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Abstract. Among other cancer type, breast cancer is the leading cause of death worldwide. The traditional 

approach in detecting breast cancer malignancy relied on rigorous analysis, making the whole process prone to 

diagnostic error. This study proposes a deep learning solution to solve the problem using deep ensemble 

convolutional neural network (CNN) models constructed from single and smaller ensemble models. The utilized 

single models are ResNet50V2, InceptionResNet50V2, DenseNet201, EfficientNetB4, EfficientNetV2S, and 

Xception. Smaller ensemble combinations are also made from the single models. The deep ensemble models 

composed of ResNet50V2-EfficientNetV2S-DenseNet201, EfficientNetB4-EfficientNetV2S-Xception, 

EfficientNetB4-EfficientNetV2S, DenseNet201-EfficientNetB4, and ResNet50V2-DenseNet201. These models are 

trained using histopathological images acquired from Hasanuddin University Hospital and BreakHis with 400x 

magnification. Despite the data imbalance, the deep ensemble successfully obtained a 0.94 ROC-AUC score with a 

0.97 average precision (AP) score, showing its capability to distinguish breast cancer malignancy from 

histopathological images. Further analysis revealed some distinctive patterns in the image that make the images easily 



2 

INTAN, NELWAN, HENRY, KARNYOTO, PUSPITASARI, PARDAMEAN 

classified by the deep ensemble model. This study has demonstrated that the deep ensemble CNN model constructed 

from smaller ensemble CNN models yields remarkable results in breast cancer detection. 

Keywords: breast cancer; convolutional neural network; classification; deep learning; ensemble; histopathological 

images. 

2020 AMS Subject Classification: 68T07, 92C55. 

 

1. INTRODUCTION 

Breast cancer is the leading cause of cancer-related deaths worldwide [1]. In 2020, there were a 

total of 2,261,419 cases of breast cancer, accounting for 11.7% of all cancer cases (Figure 1). The 

number is significantly increased, replacing lung cancer from their most prevalent disease title in 

years prior [2]. Additionally, the mortality rate for breast cancer remains alarmingly high, with 

5,528,810 deaths reported in the same year. In 2023, there were 297,790 breast cancer incidences 

estimated in US alone, the highest among other cancer cases. In Southeast Asia, specifically in 

Indonesia, there were 47.1% female breast cancer cases and 62.1% female breast cancer mortality 

predicted in 2040 [3]. Recently, intronic MUTYH DNA glycosylase has been found to escalate 

the risk of breast cancer in Indonesian population [4]. This exceptional circumstance 

surrounding breast cancer is a topic of frequent discussion in health-related seminars held across 

the globe. 

 

FIGURE 1. Cancer cases in 2020 according to GLOBOCAN 

The pathologist approach in detecting breast cancer relied on examining microscope 

visualizations or the manual calculation of stained cell counts, proceeding by analyzing the data 
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using non-automated statistical methods. Among them, immunohistochemistry (IHC) [5] has 

emerged as the gold standard. This technique involves protein binding analysis in thin tissue 

samples obtained from surgery or biopsy to examine the structure and spread of cancer cells. 

However, the protocols to acquire the optimal result from IHC is strict [6]. For example, the 

freshly cut tissue need to be immediately examined, since the thick tissue produced background 

noise that hinder the IHC result. In endogenous enzyme blocking process, antigens like CD4 

were destroyed by 3% diluted hydrogen peroxide (H2O2), so the hydrogen peroxide concentration 

need to be readjusted [6]. The analysis of IHC results–along with many other approaches alike–

were also problematic due to several other factors: the scarcity of specialized physicians [7], the 

heavy workloads of doctors [8] that potentially leads to diagnostic errors, and reduced physician 

observational accuracy [9] that potentially leads to the necessity of multiple physicians repeating 

the examination to achieve reliable results. 

The advances in deep learning method–especially in the development of transfer learning 

models–were helpful to thwart the previously described problems experienced by the pathologist. 

The ultimate goal of transfer learning is to improve the learning of target predictive function 

using the knowledge acquired from the source domain [10]. Transfer learning [11] has shown its 

capability to process numerous data, including unstructured input like text or images. The 

backbone of the image processing transfer learning models is convolutional neural net- work 

(CNN) [12]. The well-known CNN architecture are VGG [13], Inception [14], DenseNet [15], 

ResNet [16], MobileNets [17], and the most recent is EfficientNet [18] variants, ranging from 

EfficientNetB0 to EfficientNetB7. These models capabilities in processing images can be 

leveraged to detect cancer incidence [19, 20], classification of lung disease [21, 22], and 

classification of autism spectrum disorder [23]. The backbone models in [19] is EfficientNet that 

is combined with Squeeze and Excitation layer. In [20], the backbone model for learning the 

mammogram is CheXNet [24], which is a DenseNet [15] pre-trained on ChestX-ray14 dataset 

[25]. DenseNet is again utilized for chest radiograph classification task using COVID-19 

radiographic images [22]. Different from [22], ResNet has been employed to classify whether 

the patient has pneumonia from lung chest x-ray images [21]. This proves the transfer learning 
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distinguished ability to outperform the conventional machine learning models, including tasks 

like breast cancer classification [26, 27]. However, CNN also suffers from bias and overfitting, 

since the parameter are complex and numerous. This is due to the data-hungry nature of CNN, 

signaling the large amount of data needed to train it [28]. CNN ensemble models, on the other 

hand, can reduce the bias and overfitting problem. The strategy to resist the bias and overfit- ting 

is to classify the class through the voting [29], stacking [30], or bagging mechanism. All 

mechanism yields satisfactory results [29, 30]. 

Nevertheless, the performance of CNN ensemble models can still be increased. In medical 

related fields, specifically in cancer detection, higher accuracy is preferable, since the fields 

leaves no room for mistake. Therefore, this study aims to build an ensemble model made 

not just from a single CNN as the baseline, but also included smaller ensemble CNNs. The 

ensemble model purpose is to classify cancer malignancy from histopathological images more 

accurately. The study contributes on the model ensemble novelty and the enriching population- 

based histopathological images used. The study materials and methods are better described in 

Section 2. The study result, along with the discussions is outlined in Section 3. The last section 

concludes the study. 

2. MATERIAL AND METHODS 

The study workflow comprises five stages, starting from data acquisition, proceeded by data 

preprocessing, data augmentation, model selection, and lastly, ensemble model building and 

evaluation. The workflow is summarized in Figure 2. 

 

FIGURE 2. Flowchart of the proposed work 
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2.1. Data Acquisition 

The histopathological image dataset used in this study is acquired from Hasanuddin University 

Hospital. The cancer malignancy from each image was classified manually by experts from 

Hasanuddin University Hospital. The resulting primary dataset consists 161 histopathological 

images split into 81 train images and 80 test images. The sample malignant and benign image is 

shown in Figure 3a and Figure 3b, respectively. Since the number of images is scarce, the 

histopathological images from Breast Cancer Histopathological Image Classification (BreakHis) 

[31] with 400X magnification is added into the primary dataset. The addition is based according to 

the expert clarification on the malignancy and the certainty of tumor, hence not all 400X images 

from BreakHis is attached. Only 1148 train and 545 test images from BreakHis 400x are 

selected. The final dataset consists of 1693 images, with 1145 benign im- ages and 548 

malignant images. The dataset is further split into training, validation, and test set, consisting of 

918, 230, and 545 images, respectively. The original images dimensions were then resized into 

224x224 pixels resolution. 

 

(a) (b) 

FIGURE 3. The malignant (a) and benign (b) breast cancer histopathological images 

2.2. Data Preprocessing and Augmentation 

The original images dimensions were then resized into 224x224 pixels resolution. To ensure 

compatibility with the model, the padding technique was used to add black frames at the top and 

bottom of the images. These frames were added on a scale of 75. 
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The final dataset has imbalanced class distributions. To resolve the issue, augmentation 

techniques were employed. The original images were flipped vertically and horizontally to 

introduce variations. The original images were also rotated within a range of 0 - 180 degrees. 

2.3. Baseline Model Training, Validation, and Selection 

The preprocessed and augmented histopathological images were then fed into each CNN base 

models. The CNN models utilized were ResNet50V2 [32], DenseNet201 [15], InceptionRes- 

NetV2 [33], EfficientNetB4 [18], EffectiveNetV2S [34], and Xception [35]. The models are 

optimized with Adam [36] optimizer and a learning rate of 0.001 with weight decay. The dual or 

three model ensemble combinations from the single baseline were also incorporated, making the 

baseline of the ensemble model in this study composed of both single and ensemble models. Soft 

voting mechanism [10] was used in the baseline ensemble models. Each baseline was trained and 

validated for 35 epochs using the training and validation set, with 28 images in each batch and an 

early stopping applied to prevent overfitting. After training process, the baselines, be it a single 

CNN or ensemble CNN, were used to classify the cancer malignancy on the test set. The final 

classification result from each baseline were assessed using the ROC-AUC score [37]. The best 

five baseline models were chosen and ensembled. 

2.4. Final Ensemble Model 

The final ensembled CNN models were then used together to classify the histopathological 

images in the test set. The final decision also based on soft voting, as has been described earlier. 

Following that the false positives in breast cancer detection is fatal, added with the data 

imbalance, AP score [38] is employed to assist the ROC-AUC in further analysis. AP score is 

calculated through the balance of precision and recall represented by the area under the precision-

recall (PR) curve, where more area under the curve indicates a good balance between the two 

metrics. 

3. RESULTS AND DISCUSSIONS 

3.1. Baseline Model Training and Evaluation 

From Figure 4, the lowest training loss is achieved by InceptionResNetV2 after 35 epochs 
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elapsed. The other CNN models were stopped earlier with training loss above the InceptionRes- 

NetV2. Among other models with early stopping applied, DenseNet-201 achieved a relatively 

lower loss than the other early-stopped CNN models. This suggests that DenseNet-201 can 

distinguish the cancer malignancy faster from the image, with loss similar to InceptionRes- 

Net50V2 and better than other CNN models. Analyzed from the losses, all the single CNN 

models achieve superior performance on the training set and have the potential to be a better 

classifier when ensembled. 

 

FIGURE 4. Loss from Single CNN Models 

 

However, as examined in Table 1, InceptionResNet50V2 only achieved an ROC-AUC score 

of 0.5026. This score shows that InceptionResNet50V2 has overfitted the training set. 

DenseNet201, on the other hand, serves as the single CNN model with the highest ROC-AUC 

scor during vali- dation, followed by the Xception and ResNet50V2. The ROC-AUC score from 

the three models only differs slightly, with DenseNet201 showing its superiority by converging 

with less training epoch. Both EfficientNetB4 and EfficientNetV2S variants were also trained 

with the same number of epochs as DenseNet201, even though their ROC-AUC score is below 

the three best single models. 

The performance of some best-performing dual or three ensemble models is shown in Table 1.  
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TABLE 1. Model performance on the validation set 

Model Type Model(s) Epoch Elapsed ROC-AUC 

 ResNet50V2 10 0.9067107 

 InceptionResNetV2 35 0.5026 

DenseNet201 10 0.9388382 

Single EfficientNetB4 10 0.8715361 

 EfficientNetV2S 10 0.8973904 

 Xception 14 0.9126721 

 ResNet50V2-DenseNet201 11 0.9566492 

Dual- DenseNet201-EfficientNetB4 9 0.9679375 

Ensemble EfficientNetB4-EfficientNetV2S 10 0.9700793 

 EfficientNetV2S-Xception 13 0.9525312 

Multi- EfficientNetB4-EfficientNetV2S-Xception 13 0.9708004 

Ensemble ResNet50V2-EfficientNetV2S-DenseNet201 9 0.9747339 

 

In the dual ensemble model, the EfficientNetB4 and EfficientNetV2S ensemble achieve the best 

ROC-AUC score, while in the three-model ensemble, the highest ROC-AUC score is 

achieved by the combination of ResNet50V2, EfficientNetV2S, and DenseNet201. The dual 

or multi-ensemble model omits InceptionResNetV2 since the single model performance is 

poor in the training set (Table 1). The best ROC-AUC is obtained by five ensemble models: 

ResNet50V2-EfficientNetV2S-DenseNet201, EfficientNetB4-EfficientNetV2S-Xception, 

EfficientNetB4-EfficientNetV2S, DenseNet201-EfficientNetB4, and ResNet50V2-DenseNet201. 

These five ensemble models are combined to create the final ensemble classifier. 

3.2. Model Evaluation 

The baseline performance on the test set is shown in Table 2. On the test set, the baseline 

models from single to multi-ensemble CNN shows linear result, with best performing model that 

attained an excellent performance score during validation also attaining good performance scores 
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during testing. Not all five of the best models during training successfully achieved the best 

scores in the test set, as dual ensemble EfficientNetB4-EfficientNetV2S performance is lower 

than EfficientNetV2S-Xception. However, the difference is slight, suggesting that 

incorporating EfficientNetV2S-Xception in the final ensemble model instead of EfficientNetB4- 

EfficientNetV2S makes no significant difference. 

 

 

FIGURE 5. ROC-AUC and PR curve from the final ensemble model classification 

TABLE 2. Model performance on the test set 

 

Model Type  Model(s) ROC-AUC 
 

ResNet50V2 0.86339 

InceptionResNetV2 0.5 
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DenseNet201-EfficientNetB4, and ResNet50V2-DenseNet201) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.94736 

Single 
DenseNet201 

EfficientNetB4 

0.92343 

0.86386 

EfficientNetV2S 0.81967 

Xception 0.85892 

 ResNet50V2-DenseNet201 0.92054 

Dual- DenseNet201-EfficientNetB4 0.94036 

Ensemble EfficientNetB4-EfficientNetV2S 0.91122 

 EfficientNetV2S-Xception 0.91299 

Multi- ResNet50V2-DenseNet201-EfficientNetB4 0.93106 

Ensemble EfficientNetB4-EfficientNetV2S-Xception 0.91567 
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The final ensemble model achieved best 0.94736 ROC-AUC score, with 0.97195 AP score, as 

shown in Figure 5. The ROC-AUC metric shows that cancer malignancy is easily distinguished 

from the images by the ensemble model. This finding is supported by the AP curve, where the 

balanced between precision and recall is shown, even though the class distribution is imbalanced. 

The final ensemble model classification samples are also shown in Figure 6. 

 

FIGURE 6. Classification samples from the final ensemble model 

3.3. Performance Analysis of Single and Ensemble Model 

Table 1 and Table 2 show that ensemble classifiers, whether dual or multi-ensemble, always 

obtain higher ROC-AUC scores than the single CNN models. In the dual ensemble model, the 

ensemble of both EfficientNet (EfficietNetB4 and EfficientNetV2S) gained remarkable 

performance on the validation set despite their single model performance. This result suggests 

that both single EfficientNet models capture different patterns in the image that complement 

each other when combined. However, relative to another dual ensemble model, the ROC-AUC 

score of EfficientNetB4-EfficientNetV2S decreased by 6% at the test set, while the ensemble 

that contains DenseNet-201 decreased by only 2% - 3% (Table 2). This proves the DenseNet 

model’s capability in preventing overfitting [15], which is shown not only by the less epoch 
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elapsed (Figure 4) but also when ensembled with other single CNN models (Table 1 and Table 2). 

The ensemble of ResNet50V2-DenseNet201-EfficientNetB4 attained a higher ROC-AUC 

score in the training set, exhibiting its prowess in distinguishing cancer malignancies almost 

perfectly. Nevertheless, the performance on the set dropped, with the dual ensemble of 

DenseNet201- EfficientNetB4 even achieving higher scores. This condition suggests that when 

smaller ensemble models are combined, the models are more prone to overfit even with small 

epochs; hence, early stopping must be applied with stricter patience than the single models. 

Despite the slight difference, the final ensemble model comprising the smaller ensemble 

models achieved an even higher ROC-AUC score than the multi-ensemble models in both the 

training and test sets. This performance suggests that combining smaller ensemble models leads to 

better performance. With increasing dataset size, the deep ensemble model demonstrated a prime 

choice among the smaller ensembles and even single CNN models since a higher number of 

models serves as an expert better than a single model. 

3.4. Identification of Misclassification Causes 

Regardless of the class distribution imbalance, the malignancy is easily distinguished, even 

with single CNN models. It showcases that the images in the dataset have distinctive patterns 

that differ between benign and malignant tumors. A pattern observed from malignant images is 

the irregular spreads of dark purple dots (Figure 6, first row, rightmost column) or an empty 

white circle (Figure 6, second row, leftmost column). If this pattern somehow exists in the 

benign image, the image is mistakenly classified by the model as malignant (Figure 6, first row, 

fourth column from the left). Different from the malignant images, in benign images, the black 

dots are usually neatly arranged either inside the circle cell (Figure 6, first row, third column 

from the left), circulating the white cell (Figure 6, last row, fourth column from the left), or 

localized in a particular area (Figure 6, last row, third column from the left). Similarly, in 

malignant images, if the distinctive pattern of benign images exists, the malignant images are 

mistakenly classified (Figure 6, last row, rightmost column). This distinctive pattern makes the 

images easily classified despite the unbalanced class distribution. Still, some images possessed a 

distinctive pattern from other classes, suggesting that further analysis is needed to clarify the 
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final ensemble model result. 

4. CONCLUSION AND FUTURE WORKS 

The conventional approach done by pathologists for breast cancer detection involves rigorous 

analysis, which is problematic due to the physician’s heavy workload, which can lead to 

diagnostic error. In this study, a deep ensemble CNN model is constructed to thwart the problem. 

ResNet50V2, InceptionResNet50V2, DenseNet201, EfficientNetB4, EfficientNetV2S, Xception, 

and small ensembles made from a combination of these single models are candidates for the 

deep ensemble model baselines. The models are trained using histopathological images from 

Hasanuddin University Hospital and BreakHis histopathological images with 400x magnification. 

The final ensemble comprised of ResNet50V2-EfficientNetV2S-DenseNet201, 

EfficientNetB4-EfficientNetV2S-Xception, EfficientNetB4-EfficientNetV2S, DenseNet201-

EfficientNetB4, and ResNet50V2-DenseNet201 ensembles. The ensembles achieved a 0.94 

ROC-AUC score with a 0.97 AP score, suggesting that the model easily distinguished benign or 

malignant cancer from the given image despite the class imbalance. It is observed that the utilized 

histopathological images have a distinctive pattern that differs between the classes. The ROC-AUC 

score from the deep ensemble model is higher than the single or smaller CNN models. The 

deployment of the final ensemble model in an application is the direction for future study. 
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