1 = 𝐷𝑡 + 𝜇 𝐻𝑡 + 𝜌𝐶𝑡        
                                        (4)

 

2.2 Stochastic HCRD and HCRD-R models 

     In this section, our focus shifts on the transformation of the deterministic models HCRD and 

HCRD-R into stochastic equivalents which can account for the existing uncertainty that 

accompanies the description of physical phenomena, such as epidemic outbreaks. This conversion 

necessitates a meticulous reformulation of the ODEs into a state-space representation. This method 

is grounded in discretizing the ODE system, opting for a time step Δ𝑡 = 1 to align with the daily 

reporting frequency of pandemic-related observations. We remind that vector 𝒙𝑡 = [𝐻𝑡  𝐶𝑡 𝑅𝑡 𝐷𝑡]𝑇 

represents the state vector characterizing the daily cardinality of hospitalized, ICU admitted, 

recovered and deceased cases at time step 𝑡 . Therefore, in the initial model the state-space 

representation is expressed as follows 

�̃�𝑡 = 𝑓(�̃�𝑡−1) + 𝒘𝑡 ,                                                            (5) 
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where 

𝑓(�̃�𝑡−1) = [

𝜂𝑁𝐶𝑡−1 + (1 − 𝜆 − 𝜅 − 𝜇)𝐻𝑡−1

𝜆𝐻𝑡−1 + (1 − 𝜏 − 𝜌)𝐶𝑡−1

𝑅𝑡−1 + 𝜅𝐻𝑡−1 + 𝜏𝐶𝑡−1

𝐷𝑡−1 + 𝜇 𝐻𝑡−1 + 𝜌 𝐶𝑡−1

] ,                                          (6) 

while vector 𝒘𝑡  represents the introduction of Gaussian noise with covariance matrix 𝑸 , 

signifying the transition from the deterministic to the stochastic perspective. The incorporation of 

white noise encapsulates the uncertainty inherent in the transitions between the model’s states that 

the deterministic approach fails to capture. Sources of uncertainty may derive from perturbations 

of admission rates, asymptomatic infections and population’s heterogeneity. Therefore, it is 

evident that the transition to a stochastic point of view seems necessary. 

      For the introduced (HCRD-R) model the state-space representation can be derived in a similar 

manner as 

𝑓𝑅(�̃�𝑡−1) = [

𝜂𝑁𝐶𝑡−𝑡∗−1 + (1 − 𝜆 − 𝜅 − 𝜇)𝐻𝑡−1

𝜆𝐻𝑡−1 + (1 − 𝜏 − 𝜌)𝐶𝑡−1

𝑅𝑡−1 + 𝜅𝐻𝑡−1 + 𝜏𝐶𝑡−1 + (1 − 𝜂)𝑁𝐶𝑡−𝑡∗−1

𝐷𝑡−1 + 𝜇𝐻𝑡−1 + 𝜌 𝐶𝑡−1

].                           (7) 

To leverage the available observations, we introduce the following second stochastic equation, 

where 𝒗𝒕 also denotes white Gaussian noise with zero mean and covariance matrix 𝑹 

𝒚𝑡 = ℎ(�̃�𝑡) + 𝒗𝑡 ,                                                              (8) 

The inclusion of white noise in this equation is essential to account for uncertainties inherent in 

daily observations, which may originate from errors and delays in records. In our case, both the 

state-space system and the observation equation involve linear functions. Consequently, ℎ(. ) can 

be expressed through a matrix 𝑯  that takes the form of a 4-dimensional identity matrix. This 

reformulates equation (8) as 

𝒚𝑡 = �̃�𝑡 + 𝒗𝑡  .                                                                 (9) 

The Kalman filter is a well-suited algorithm for systems that can be effectively modeled using 

linear dynamics. The application of the Kalman filter involves the following sequential steps: 
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i) Set the initial system state and its corresponding covariance matrix 

�̂�0 = 𝐸[𝒙0] ,                                                            (10) 

�̂�0 = 𝐸[(𝒙𝟎 − �̂�0)(𝒙0 − �̂�0)]𝑇 .                                           (11) 

ii) During the prediction step, compute the a priori state estimate  

�̂�𝑡|𝑡−1 = 𝑓(�̂�𝑡−1|𝑡−1) ,                                                     (12) 

𝑷𝑡|𝑡−1 = 𝑭𝑡𝑷𝑡−1|𝑡−1𝑭𝑡
𝑇 + 𝑸 ,                                                (13) 

where 𝑭𝑡 =
𝑑𝑓

𝑑𝑡
|

�̂�𝑡−1|𝑡−1
. 

iii) Calculate the Kalman Gain 

𝑲𝑡 = 𝑷𝑡|𝑡−1𝑯𝑡
𝑇(𝑯𝑡𝑷𝑡|𝑡−1𝑯𝑡

𝑇 + 𝑹)
−1

 .                                       (14) 

iv) During the update phase, compute the a posteriori estimate considering daily records 

𝒙𝑡|𝑡 = �̂�𝑡|𝑡−1 + 𝑲𝑡(�̂�𝑡 − 𝑯𝑡�̂�𝑡|𝑡−1),                                            (15) 

𝑷𝑡|𝑡 = (𝑰 − 𝑲𝑡𝑯𝑡)𝑷𝑡|𝑡−1 .                                                  (16) 

v) Repeat the same process for 𝑡 = 1, … , 𝑇, where 𝑇 is the time series’ length. 

2.3 Datasets   

       In this section, we introduce the two datasets comprising daily observations that we utilized 

to implement the HCRD and HCRD-R modeling schemes to offer estimations of the progression 

of the pandemic in hospitals. First, we utilize the dataset sourced from [39] an open-access 

database provided by the University of Oxford. This dataset offers daily observations of deceased 

individuals, hospitalized cases, total cases and ICU patients, which are subsequently extracted for 

analysis. 

      Moreover, we access data on the daily count of currently positive cases from the database 

available on the website [40]. This webpage is updated daily and provides official COVID-19 data 

for all European Union member states, sourced from national resources. By subtracting the daily 

counts of currently positive and deceased cases from the daily cases, we calculate the total number 

of recoveries. It is important to emphasize that we have verified the compatibility of these two 
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datasets. Both datasets consistently reflect the same numbers for deceased, hospitalizes and ICU 

patients. Additionally, the column representing total cases in the first dataset aligns perfectly with 

the column for total positive cases in the second dataset, further validating the consistency between 

datasets. 

3. MAIN RESULTS  

3.1 Simulations of the deterministic HCRD and HCRD-R models 

     For this analysis, we assume that the model’s parameters remain constant. To estimate them we 

conduct numerous simulations, applying the least squares method with the root mean square error 

(RMSE) as the criterion for parameter selection. Throughout this process, we iteratively adjust the 

model’s parameters to minimize the discrepancy between the observed data and the model’s 

predictions. This allows the determination of parameters that provide the best fitting performance 

with the real-time data of the pandemic in Italy. This simulation spans 106 days – from June 8, 

2022, to September 21, 2022 – during which we observe a single wave of hospitalizations peaking 

after 49 days.  

     By assuming fixed parameters, we disregard factors such as the emergence of COVID-19 

variants, which could potentially influence hospital or ICU admission rates, as well as death and 

recovery rates. It is important to highlight that the COVID-19 pandemic data from Italy serves 

solely for verification and validation purposes in this study. However, the proposed method is 

designed to be generic and applicable across various contexts, therefore it can also be utilized to 

model the spread of COVID-19 pandemic in other countries or regions. The optimal model 

parameters for the deterministic HCRD and HCRD-R models are presented in Table 2. 

TABLE 2. The values of the deterministic models’ parameters 

 𝜂 𝜆 𝜅 τ 𝜇 𝜌 

Deterministic HCRD model 0.048 0.02 0.48 0.44 0 0.01 

Deterministic HCRD-R model 0.141 0.02 0.7 0.62 0.01 0.01 
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     It is notable that in the deterministic HCRD model, the optimal parameter value for the 

transition from the hospitalized to the deceased state is identified as 0. This indicates that, within 

the framework of this model, the least RMSE value is achieved under the assumption that there 

are no direct transitions from the hospitalized to the deceased state. This observation may derive 

from the fact that during the examined period, the ratio of deaths generated directly from the 

“Hospitalized” compartment could be considered negligible since nursing stuff and doctors have 

faced several COVID-19 cases and gained valuable experience against severe infections. However, 

the absolute absence of deceased cases originating from this compartment seems infeasible. As a 

result, for the improved epidemiological form, namely the HCRD-R scheme, we encounter a 

correction of this estimate, obtaining 𝜇 = 0.01. For both models, we encounter lower mortality 

rates (𝜇, 𝜌) compared to the respective recovery ones (𝜏, 𝜇). This phenomenon is in accordance 

with the literature and daily records, as the percentage of patients which have recovered from 

COVID-19 has increased dramatically during the vaccination period.  

 

FIGURE 2. Comparison of the predictions generated from the deterministic HCRD model with 

daily observations (red line: observed data, green line: deterministic model’s predicitons) 
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     We proceed with the exploration of the performance of the HCRD model. This model serves as 

the foundation of our epidemic modeling framework, capturing the dynamics of hospitalizations, 

ICU admissions, recoveries and deaths. Figure 2 illustrates the comparison between the model 

predictions and the observed data, providing insights into the performance of the model in 

capturing the dynamics of the COVID-19 pandemic within hospital settings. 

      The diagrams indicate that the estimates for hospitalizations and ICU admissions closely align 

with the observed data. However, there appears to be less accuracy in estimating the recovered and 

deceased states. The model appears to have captured the trends in the hospitalized and ICU states 

reasonably well, but adopts a more linear trend for the recovered and deceased states. This likely 

stems from the relatively large population size in the recovered state compared to the hospital and 

ICU states, indicating that the recovered state is less susceptible to their influence. Additionally, 

the minimal changes observed in the deceased state can be attributed to the small values of 

parameters 𝜇 and 𝜌 which reduce its sensitivity to changes.      

 

FIGURE 3. Comparison of the daily observations with the predictions of the deterministic model, 

the a priori and a posteriori estimates (red line: observed data, green line: deterministic model’s 

predictions, blue: a priori estimate of the stochastic model, black: a posteriori estimate of the 

stochastic model) 
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          Now, we introduce the Kalman filter into our modeling framework, incorporating white 

noise 𝒘𝑡 ~ 𝑁(𝟎, 𝑸) in the state equation and 𝒗𝑡  ~ 𝑁(𝟎, 𝑹) in the observation equation, where 𝑸 

and 𝑹  are diagonal matrices, the elements of which are estimated in the same manner as the 

model’s parameters. Figure 3 provides a visual comparison between the observed data, the 

predictions of the deterministic model, the a priori and a posteriori estimates produced by the 

Kalman filtering procedure. 

       From Figure 3, it is evident that the predictive ability of the model significantly improves in 

the hospitalized, recovered and deceased states when utilizing the Kalman filter. The a priori 

estimates for these states converge more to the observed data than those from the deterministic 

model, suggesting that incorporating noise into the deterministic models, leading to the 

construction of a stochastic epidemiological equivalents, is highly beneficial. Furthermore, the a 

posteriori estimation, which integrates information from the observed data, further refines our 

predictions, demonstrating even greater accuracy. However, the ICU state presents an exception 

where the deterministic model appears to provide a better fit than stochastic approaches. In this 

case, the a posteriori estimation does not improve upon the a priori estimation, indicating that for 

the ICU state, the deterministic model is the most effective. This observation is further supported 

by the root mean square errors (RMSE) of the predictions compared to the observations, as 

depicted in Table 3. 

TABLE 3. Root mean square errors of model’s predictions compared to daily observations 

HCRD model \ RMSE H C R D 

Deterministic 3702 112 2883747 5651 

A priori est. 2100 454 122649 166 

A posteriori est. 598 778 76484 77 

      Moving on to the second model of the analysis, the HCRD-R model, there are notable 

differences compared to the HCRD model. In the HCRD-R model, we select new cases, which is 

used for the calculation of the new hospital entries, from 𝑡∗ days ago as input, where in our case 
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𝑡∗ = 7 𝑑𝑎𝑦𝑠. Additionally, we modify the equation for the recovered state to include cases that 

have recovered outside the hospital. Upon examining the predictions from the first model, we 

observe fluctuations in the hospitalized and ICU admitted states that likely arise from the time 

series of new cases. To address this, we apply a moving average to smooth the pattern of daily 

observations. After experimenting with different orders, we find that an order of 8 provides the 

optimal balance between smoothing and retaining the information of the time series. Figure 4 

illustrates the smoothing of the time series of new cases. 

 

FIGURE 4. Smoothing of new cases based on the MA (8) filter (red line: original time series, 

blue: smoothed time series) 

      With these enhancements, we developed the new and improved HCRD-R model to predict the 

population dynamics across the different states. Figure 5 illustrates the comparison between the 

HCRD-R model predictions and the observed data. In the four diagrams, the improvement in fitting 

is evident, particularly noticeable in the hospitalized and ICU admitted states, where the estimated 

lines exhibit smoother trajectories compared to the original HCRD model. Moreover, we observe 

significant improvements in the recovered and deceased states compared to the HCRD 

deterministic model. These improvements are reflected in trajectories that closely follow the trend 

of the observed data, contrasting with the more linear predicted lines of the original model. This 

improvement is also apparent when examining the RMSEs of the two models, shown in Table 4. 
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TABLE 4. RMSEs of the two deterministic models 

Model H C R D 

Deterministic HCRD 3702 112 2883747 5651 

Deterministic HCRD-R 3833 98 291207 835 

 

 

 

 

FIGURE 5. Visual comparison of the deterministic HCRD-R model with the daily observations 

(red line: observed data, green line: Deterministic model’s predictions) 
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FIGURE 6. Comparison of the observations with the deterministic model, the a priori and the a 

posteriori estimate (red line: observed data, green line: deterministic model’s predictions, blue: a 

priori estimate of the stochastic model, black: a posteriori estimate of the stochastic model) 

 

     Following the same methodological approach, we proceed to apply the Kalman filter to the 

HCRD-R deterministic model. The integration of the Kalman filter significantly enhanced the 

predictive capabilities of the previous model. Given this improvement, we anticipate a similar 

enhancement in the accuracy and reliability of the predictions for the HCRD-R model. Figure 6 

provides a visual representation of the outcomes obtained from the HCRD-R with Kalman filtering 

across all states. 

TABLE 5. RMSEs of the HCRD-R model 

HCRD-R model H C R D 

Deterministic 3833 98 291207 835 

A priori est. 3070 24 38369 42 

A posteriori est. 575 2.9 9411 10.8 
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TABLE 6. RMSEs of all models for the four compartments of the examined epidemiological 

scheme 

Model H C R D 

Deterministic HCRD 3702 112 2883747 5651 

Stochastic HCRD 598 778 76484 77 

Deterministic HCRD-R 3833 98 291207 835 

Stochastic HCRD-R 3070 24 38369 42 

     

       The diagrams indicate that the Kalman filter significantly enhanced the predictions of the 

HCRD-R model, particularly for the hospitalized and ICU admitted states. Furthermore, the model 

closely aligns with the observations of the recovered and deceased states. As observed previously, 

the inclusion of noise in the deterministic model has led to improvements in prediction accuracy, 

particularly noticeable in the ICU, recovered and deceased states. Furthermore, the integration of 

the observed data in the a posteriori estimation has further enhanced the accuracy of estimations 

across all states. Table 5 presents the RMSEs of the deterministic HCRD-R and its Kalman filter 

application, while Table 6 adds the RMSEs of the HCRD model and its stochastic counterpart, 

facilitating a comprehensive comparison of all models. 

4. DISCUSSION 

     Epidemics, particularly exemplified by the rapid global spread of the novel SARS-CoV-2 

present significant challenges for national healthcare systems. The surge in cases strains hospital 

and ICU capacities, leading to a decline in the quality of patient care [41]. Mathematical modeling 

of infectious diseases typically adopts deterministic approaches [42], often extending standard 

models like the SIR model to include additional differential equations for states such as deceased, 

hospitalized and ICU admitted cases [43], [44], [45]. However, the presence of multiple states 

complicates the system, posing challenges for investigating the impact of restrictive measures, 
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such as lockdowns and masks, on healthcare resource management. 

      In this paper, we introduce a novel HCRD model and its enhanced version, HCRD-R, with 

parameter estimation through the method of least squares. Our aim is to address limitations 

observed in existing models by offering a specialized framework tailored to the assessment of 

hospital and ICU admissions and discharges. The introduced scheme is of significant importance 

since it facilitates the precise evaluation of conditions inside hospital facilities. Efficient prediction 

of patient admissions will contribute to the effective distribution of resources, avoiding situations 

like those encountered in Italian hospitals during the initial stages of the COVID pandemic, which 

led to excess mortality. 

      The HCRD-R model incorporates several improvements over the HCRD one. Firstly, we 

modify the input of new cases in the system to be chosen 𝑡∗ days prior to the day of admission. 

Additionally, we implement a smoothing technique for the time series of new cases to enhance 

data accuracy. Furthermore, we extend the “Recovered” state to include individuals who have 

recovered outside the hospital. These models consider daily COVID-19 cases as input multiplied 

by an estimated parameter (𝜂) to represent the rate at which new cases are admitted to hospital. It 

is evident that thorough COVID-19 testing was conducted to those admitted to hospitals and ICUs. 

Consequently, the daily observations of these two states serve as reliable data for validating the 

fitting performance of the proposed model. 

     The Kalman filter methodology leverages both daily observations and the model equations, 

integrating them while introducing white noise to adopt a stochastic approach. This enhancement 

significantly improves the model’s fitting ability. The presented results, which involve fitting the 

spread of the disease in Italy over approximately 4 months during the vaccination period, affirm 

the reliability of our model.  

     We contend that employing this stochastic approach is essential. Despite the reliability of the 

data from hospitals and ICUs, there remains room for errors. In our model, the existence of errors 

associated with the daily records is justified by the addition of the white noise. Additionally, 
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incorporating all possible transitions to the epidemiological scheme aiming to better explain the 

phenomenon’s dynamics would necessitate a more computationally expensive model, rendering 

the estimation process unprofitable. As a result, we have included only the necessary transition 

rates leading to 6 parameters (𝜂, 𝜆, 𝜅, 𝜇, 𝜏, 𝜌) that have to be estimated before the application of the 

Kalman methodology. According to the above, we believe that the adoption of stochastic modeling 

approaches is more suitable. 

     In epidemic modeling, deterministic models are frequently favored for their simplicity 

compared to the stochastic models. Despite the widespread use, their limitations are often 

acknowledged but overlooked [46]. While deterministic models offer the advantage of being 

amenable to analysis and occasionally yield explicit solutions, their main drawback lies in their 

oversimplification, rendering conclusions less applicable to real-world epidemics. Introducing 

additional complexity to these models enhances realism but also increases analytical challenges 

and introduces additional uncertainties through the incorporation of more parameters. Important 

features to enhance the realism of epidemic models is the inclusion of individual heterogeneity, or 

the introduction of randomness in certain features such as actual transmissions, social structures 

and latent periods. Stochastic models enable individuals to exhibit diverse behaviors specified by 

random distributions, such as the white noise employed in this analysis [47], [48], [49] 

     As evident in the results section, the HCRD-R model outperforms the HCRD model in fitting 

the observed data. This fact is observed both visually, through the figures, and quantitatively, via 

the RMSEs for each state. Additionally, the Kalman filter generally provides a closer 

approximation of reported data compared to their deterministic counterparts, except for the ICU 

estimation in the first model (Table 6). Notably, among the models evaluated, the stochastic 

HCRD-R model exhibits the closest alignment with the reported data. 

     In analyzing the RMSE values across different states and models, notable variations were 

observed. In the deterministic HCRD model, the RMSE increased by 20.58% in the hospitalized, 

366.7% in the ICU admitted, 7415.8% in the recovered and 10786.5% in the deceased state. 
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Similarly, the deterministic HCRD-R model exhibited increase in RMSE by 24.85% in the 

hospitalized, 308% in the ICU admitted, 659% in the recovered and 1888% in the deceased state. 

In contrast, the stochastic HCRD model displayed a decrease in RMSE by 80.5% in the 

hospitalized state, but experienced increases by 3141.7% in the ICU admitted, 99.3% in the 

recovered and 83.3% in the deceased state. Consequently, the stochastic HCRD-R model 

demonstrates notably higher accuracy compared to the other models in depicting population 

dynamics within hospital settings. 

     Control measures like vaccination has shown notable efficiency against severe infections and 

hospitalizations. For instance, the authors in [50] reported a 63% decrease in anticipated total 

deaths due to vaccination, while in [51] they indicated reductions of 63.5% and 65.6% in non-ICU 

hospitalizations and ICU admissions, respectively, over a 300-day period in the United States. 

Additionally, researchers in [52] found that vaccination was 72% effective in preventing deaths, 

with a slightly lesser effect against the B.1.1.7 variant compared to non-B.1.1.7 strains (70% and 

78% reduction, respectively). Finally, according to [53], mortality rates in areas with varying levels 

of vaccination coverage (low, medium, and high) decreased by 60%, 75%, and 81%, respectively, 

during the first half of 2021. 

     The model’s effectiveness is constrained by several factors that warrant consideration. Firstly, 

parameter uncertainty [54] introduces challenges in accurately estimating key variables such as 

transition rates and intervention effects, which can impact the reliability of model’s predictions. 

Additionally, the model’s effectiveness is tempered by data limitations, too [55]. These limitations 

result in gaps in comprehending essential aspects of population dynamics, along with data quality 

issues, such as reporting errors that introduce uncertainties to the outputs impending its ability to 

provide accurate and reliable predictions. Finally, capturing the evolving nature of epidemics over 

time presents a complex challenge [56], as the dynamics of disease spread and the appearance of 

variants and interventions may fluctuate unpredictably. These limitations underscore the need for 

careful interpretation of results and ongoing refinement of the model to enhance its robustness and 
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applicability in diverse epidemiological contexts. 

5. CONCLUSIONS 

      This paper presents a novel epidemiological Kalman filter model tailored specifically to track 

hospitalized, ICU admitted, recovered and deceased cases, demonstrating its efficacy over a 

vaccination period of 106 days in Italy. Notably, this model could also be used for analyzing future 

pandemics and build effective strategies in better healthcare resource planning. By leveraging the 

Kalman filter, the model integrates comprehensive information from daily records, capturing the 

evolving dynamics of the pandemic and its strains on healthcare systems. Successfully navigating 

these complex dynamics, the proposed model surpasses its deterministic counterparts, yielding 

notably smaller RMSE values. Consequently, we advocate for increased utilization of stochastic 

methods in the future. These techniques can assist public health authorities not only in gauging the 

severity of a novel epidemic outbreak but also in assessing the effectiveness of intervention 

strategies. This enables the pursuit of an optimal equilibrium between health benefits and socio-

economic implications. 

      In future research endeavors, extending the application of our model to other regions or 

different time periods prior to the vaccination campaign would be valuable. Additionally, exploring 

longer time intervals to assess changes in hospital and ICU admissions before and after vaccination 

could provide insights into the impact of vaccination campaigns on disease dynamics [57]. 

Furthermore, incorporating vaccination and other intervention strategies as control inputs [58] in 

parallel with information concerning chronic diseases [59] would enable the evaluation and 

comparison of optimal strategies for reducing patient admissions. Moreover, employing 

likelihood-based parameter estimation methods [15], [60] could further enhance the accuracy of 

our model’s predictive capabilities and overall reliability. Lastly, expanding the model to include 

additional states could also enhance its predictive capabilities, enabling it to forecast outcomes 

across a broader range of scenarios.  
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