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Abstract: COVID-19 has severely impacted human life. In response, researchers worldwide have focused on 

developing advanced computer systems capable of analyzing chest X-rays. Models with the best performance have 

been identified through numerous studies. However, these models are large and require significant computational 

resources. In this study, we propose combining Swapping Assignments between Views (SwAV) Transfer Learning 

(TL) and Knowledge Distillation (KD). By training the teacher model ResNet-50 with SwAV TL and transferring its 

knowledge to smaller models like ResNet-18 and ResNet-34, the performance of the smaller models improved. The 

ResNet-34 model's performance increased, with accuracy increasing by 5.31%, recall by 4.05%, precision by 5.62%, 

F1-score by 4.93%, and AUROC by 0.85%. Similarly, the ResNet-18 model's performance improved, with accuracy 

increasing by 1.52%, recall by 1.03%, precision by 1.87%, F1-score by 1.46%, and AUROC by 0.29%. Therefore, it 

has been demonstrated that the combination of SwAV TL and KD can effectively transfer knowledge from larger 

model to smaller ones, resulting in improved performance in the smaller models. 

Keywords: chest x-ray; swapping assignments between views; knowledge distillation; transfer learning; classification. 
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1. INTRODUCTION 

In December 2019, the world's attention turned to a new respiratory disease that quickly spread 

across the globe. Scientists figured out that it was caused by a virus called the SARS-CoV-2 virus. 

Common clinical signs of COVID-19 were high temperature, cough, sore throat, muscle aches, 

headaches, and absence of smell. In severe cases, the disease caused respiratory failure, multi-

organ dysfunction, and death [1]. People with underlying conditions such as cancer [2], 

cardiovascular [3], and diabetes [4] were more affected to COVID-19 infection, and their mortality 

rate was increased. COVID-19 had affected the entire world, impacted not only the healthcare 

sector but also extended to other areas like the economy and education. 

One way to address this condition was by conducting screening tests as efficiently as possible. 

The Reverse Transcription Polymerase Chain Reaction (RT-PCR) test was the primary diagnostic 

method for this disease in clinical settings, but it was less sensitive to certain types of COVID-19 

[5]. Radiology imaging, particularly chest X-rays, could detect irregularities in the lung tissue of 

COVID-19 patients [6]. This method was cost effective and widely used to assess lung diseases. 

However, the manual process of checking these images by expert was time-consuming, which 

required a computer system to assist in the analysis.  

Convolutional Neural Networks (CNN) were utilized as the primary method for detecting 

COVID-19 using Deep Learning (DL). CNN had the capability to extract important features such 

as medical images and hybrid support vector regression, which made it highly effective for 

classification tasks [7], [8]. Furthermore, this approach demonstrated potential efficacy in the 

detection and diagnosis of other critical medical conditions, such as lung cancer [9]. However, this 

approach required a substantial amount of data, resulted in large models, and demanded high 

computational power [10]. 

Within the domain of DL, producing smaller models with good performance remained a 

challenge. Knowledge Distillation (KD) addressed this by transferring insights from a more 

complex model (teacher) to a more compact model (student), thereby enabling the student to 

achieve enhanced performance [10].  Additionally, Swapping Assignments between Views 

(SwAV) Transfer Learning (TL) improved feature learning by leveraging unlabeled data and 

comparing various views of the same image [11]. SwAV could exceeded the performance of 

supervised learning as it utilized more general feature representations of data without the need for 

explicit labels [11]. Combining KD and SwAV TL allowed for the creation of lightweight models 

with good performance, aided by larger models. This is supported by the improvement of the 
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student model after KD training [12], and training with SwAV [13] resulted in better performance 

compared to supervised learning. 

The contributions of this research are: 1) integrating SwAV TL with KD to enhance the 

performance of smaller models by leveraging knowledge from larger models, and 2) optimizing 

model efficiency in resource-constrained environments using combination of SwAV TL and KD.  

This study is organized as follows: Section 2 offers a review of prior studies on COVID-19 

radiography classification. Section 3 described the methodology in detail, including data collection, 

model training, and assessment criteria. Section 4 presented the results of the experiments and 

analyzed their implications, Section 5 reviewed this study in relation to previous lessons, Section 

6 addresses potential future work, and Section 7 discusses the conclusions drawn from this study. 

2. RELATED WORKS 

The global spread of COVID-19 encouraged researchers to develop more effective and efficient 

methods for its detection. At that time, many studies focused on utilizing deep learning technology 

to achieve this goal. One of them, Apostolopoulos and Mpesiana utilized five pre-trained deep 

learning models (VGG-19, MobileNetV2, Xception, Inception, and InceptionResNetV2) in their 

study. It was demonstrated in their study that MobileNetV2 achieved the highest performance, 

with an accuracy of 0.9472 [14]. Similarly, Jaiswal et al. evaluated DenseNet-201, VGG-16, 

InceptionResNetV2, and ResNet152V2, and found that DenseNet-201 reached an accuracy of 

0.9625, with a recall and precision both measured at 0.9629.[15].  

Brima et al. proposed ResNet-50 for classifying four types of lung diseases, and it reached an 

accuracy of 0.9385 [16]. In another study, rotation, horizontal flipping, and vertical flipping were 

used as augmentations, while EfficientNetB1 was utilized for feature extraction and a multilayer 

perceptron as the classifier, resulting in an accuracy of 0.9613 and an 𝐹1-Score of 0.975 [17]. 

Additionally, Sitaula and Hossain detected COVID-19 by combining VGG16 with an attention 

module. The data were pre-processed and augmented using zoom range, shear range, horizontal 

flip, vertical flip, rotation range, and rescale. Then, the data was processed with the attention 

module and used to train the VGG-16 model. This combination achieved an accuracy of 0.8749 

[18].  

In addition to supervised learning, a significant alternative approach was Self-Supervised 

Learning (SSL) to improve model performance. Park et al. proposed an SSL with Attention 

Mechanism to detect COVID-19, utilizing a U-shaped CNN and a Convolution Block Attention 
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Module (CBAM) to improve the baseline model’s accuracy by 0.008 [19]. In another study, Muljo 

et al. utilized SwAV TL to enhance ResNet-50’s performance when working with imbalanced data 

[13]. Similarly, A pre-trained CNN model with SSL was evaluated by Gazda et al. for classifying 

COVID-19 and various types of pneumonia across different datasets. The study found that their 

method maintained consistent results regardless of variations in training data size [20]. 

Many studies utilized pre-trained models, which were typically large and required high 

computational power. Researchers sought techniques to develop lightweight models that had good 

performance. Shi et al proposed Densenet-169 combined with attention modules and KD. The 

attention modules were integrated into the teacher model to extract general features and 

concentrate on infected regions, while the student network focused on the irregularly shaped lesion 

areas. The student model reached an accuracy of 0.9344 [21]. In another study, Kabir et al. utilized 

the KD technique to pass insights from a bigger CNN model to a smaller, resulting in the student 

model attaining an accuracy of 0.9608, precision of 0.9448, and recall of 0.9776. [22]. 

PneuKnowNet detected COVID-19 by utilizing the KD technique and chest X-ray images that had 

been analyzed by radiologists. This training approach improved the performance of PneuKnowNet 

by 0.023 compared to the baseline model [12]. However, previous studies have not fully explored 

the combination of SwAV TL and KD for COVID-19 classification. 

3. RESEARCH METHODOLOGY 

 

Figure 1. Illustration of Experimental Process: (A) Teacher Model, (B) Student Model, and (C) 

Knowledge Distillation (KD) 

The workflow of this study began with acquiring and pre-processing the images for model 

training. The teacher model, ResNet-50, was pretrained using SwAV (see Figure 1A), whereas the 
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student models, ResNet-34 and ResNet-18, were pretrained on the ImageNet dataset (see Figure 

1B). Subsequently, the best weights from the teacher model were selected for transfer during the 

KD training process. Additionally, the most effective parameter configurations for the student 

models were identified for implementation during KD. The Student models were trained using the 

KD technique, as illustrated in Figure 1C. Finally, an evaluation was conducted to compare the 

performance of the model. 

3.1. RESNET 

ResNet was an improvement in deep neural networks designed to solve problems like 

vanishing gradients [23] and degradation problem [24] in deep models, which could prevent model 

optimization. To address these issues, shortcut connections [25] were used as direct links that 

bypassed one or more layers within the network. This bypass allowed the network to learn residual 

functions related to the layer inputs, rather than having to learn functions without direct references. 

Mathematically, it was illustrated as follows: 

 

 

where 𝑥 and 𝑦 represent the input and output vectors of the layers, 𝑊𝑖 is the weights of the 

layer in the residual block, and  Ϝ(𝑥, {𝑊𝑖}) represents the residual mapping function that needs 

to be learned. 

Shortcut connections thus not only simplified the training of deep networks but also enabled 

the construction of networks with a significantly larger number of layers, leading to better 

performance on complex tasks. By leveraging the advantages of ResNet, we adopted ResNet-50 

as the teacher model, with a size of 92.18 MB, and ResNet-18 and ResNet-34, with sizes of 43.75 

MB and 83.29 MB respectively, as the student models. 

3.2. TRANSFER LEARNING 

Transfer learning (TL) was a model training technique that leveraged knowledge from a model 

previously trained on another dataset. The weights from the pre-trained model were applied to set 

up a new model that was then trained on the target dataset. This approach could accelerate the 

training process, improve model performance, and decrease the dependency on extensive training 

data. In mathematical terms, this process could be described as follows: 

𝐷𝑆 = {(𝑥𝑆1, 𝑦𝑆1), (𝑥𝑆2, 𝑦𝑆2), … , (𝑥𝑆𝑛, 𝑦𝑆𝑛)}, 𝑇𝑆 = {𝑦𝑆, 𝑓(. )} 
(2) 

𝐷𝑇 = {(𝑥𝑇1, 𝑦𝑇1), (𝑥𝑇2, 𝑦𝑇2), … , (𝑥𝑇𝑛, 𝑦𝑇𝑛)}, 𝑇𝑇 = {𝑦𝑇 , 𝑓(. )} 

where 𝐷𝑆 is the source domain, 𝑇𝑆 is the source task, 𝐷𝑇 is the target domain, and 𝑇𝑇 is target 

𝑦 = Ϝ(𝑥, {𝑊𝑖}) + 𝑥  (1) 
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task, 𝑥 is the data input, 𝑦 is the target label, and 𝑓(. ) is the predictive function that utilizes the 

transferred knowledge from 𝐷𝑆  and 𝑇𝑆 , with the condition that 𝐷𝑆  ≠  𝐷𝑇  or 𝑇𝑆 ≠  𝑇𝑇  [26]. 

This technique has been proven in many studies [27], [28], [29], [30]. 

3.3. SWAPPING ASSIGNMENTS BETWEEN VIEWS (SWAV) 

SwAV was a subset of SSL where the model was trained using unlabeled data to learn various 

representations by comparing features of images that had been altered through augmentation 

techniques [11]. SSL has been proven effective in lung disease classification [13], [31], [32]. As 

shown in Figure 2, SwAV applied various augmentation techniques, such as cropping, rotation, 

resizing, and color changes, to each input image (𝑋), resulting in two different views (𝑋1 and 

𝑋2 ). The augmented views were mapped through the model to produce outputs 𝑍1  and 𝑍2 . 

These outputs were computed using a dot product with the prototype vector 𝐶, which represents 

the weights of a layer with linear activation, to produce 𝑍1. 𝐶  and 𝑍2. 𝐶 . The results were 

processed with the Sinkhorn-Knopp algorithm to produce 𝑄1  and 𝑄2 . 𝑄1  and 𝑄2  were 

swapped and the loss was calculated based on the swapped results using the Cross-Entropy (CE) 

Loss. The CE Loss was utilized for backpropagation to adjust the model parameters and prototype 

vector 𝐶. The loss obtained during training was calculated using the equation below: 

 

𝑃𝑡
(𝑘) =

exp (
1
𝜏 (𝑍𝑡. 𝐶𝑘))

∑ exp (
1
𝜏 (𝑍𝑡. 𝐶𝑘′))𝑘′

 (3) 

𝑙(𝑧𝑡, 𝑞𝑠) = − ∑ 𝑞𝑠
(𝑘)

𝑘

log (𝑃𝑡
(𝑘)) (4) 

𝐿(𝑧𝑡, 𝑧𝑠) = 𝑙(𝑧𝑡, 𝑞𝑠) + 𝑙(𝑧𝑠, 𝑞𝑡) (5) 
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where 𝑘  represents the value of prototype vector 𝐶  and 𝜏  is a temperature parameter that 

controls the sharpness of the probability distribution derived from the similarity scores between 

the feature representations and the prototypes. 

This study utilized the SwAV TL to train the teacher model due to its superior ability to 

recognize the same object from various views, even after transformations. With this capability, the 

resulting teacher model was expected to be more robust and effectively share its understanding 

with the student model. 

3.4. KNOWLEDGE DISTILLATION 

KD was a technique for knowledge transfer that facilitated a more compact model in learning 

from a bigger model [10]. This technique involved the student model to replicate the behavior and 

predictions of the teacher model [33]. Figure 1C illustrated how this technique was performed. 

The teacher model, which already possessed knowledge, was trained alongside the student model 

on the input data. Both models were trained up to the last fully connected layer to produce raw 

logits. These raw logits were processed through the softmax activation function, which included a 

temperature parameter. The formula for the softmax temperature was shown below: 

𝑃(𝑥) =
exp (

𝑧𝑐(𝑥)
𝑇

)

∑ exp (
𝑧𝑐(𝑥)

𝑇
)𝑐𝜖𝐶

 (6) 

where 𝑧𝑐(𝑥) is the model that produce logits for class 𝐶 and 𝑇 is the temperature parameter 

that produced a softer probability distribution over classes. The result of this process was soft 

labels and soft predictions. On the other hand, the student model also performed a standard softmax 

activation function with a temperature of 1 to produce standard soft predictions. Then, The 

Kullback-Leibler Divergence between the soft labels and soft predictions was used to calculate the 

Distillation Loss. Additionally, the Student Loss was determined by applying standard Cross 

Entropy between the conventional soft labels and the hard labels. Both losses were combined with 

a weighting factor alpha (𝛼). The formula of Distillation Loss, Student Loss, and Total Loss was 

presented below: 

𝐾𝐿 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = ∑ 𝑃𝑡(𝑥) log (
𝑃𝑠(𝑥)

𝑃𝑡(𝑥)
)

𝑥𝜖𝑋

 (7) 

𝐶𝐸 = ∑ 𝑃𝑡(𝑥) log(𝑃𝑡(𝑥))

𝑥𝜖𝑋

 (8) 
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𝐿(𝑃𝑡, 𝑃𝑠) = ((1 − 𝛼) × ∑ 𝑃𝑡(𝑥) log (
𝑃𝑠(𝑥)

𝑃𝑡(𝑥)
)

𝑥𝜖𝑋

) + (𝛼 × ∑ 𝑃𝑡(𝑥) log(𝑃𝑡(𝑥))

𝑥𝜖𝑋

) (9) 

where 𝑃𝑡(𝑥) is the probability distribution over the classes predicted by the teacher model for a 

particular input 𝑥, 𝑃𝑠(𝑥) is the probability distribution over the classes predicted by the student 

model for the same input 𝑥, and 𝛼 is a weighting factor that balances the contributions of the 

Student and Distillation Loss. This Total Loss was used to update the weights of the student model, 

enabling it to acquire knowledge from the teacher model. During this process, the teacher model's 

weights remained frozen, preventing further learning. 

This study utilized the KD technique to transfer insight from the bigger model to the smaller 

model, resulting in an improvement in the performance of the student model. This method not only 

preserved the performance of the larger model but also lowered computational demands, making 

it ideal for use in environments with limited resources. 

3.5. DATASET 

The COVID-19 Radiography Database was utilized in this study [34], [35]. This database was 

created by researchers from Qatar, Dhaka, Pakistan, and Malaysia. The database was categorized 

into four classes, including 3616 COVID-19, 10192 normal, 6012 lung opacity, and 1345 viral 

pneumonia. Figure 3 showed an example image from each class. The COVID-19 image showed a 

denser fog around the lungs compared to the others, while the normal image appeared the clearest. 

Additionally, the dataset provided lung segmentation masks that focus the images on the lung area 

for all images, however this feature was not utilized. 

 

3.6. DATA PREPROCESSING 

All images in the database were adjusted to a size of 224 × 224 pixels to allow consistency. 

The dataset was divided into training, validation, and test sets in a 70:15:15 ratio, using seed 42 

Figure 3. Examples input images for each class: (A) COVID-19, (B) Lung-

Opacity, (C) Normal, (D) Viral Pneumonia 

(A) (B) (C) (D) 
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for randomization. After that, all images were scaled to float values within the range of 0 to 1 and 

standardized using a mean a standard deviation from ImageNet [36]. Figure 4 showed an example 

of a pre-processed image of each class.   

 

3.7. MODEL TRAINING 

The Python programming language and the PyTorch deep learning framework were used to 

conduct the experiments, with the pre-processed data serving as input for model training. 

Following the approach from the previous study, where the ResNet architecture consisted of 4 

blocks, the first 3 blocks were frozen and only the last block was trained [13]. Training for 50 

epochs was carried out on all the models using a mini-batch size of 64 images, with the Cross 

Entropy loss and Adam optimizer. The model with the lowest validation loss was identified as the 

best during this training. Model training was carried out in two stages. Stage one involved training 

the teacher model using SwAV TL and the student model using supervised learning. Stage two was 

focused on training the student model using KD.  

In the first stage, we initialized the teacher’s weights with SwAV and the student models’ 

weights with ImageNet. Hyperparameter tuning was performed during model training to determine 

the optimal performance for learning rate 𝑙𝑟 of 1e-2, 1e-3, 1e-4, 1e-5 and weight decay 𝜆 of 0, 

1e-1, 1e-2, 1e-3, 1e-4. With this combination, there were 20 training session for each model. This 

process produced the best-performing teacher model weights, which would be applied to the 

teacher model in KD training, and also created the optimal student model configuration for KD 

training. 

Moving to the next stage, the KD technique was utilized to train the student model. In this 

stage, the best teacher model weights from the previous training were transferred to the teacher 

model, while pre-trained weights from the ImageNet dataset were used to initialize the student 

Figure 4. Examples of pre-processed input images: (A) COVID-19, (B) Lung-

Opacity, (C) Normal, (D) Viral Pneumonia 

(A) (B) (C) (D) 
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model. This training was also conducted using the best student model parameters from the previous 

training, with additional hyperparameter tuning for the temperature 𝑇 of 2, 4, 6, 8 and alpha 𝛼 

of 0.1, 0.3, 0.5, 0.7, 0.9. This stage involved 20 training sessions for each student model. Finally, 

the best results from the student model training in both stages were evaluated. 

3.8. EVALUATION METRICS 

To evaluate this study, we used several important metrics in this field, such as accuracy, recall, 

precision, and 𝐹1-score. 

4. RESULTS 

4.1. STAGE 1 TRAINING RESULTS 

Figure 5 showed the lowest training and validation loss of the teacher and student models in 

Stage 1. There was a significant gap between the training and validation loss, especially in the 

ResNet-50 SwAV TL and ResNet-34, which experienced spikes. This condition indicated that the 

models were overfitting. 

 

In the training of the ResNet-50 SwAV TL, the training loss showed a gradual decrease from 

the early epoch to the final epoch. However, the validation increased significantly during certain 

epochs. The validation loss began at a high value and steadily decreased until epoch 8, then it 

fluctuated up and down until epoch 29. A significant spike occurred at epoch 30, followed by a 

decrease, and another spike was observed at epoch 48. The lowest validation loss was 0.15572, 

with a learning rate 𝑙𝑟 of 0.01 and a weight decay 𝜆 of 0.0001. The teacher model weights with 

this configuration were used by the teacher model in KD training. 

During the training of the ResNet-18 Supervised, the validation loss increased from the first 

Figure 5. Training and validation loss of the best teacher and student models on 

stage 1: (A) ResNet-50 SwAV TL, (B) ResNet-18 Supervised, ResNet-34 

Supervised 

(A) (B) (C) 
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to the last epoch, while the training loss significantly decreased to near zero. The lowest validation 

loss was 0.1852, with a learning rate 𝑙𝑟 of 0.001 and a weight decay 𝜆 of 0. This configuration 

would be used in the training of the ResNet-18 student model with KD. 

While training the ResNet-34 Supervised, it showed a pattern similar to the ResNet-50 SwAV 

TL, with the training loss decreased from the first epoch to the end of the epochs. However, the 

validation loss increased inconsistently, with a spike occurred at epoch 29. The lowest validation 

loss was 0.1889, with a learning rate 𝑙𝑟 of 0.01 and a weight decay 𝜆 of 0. This configuration 

would also be used in the training of the ResNet-34 student model with KD. 

4.2. STAGE 2 TRAINING RESULTS 

Figure 6 showed the training and validation loss for the best-performing student models on 

stage 2. Different from stage 1, the gap between training and validation loss appeared much smaller 

and more consistent. This occurred due to the regularization effect of KD, which helped the student 

model learn general patterns from teacher [10]. The training loss in the ResNet-18 KD decreased 

consistently from the first epoch to the final epoch. The validation loss decreased from the first 

epoch to epoch 24, then fluctuated up and down until the end. The lowest validation loss reached 

0.1280 with an alpha 𝛼 configuration of 0.5 and temperature 𝑇 of 2.  

 

A similar pattern occurred during the training of the ResNet-34 KD. The difference between 

training and validation loss was smaller compared to previous training. Both training and 

validation loss decreased from the first epoch to the end. This model delivered the highest 

performance with an alpha 𝛼 configuration of 0.3 and temperature 𝑇 of 2, with a validation loss 

of 0.1468.  

Figure 6. Training and validation loss of the best student models on 

stage 2: (A) ResNet-18 KD, (B) ResNet-34 KD  

(A) (B) 
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4.3. IMPACT OF RESNET-50 SWAV TL ON RESNET-18 SUPERVISED 

Table 1 showed the results of the best performance of ResNet-50 SwAV TL, ResNet-18 

Supervised, and ResNet-18 KD. In general, the performance of ResNet-18 KD is higher than 

ResNet-18 Supervised. For accuracy, recall, precision, 𝐹1-Score, and AUROC, the performance 

improved by +1.52%, +1.03%, +1.87%, +1.46%, and +0.29%, respectively. Among all metrics, 

precision showed the highest improvement. This indicated that the model had become better at 

predicting True Positive (TP), reducing the number of False Positive (FP) predictions. Furthermore, 

the 𝐹1-score and AUROC values of ResNet-18 KD and ResNet-50 SwAV TL were quite close, 

indicating that ResNet-18 KD could effectively mimic the behavior or characteristics of ResNet-

50 SwAV TL. 

 

T b e 1. Test results of ResNet-50 SwAV TL, ResNet-18, ResNet-18 KD. 

Metrics 
ResNet-50 

SwAV TL 

ResNet-18 

Supervised 

ResNet-18 

KD 

Accuracy 0.9596 0.9316 0.9458 

Recall 0.9604 0.9401 0.9498 

Precision 0.971  0.9382 0.9558 

𝐹1-Score 0.9654 0.9391 0.9528 

AUROC 0.9956 0.9899 0.9928 

 

Figure 7 illustrated the confusion matrices of ResNet-18 Supervised and ResNet-18 KD. An 

increase in TP values was observed across all classes, showing an improved of the model to 

accurately identify positive case. The decrease in FP values for the COVID-19 class, especially in 

cases where the model predicted COVID-19 but the actual condition was normal (from 13 to 5), 

indicated an increase in the ability of the student to distinguish COVID-19 cases. A similar 

reduction in FP values was also noted in the lung opacity class, especially for predictions of lung 

opacity that were actually normal (from 86 to 59), which indicated improved recognition of this 

class by the model. 
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Figure 8 showed the ROC curves of ResNet-18 Supervised and ResNet-18 KD. According to 

the ROC curves, both models showed strong predictive ability for COVID-19 and viral pneumonia, 

with the ROC curve area close to 1. However, they faced some difficulty with the other two classes. 

The model using KD proved to be more effective in predicting lung opacity cases compared to the 

supervised model. 

 

 

 

(A) 

 

(B) 

 

Figure 7. Confusion Matrices of: (A) ResNet-18 Supervised, (B) ResNet-18 KD 

 

(A) (B) 

Figure 8. ROC Curves of: (A) ResNet-18 Supervised, (B) ResNet-18 KD 



14 

DANIEL, KARNYOTO, ELWIREHARDJA, CENGGORO, PARDAMEAN 

4.4. IMPACT OF RESNET-50 SWAV TL ON RESNET-34 SUPERVISED 

Table 2 showed the results of the best performance of ResNet-50 SwAV TL, ResNet-34 

Supervised, and ResNet-34 KD. The performance significantly improved with the KD technique, 

with accuracy increasing by +5.31%, recall by +4.05%, precision by +5.62%, 𝐹1-score by +4.93%, 

and AUROC by +0.85%. ResNet-34 KD surpassed the ResNet-50 SwAV TL, with all metrics 

being higher, indicating that the KD technique has the potential to enhance the performance of the 

of the student model beyond of its teacher. This proved the student model was able to effectively 

acquire knowledge from the teacher model. 

 

 

Metrics 
ResNet-50 

SwAV TL 

ResNet-34 

Supervised 

ResNet-34 

KD 

Accuracy 0.9596 0.9200 0.967  

Recall 0.9604 0.9299 0.9676 

Precision 0.9712 0.9260 0.9781 

𝐹1-Score 0.9564 0.9268 0.97 5 

AUROC 0.9956 0.9888 0.9973 

 

Figure 9 showed the confusion matrices of ResNet-34 Supervised and ResNet-34 KD. 

Confusion matrices stated that TP values increased across COVID-19, lung opacity, and normal 

class, showing that the model got better at finding for 3 of class. The decrease FP and False 

Negative (FN) for the COVID-19 class indicated the model was better able to detect COVID-19 

than before. The lung opacity and normal class also showed similar behavior with a reduction in 

both FP and FN values. On the other hand, the viral pneumonia class experienced an increase in 

FN value, which could have a negative impact in the healthcare field. Fortunately, the increase was 

not significant, and it appeared that the misdetections were originally normal class. However, the 

viral pneumonia class also recorded a positive impact with a decrease in FP values. 

T b e  . Test results of ResNet-50 SwAV TL, ResNet-34, ResNet-34 KD. 
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Figure 10 showed the ROC curves of ResNet-34 Supervised and ResNet-34 KD. In general, 

ResNet-34 KD outperformed the supervised student model for each class. ResNet-34 Supervised 

struggled to accurately lung opacity and normal classes. However, this could be improved by using 

the KD technique, which enabled the model to predict both classes better. 

 

 

 

 

(A) 

 

(B) 

 

Figure 9. Confusion Matrices of: (A) ResNet-34 Supervised, (B) ResNet-34 KD. 

 

(A) (B) 

Figure 10. ROC Curves of: (A) ResNet-34 Supervised, (B) ResNet-34 KD. 

 



16 

DANIEL, KARNYOTO, ELWIREHARDJA, CENGGORO, PARDAMEAN 

5. DISCUSSION 

Table 3 summarized the comparison results of ResNet-34 KD with previous study using the 

same data. Our result outperformed compared to all the listed studies [13], [16], [17]. However, it 

was important to recognize that these results were influenced by several factors. One of the factors 

was the distribution of proportions among the training, validation, and testing datasets, where a 

larger amount of training data could significantly enhance model performance. Additionally, the 

methods used for data processing during preparation might have impacted the results, as proper 

data handling could have improved the model’s performance. Effective hyperparameter tuning also 

contributed to significant performance gains. 

The EfficientNetB1 model proposed by Brima et al. was able to compete the performance of 

ResNet-34 KD [16]. It was noted that EfficientNetB1 had around 7.7 million parameters, which 

was significantly smaller compared to the 22.2 million parameters of ResNet-34. This indicated 

that, despite having fewer parameters, the EfficientNetB1 model still managed to deliver 

competitive performance, likely due to its efficient architectural design and applied optimization 

techniques. 

 

T b e 3. Comparison results of ResNet-34 KD with previous study using the same the data. The 

data used use consisted of 3616 COVID-19, 10192 normal images, 6012 lung opacity, and 1345 

viral pneumonia images. 

Ref. Method Accuracy Recall Precision F1-Score AUROC 

[16] ResNet-50 0.939 - - - - 

[17] EfficientNetB1 0.961 - 0.973 0.975 - 

[13] ResNet-50 SwAV TL - 0.808 0.843 0.821 0.925 

Ours 

ResNet-34 KD with the 

teacher ResNet-50 

SwAV TL 

0.967 0.967 0.978 0.97  0.997 

 

6. FUTURE WORKS 

For future work, this method can be applied using deeper models to explore the potential for 

performance improvement in image classification tasks. Further modifications, such as the 

addition of attention modules, can be used to guide the model in learning more accurately on 
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specific areas of the lungs. Additionally, the use of other data sources, such as CT scans or multi-

modal data, can be implemented to enhance the model's accuracy and generalization. 

7. CONCLUSION 

This study demonstrated that combining SwAV TL and KD effectively transfer knowledge 

from larger models to smaller ones, resulting in improved performance for the smaller models. 

SwAV TL enhanced generalization, while KD transferred knowledge from larger models to 

smaller ones, thereby improving the performance of the smaller models and prevented overfitting. 

This approach successfully developed lightweight models with strong performance by leveraging 

both techniques. Notably, ResNet-18 and ResNet-34 models, trained with knowledge from 

ResNet-50 SwAV TL, showed significant performance gains. However, the study was limited by 

not exploring all possible parameter combinations. 
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