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Abstract: Sleep apnea, a significant medical concern affecting many individuals, is the focal point of this research, 

which investigates the potential of machine learning and deep learning techniques, particularly in detecting 

Obstructive Sleep Apnea (OSA). The study's results highlight the effectiveness of models like 1D-CNN in processing 

electrocardiogram (ECG) signals without requiring manual feature extraction. Notably, our 1D-CNN model achieves 

an impressive accuracy of 88.36% using 6,000 features, demonstrating strong recall and F1 score performance. 

Conversely, our Random Forest (RF) model attains a commendable accuracy of 82.23% with just seven features, 

showcasing high precision and F1 score. However, the K-Nearest Neighbors (KNN) model, characterized by high 

precision, displays lower recall and specificity, indicating a propensity to classify all data as positive cases. These 

findings underscore the potential of machine learning and deep learning techniques to enhance sleep apnea detection, 

offering valuable insights for the diagnosis and management of this critical medical condition. 
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1. INTRODUCTION 

Sleep apnea is a pathological disease that causes disturbances in regular breathing patterns during 

sleep. People afflicted with this ailment may encounter frequent disruptions in their sleep due to 

difficulties breathing. There exist three distinct categories of sleep apnea: obstructive sleep apnea 

(OSA), central sleep apnea (CSA), and mixed sleep apnea (MSA). Obstructive sleep apnea (OSA) 

is the predominant sleep condition, predominantly affecting elderly adults and those who are 

overweight. Polysomnography (PSG) is the most reliable technique for identifying sleep apnea. 

However, acquiring this data is time-consuming [1] and expensive, ranging from $3000 to $6000 

for each test [2]. 

The health industry has experienced substantial breakthroughs in recent years as a result of the 

rapid development of artificial intelligence (AI). As a result, we have integrated AI into various 

facets of life, including healthcare. The integration of artificial intelligence (AI) into the healthcare 

sector, specifically in the field of sleep apnea diagnosis, has the potential to provide a cost-effective 

and effective method for resolving a variety of concerns. Several studies have investigated the 

identification of sleep apnea using various sophisticated machine learning and deep learning 

methods. Traditional machine learning algorithms such as Support Vector Machines (SVM) [3] 

and k-Nearest Neighbors (kNN) [4], as well as deep learning models like Convolutional Neural 

Networks (CNN) [5], Long Short-Term Memory (LSTM) [6], and Artificial Neural Networks 

(ANN) [7], exhibit strong performance in sleep apnea detection due to their ability to effectively 

handle binary classification tasks with two distinct classes: apnea and normal. 

The early identification of obstructive sleep apnea (OSA) has the potential to significantly impact 

mortality rates and mitigate the cost of expensive medical treatments. In their study, Sheta et al. 

[2] developed a novel Computer-aided Diagnosis (CAD) approach aimed at efficient detection of 

Obstructive Sleep Apnea (OSA). Computer-aided design (CAD) incorporates several models 

derived from machine learning (ML) and deep learning (DL) methodologies. The CNN+LSTM 

model achieves the highest possible accuracy, with a training accuracy of 90.75% and a validation 

accuracy of 86.25%. Banluesombatkul et al. [8] attempted to develop a filter during the 
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preprocessing phase. Filtering is a commonly employed technique aimed at eliminating distracting 

noise. In the context of the present investigation, the MrOS sleep study dataset (Visit 1) was 

utilized to assess the correctness of the filtering process, yielding a value of 79.45%. 

Deep learning algorithms are subject to significant demands in correctly detecting sleep apnea. 

The model must consistently deliver excellent and dependable performance when carrying out its 

responsibilities. By using datasets that professionals have gathered and annotated, it is possible to 

train models to achieve this goal. The performance of ML and DL models can be influenced by 

carefully selecting key features. Previous studies have utilized unprocessed electrocardiogram 

signals, video data [9], picture data [10], and other relevant data sources. 

In their study, Almazaydeh et al. [11]employed ten manually derived features from the PhysioNet 

Apnea-ECG dataset. These features comprised seven primary features [12] and three additional 

features [13]. To classify the data, they utilized an SVM algorithm, which yielded a maximum 

accuracy rate of 96.5%.  

In addition, Feng et al. [14] engage in manual feature extraction by extracting the RR interval from 

the PhysioNet Apnea-ECG dataset. The researchers employed SVM-HMM, a combination of 

Support Vector Machine (SVM) and Hidden Markov Model (HMM), which yielded an accuracy 

of 84.70% in their studies.  

Almutairi et al. [15] employ the RR interval and QRS amplitude as input features in their research. 

They explore the effectiveness of several models, including 1D-CNN, 1D-CNN+LSTM, and 1D-

CNN+GRU. The 1D-CNN+LSTM model demonstrates the highest level of accuracy, with an 

accuracy rate of 89.11%.  

Hassan et al. [16] introduce an alternative approach for feature extraction from electrocardiogram 

(ECG) signals, employing the Tunable-Q Factor Wavelet Transform (TQWT). The ECG data is 

segmented per minute and subsequently subjected to TQWT processing. In addition, the AdaBoost 

algorithm was employed to identify sleep apnea, resulting in an accuracy rate of 87.33%.  

Mukherjee et al. [17] conducted a study where they manually extracted three features, namely RRI, 

EDR, and RAMP. These features were then utilized in conjunction with the ensemble learning 
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approach and the 1D-CNN model [15], [18], [19]. The study reported an accuracy of 85.58%, 

which was the highest attained accuracy. 

The objective of this study is to investigate the potential of deep learning and machine learning 

models in addressing challenges within the healthcare industry. Specifically, the research aims to 

accomplish two main goals: (i) developing a reliable sleep apnea detection model by leveraging 

existing ECG signal data and (ii) conducting a comparative analysis of different models using a 

dataset comprising 6000 features and 7 ECG signal features. This study employs many models, 

including 1D-CNN, LSTM, Random Forest, KNN, and Decision Tree. 

This research provides the following contributions:  

• This study focuses on the implementation and assessment of deep learning and machine 

learning techniques using pre-processed feature sets.  

• This study aims to compare and validate several models that have been trained using 

electrocardiogram (ECG) data from a homogeneous population. 

 

2. METHODS 

2.1. DATASET 

In this study, single-lead electrocardiogram signals were taken from the PhysioNet Apnea-ECG 

[20] databases. The Apnea-ECG database consists of 70 recordings, with each recording being 

sampled at a frequency of 100 Hz. Out of these records, 35 are specifically labeled as training 

records, while the remaining 35 are set aside as test records. The duration of each recording 

displays variety, spanning from 7 to 10 hours. The study included a cohort of 35 individuals, 

comprising 30 males and 5 females, aged between 27 and 63. In addition, the apnea ECG recording 

is annotated at intervals of 60 seconds. A clinical specialist conducted the annotations, precisely 

identifying obstructive sleep apnea, central apnea, and hypopnea, both with and without arousal. 

Researchers commonly utilize these databases to detect sleep apnea. This study used a dataset that 

included various data samples, specifically a01-a20, b01-b05, and c01-c10 from the Apnea-ECG 

dataset. 
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2.2. FILTERING 

Table 1. Variations of ECG Filters 

Filter Name Freq. Description 

Bandpass 5-11 Hz Eliminate noise from the raw signal. 

Notch 60 Hz Eliminate noise from the raw signal. 

Bandpass second order 5 and 35 Hz Eliminate noise from the raw signal. 

Butterworth filter 0.7 Hz Eliminate noise from the respiratory signal. 

 

During this phase, the dataset will go through a filtering process. Filtering is employed to eliminate 

unwanted noises or disturbances from the recorded audio. Table 1 presents many examples of 

filters that apply to electrocardiogram data [21]. The present study employed a second-order 

Butterworth Bandpass filter, characterized by a lowpass frequency of 5 Hz and a highpass 

frequency of 35 Hz. The following procedures were implemented:  

• Apply a filtering process to all the records. 

• The recorded data is partitioned into 60-second segments, as designated by the expert's 

labeling. 

• Each segment of the Apnea-ECG dataset consists of a maximum of 6000 data points. 

• Find the peak in each segment. 

• Correct the peak on every segment. 

Following the segmentation process, the dataset produced 17,062 segments. The segment will be 

partitioned into two categories, namely normal and apnea data, according to the assigned label. 

Once the filtering procedure has been finalized, the subsequent feature extraction step will be done 

manually. 

2.3. FEATURE EXTRACTION 

The signal is partitioned into segments of 60 seconds, which are subsequently subjected to filtering 

in the earlier stage, followed by feature extraction. Feature extraction is used to get helpful 

information from the electrocardiogram signal. It can effectively capture the unique characteristics 

of apnea or its absence. The electrocardiogram signal will be analyzed, and seven distinct features 

will be extracted, as outlined in Table 2. 
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Table 2. Extracted Features 

Name Description 

Total Peaks The number of peaks observed during a time frame of 60 seconds. 

AvgHR The average heart rate every minute. 

MeanNN The mean of the RR intervals. 

RMSSD The square root of the average of the cumulative differences between 

consecutive RR intervals. 

pNN50 The ratio of RR intervals that exceed 50ms to the overall count of 

RR intervals. 

Age The age of each patient. 

Gender The gender of each patient. 

AvgHR = ∑
1

h
h
h=1                                 (1) 

MeanNN =
∑ 𝑑r+1

  nr
r=1

- dr

nr
                               (2) 

RMSSD = √ 
(drr)2

nr-1
                               (3) 

pNN50 = (∀(nr) (NN50++)  ←  ∑ dr+1
  nr

r=1
- dr > 50ms)×100                        (4) 

Where: 

• h = Number of heart rate 

• nr = Number of 𝑟 peaks 

• =NN50 =(∀(nr)(NN50++)← ∑ dr+1- dr
nr

r=1
> 50ms) 

• drr = ∑ 𝑑𝑟+1
𝑛𝑟
𝑟=1 − 𝑑𝑟 

Features such as ‘total peaks’, ‘avgHR’, ‘meanNN’, ‘RMSSD’, and ‘pNN50’ are extracted from 

each segment. The parameters ‘age’ and ‘gender’ are allocated to each segment based on the 

information provided in the dataset.  

2.4. DATA SPLITTING 

The data splitting process starts with a distribution ratio of 70:15:15, wherein 70% is allocated for 

training purposes, 15% is designated for validation, and the remaining 15% is utilized as test data. 

The purpose of this separation scheme is to effectively segregate testing and validation data to 

prevent any leakage of information during the training of the model. The test data is employed to 

evaluate the model's performance once the training phase has been completed. At the same time, 

the validation data is utilized to optimize and fine-tune the training process. 
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2.5. CLASSIFICATION 

The dataset that was previously divided will be utilized for training and testing the classifier model. 

The total number of training, validation, and testing data was 11,943, 2,559, and 2,560, 

respectively. Then, selecting models considered appropriate for sleep apnea data problems will be 

undertaken. 

The 1D-CNN approach put forth by Almutairi et al. [15] and Wang et al. [18] is where the model 

developed in this study finds its inspiration. Notably, this study introduces slight adjustments to 

specific parameters. Nevertheless, the findings suggest that the model proposed by Almutairi et al. 

is better suited for pre-processed data in the preceding step, leading to the decision to employ this 

model. The other classifier models used for comparison are LSTM, RF (Random Forest) [22], 

KNN [4], and Decision Tree (DT) [23]. 

• 1D-CNN: By increasing the convolutional layers and neurons, Almutairi et al. [15] inspired 

the development of this 1D-CNN model. 

• LSTM: The LSTM model uses four layers with 64, 128, 32, and 16 neurons. 

All machine learning models (RF, KNN, and DT) use default parameters provided by the library; 

for 1D-CNN and LSTM models, use ReLu and Adam Optimizer with a learning rate of 0.0005. 

2.6. PERFORMANCE MEASURES 

This experiment utilizes five metrics, specifically precision, recall, f1-score, accuracy, and 

specificity, to evaluate the model's performance. Given the goal of this categorization job, it is 

evident that there are two clearly defined categories: positive and negative. A sample is judged 

true when its projected class matches the actual class and false otherwise.  

• Accuracy is defined as the proportion of accurate predictions, both positive and negative, 

in relation to the total amount of data. 

Accuracy= 
TP+TN

TP+FP+TN+FN
                          (5) 

• Precision is defined as the proportion of accurate positive predictions in relation to the total 

number of positive outcomes projected. 

Precision= 
TP

TP+FP
                            (6) 
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• Recall is the quotient obtained by dividing the number of correct positive predictions by 

the total number of actual positive data points. 

Recall= 
TP

TP+FN
                             (7) 

• Specificity is defined as the accuracy of forecasting negative data in relation to all negative 

data. 

Specificity= 
TN

TN+FP
                           (8) 

• The F1-Score is a statistic that combines precision and recall into a single value. 

F1-Score= 
2∙Precision∙Recall

Precision+Recall
                        (9) 

 

3. RESULT AND DISCUSSION 

The results of this research are divided into two categories: using 6,000 features and 7 features. 

We use binary cross-entropy as the loss function in the training process. The results achieved 

during model training and tested using test data are presented in Table 3. The models showing 

better performance are highlighted in bold, as seen in Table 3.  

Table 3. Comparisson of the proposed model with other previous studies. 

Model Dataset Accuracy (%) Recall (%) Specificity (%) 

CNN-LSTM [2] Apnea-ECG 86.25 88.79 - 

CNN-LSTM [17] MrOS sleep study (Visit 1) 84.08 82.94 86.15 

AlexNet CNN + Decision Fusion [24] Apnea-ECG 86.22 90.00 83.8 

SVM-HMM [14] Apnea-ECG 84.70 68.80 94.50 

Our Proposed (RF) (7 Features) Apnea-ECG 82.23 85.14 77.35 

Our Proposed (1D-CNN) (6000 Features) Apnea-ECG 88.36 91.36 83.75 

 

The 1D-CNN model achieved the best accuracy of 88.36% while utilizing 6,000 features, whereas 

the RF model achieved the highest accuracy of 82.23% with just seven features. The 1D-CNN 

model has a higher recall and F1-score, which indicates that this model is good at recognizing most 

positive cases. Accuracy and precision are also quite good, and high specificity indicates the 
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model's ability to classify the negative (normal) class. Meanwhile, the RF (Random Forest) model 

has high precision and an F1-score, as well as good accuracy. This model also has a good balance 

between precision and recall, as well as an excellent ability to classify positive (apnea) and 

negative (normal) classes. 

The KNN model was found to have a very high precision value but a low recall value and low 

specificity in an experiment employing 6,000 features. This demonstrates that this model has a 

propensity to classify all data as positive, producing high precision but poor predictive quality. The 

KNN model, which should not be employed with high-dimensional data, results in a 0% specificity 

value. In large dimensions, it is difficult to distinguish between points that are close to and those 

that are far from a particular query point [25]. 

This study finds that deep learning models perform better when using many features, whereas 

machine learning models are better suited for employing numerous features. This makes feature 

selection crucial to determine whether the features employed can accurately depict the 

characteristics of apnea symptoms. 

The model's performance developed in this study will be evaluated by comparing it to several 

references from earlier studies. The findings from Table 4 demonstrate that our suggested model 

outperforms other prior research regarding accuracy and recall. 

 

Table 4. Comparison of the proposed model with other previous studies. 

Model 

Accuracy (%) Recall (%) Precision (%) Specificity (%) F1-Score (%) 

6,000 

Features 

7 

Features 

6,000 

Features 

7 

Features 

6,000 

Features 

7 

Features 

6,000 

Features 

7 

Features 

6,000 

Features 

7 

Features 

1D-

CNN 
88.36 76.02 91.36 76.61 89.63 88.05 83.75 74.56 90.49 81.93 

LSTM 69.69 76.21 73.80 77.55 78.94 86.53 61.68 73.24 76.28 81.79 

RF 64.14 82.23 65.43 85.14 88.93 86.27 57.42 77.35 75.39 85.71 

KNN 61.72 74.65 61.74 79.99 99.94 78.62 0 66.40 76.33 79.30 

DT 56.29 78.91 65.00 82.59 63.31 82.59 43.14 72.79 64.15 83.01 
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Our Proposed Model (1D-CNN) (6000 Features) on the Apnea-ECG dataset dominates in terms of 

the highest accuracy and recall due to the use of 1D-CNN architecture, which is very effective in 

extracting features from long sequential data. With 6000 features generated, this model can identify 

very subtle patterns in sleep data, which supports better classification. 

 

4. CONCLUSION 

This study demonstrates that machine learning and deep learning models have high efficacy in 

predicting obstructive sleep apnea. Models such as one-dimensional convolutional neural networks 

(1D-CNN) are well-suited for processing signals with a duration of one minute, as they eliminate 

the need for manual feature extraction. This can be explained by the fact that deep learning models 

can naturally find and understand the most critical features of the electrocardiogram data on their 

own. In the context of sleep apnea detection, machine learning models like Random Forest (RF) 

exhibit a high degree of suitability. These models are particularly effective when employed with 

manually retrieved and selected features. 

The 1D-CNN and RF models consistently demonstrate strong performance on both data sets, 

which include 6000 and 7 features, respectively. This constant performance underscores the 

robustness of these models in effectively handling varying numbers of features. Moreover, it is 

seen that the LSTM and Decision Tree models exhibit superior performance when applied to the 

dataset containing seven features. This implies that employing dimensionality reduction 

techniques could enhance the model's efficacy. In the context of the given datasets, it can be 

observed that the K-nearest neighbors (KNN) model has favorable recall rates but at the expense 

of compromised accuracy and specificity. This implies that additional refinements may be 

necessary for KNN to yield more optimal outcomes. 
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