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Abstract. In this paper, we focus on the study of a mathematical model of the phenomenon of professional skills

emigration in a region, by proposing a dynamic system model of non-linear differential equations in discrete time,

considering four types of variables named: Permanents, Candidates, Emigrants, and Returnees. Our relevant

objective is to find an optimal strategy to minimize the number of qualified individuals leaving their territory as

well as candidates considering leaving their territory. The characterization of the optimal control analysis is based

on Pontryagin’s maximum principle, aimed at characterizing an optimal control that minimizes the number of

Emigrants and potential Candidates for emigration, in order to maximize the number of Returnees and Permanents.

Numerical simulation was performed using MATLAB. Consequently, numerical illustrations of the obtained results

are presented, confirming the effectiveness of the optimization strategy followed.
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1. INTRODUCTION

Skill migration has become a major global phenomenon, shaping both countries of origin and

destination. According to the International Organization for Migration (IOM), approximately

272 million people, representing 3.5 percent of the world’s population, lived outside their coun-

try of origin in 2019. This figure includes a significant number of skilled workers, contributing

to the workforce of developed economies [1].

The phenomenon of migration in Morocco is widespread, with over 3 million Moroccans having

emigrated and 42% of the population expressing an intention to emigrate. Men constitute 48%

of prospective migrants, while women make up 35%. The regions of Agadir and Marrakech are

most affected by emigration, with 52% and 49% of the intentions to leave, respectively. The

main destinations for migrants are in Europe, with over 70% of preferences, including 32% for

France, 21% for Spain, and 15% for Italy. Migrants are predominantly young, and the intention

to emigrate is higher among those with higher levels of education. Approximately 40% of Mo-

roccan migration is female. Despite difficult socio-economic conditions in Morocco, migration

encompasses all social categories. However, the financial outcomes of migration do not always

meet expectations, with 66% of returning migrants living in good social conditions but 73%

facing economic difficulties. Migrants often have precarious jobs abroad, with 44% of men and

46% of women working without contracts. Only 35% of men and 20% of women have acquired

rights to retirement or other social benefits during their stay abroad. Additionally, only 33% of

returning migrants had their qualifications officially recognized abroad, and 26% held jobs re-

quiring a lower level of education than theirs.

Preparation for migration is often limited, with only 14% of men and 24% of women having un-

dergone specific training before departure. Return is typically organized unofficially, with only

7% of individuals informed about programs for returning migrants. Approximately one-third of

migrants plan to re-emigrate, primarily due to difficulties in finding employment. [2]

The mathematical modeling of skill migration has been a topic of growing interest for many

researchers. Studies have been conducted to understand migration trends, predict future flows,

and assess the impact of these migrations on both origin and destination economies. Highlight-

ing potential benefits and associated challenges with these migrations. These research efforts
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provide valuable insights to guide public policies and decisions regarding skill migration.Our

work is similar to other mathematical models that have addressed social or epidemiological

phenomena (see[3][4][5][6]).

Discrete time modeling is based on the collection of statistical data in discrete moments days

weeks months or years this type is preferred for many researchers [7][8]. In this study, we aim

to construct a discrete mathematical model of Potential Returning Emigrated Skills (PCER) by

incorporating saturation incidence coefficients. We will also introduce two essential control

factors. The first will focus on administrative and financial facilitation of scientific research

for Moroccan emigrants, aiming to encourage their return to the country. The second control

factor will involve raising awareness of the crucial importance of local skills to contribute to

Morocco’s socio-economic development. These two controls are fundamental for influencing

skill flows and maximizing benefits for national development. By integrating these elements

into the PCER model, we aim to evaluate their impact on migration trends and formulate rel-

evant policy recommendations to enhance local skills and attract returning Moroccan talents.

In section 2, we propose the mathematical model. Then in Section 3, we will apply optimal

control to our discrete model. section 4 will be dedicated to numerically simulating the results,

with the conclusion as the final section.

2. FORMULATION OF THE MATHEMATICAL MODEL

2.1. Description of the Model. This work addresses the issue of talent drain using a discrete

mathematical model, the PCER. The population studied in this subject is classified into four

compartments: the qualified population (professionally educated individuals) Pk, candidates

(graduates seeking to leave the country) Ck, migrants (skills abroad) Ek, and those returning to

their home country Rk. Contact between the populations of two compartments Ck and Ek leads

to the conversion of a candidate into an emigrant. We denote this contact as CkEk, and the rate

of change is α .

• The compartment Pk consists of individuals with professional and creative skills. It

increases due to new graduates at a rate of Λ, as well as candidates changing their minds

(having found more favorable conditions abroad...) at a rate of δ . This compartment also
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decreases due to individuals preparing their immigration files (candidates with a long

preparation time) or direct migrants without application (with very short immigration

file preparation), at a rate of γ . Additionally, a portion of the population leaves this

compartment due to mortality, at a rate of µ .

• The compartment Ck is formed by qualified professionals and nearly graduated students

preparing their immigration files to work abroad. It increases due to a portion of the

population Pk at a rate of (1−µ)γ , and decreases due to contact population CkEk with

a rate of α . Thus, candidates changing their minds δCk, and candidates leaving life

µCk.

• The compartment Ek is composed of high-level professionals leaving the country for a

permanent job abroad. It increases due to contact individuals CkEk accounted for at a

rate of α , as well as a portion of the population Pk at a rate of µγ . Decrease in this

compartment occurs through the return of migrants at a rate of ρ or due to cessation of

life µEk.

• The compartment Rk contains returning migrants. It increases due to returning migrants

at a rate of ρ , but decreases due to loss of life members µRk.

FIGURE 1. diagram
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The variables , and are the numbers of the individuals in the four classes at time , respectively.

The unit of can correspond to periods, phases, or years. It depends on the frequency of the sur-

vey studies as needed. The graphical representation of the proposed model is shown in Figure

1 The total population size at time is denoted by with Nk = Pk +Ck +Ek +Rk.

The dynamics of this model are governed by the following nonlinear system of diference equa-

tions:

(1)



Pk+1 = Λ+(1− γ−µ)Pk +δ .Ck

Ck+1 = (1−δ −µ).Ck−α.CkEk +(1−η).γ.Pk

Ek+1 = (1−ρ−µ)Ek +α.CkEk +η .γ.Pk

Rk+1 = (1−µ).Rk +ρEk

3. TREATMENT THE PROBLEM WITH AN OPTIMAL CONTROL

We have addressed two strategic controls: raising awareness of the high importance of local

skills to contribute to the socio-economic development of the country and the second control is

based on administrative and financial facilitation for scientific research intended for Moroccan

emigrants, during the time steps k = 0 to T and also minimizing the cost spent in applying

the two strategies. In this model, we include the two controls u1k and u2k, that represent con-

secutively the awareness program through media and education, treatment, and psychological

support with follow-up as measures at time k. So, the controlled mathematical system is given

by the following system of difference equations:

(2)



Pk+1 = Λ+(1− γ−µ)Pk +δ .Ck + r1u1Ck

Ck+1 = (1−δ −µ).Ck−α.CkEk +(1−η).γ.Pk− r1u1Ck

Ek+1 = (1−ρ−µ)Ek +α.CkEk +η .γ.Pk− r2u2Ek

Rk+1 = (1−µ).Rk +ρEk + r2u2Ek

where :ri =


1

f or i = 1,2.

0
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r1 r2 Interpretations

1 1 Discrete Emigration model with controls u1 and u2

1 0 Discrete Emigration model with control u1

0 1 Discrete Emigration model with control u2

0 0 Discrete Emigration model without controls
Table1: Interpretations according to the values of ri.

There are two controls u1 = (u1,0,u1,1, . . . ,u1,T ) and u2 = (u2,0,u2,1, . . . ,u2T ). The first con-

trol represents the proportion for administrative and financial facilitation of scientific research

aimed at emigrants, with the goal of encouraging their return to the country. Thus, we note

that u1,kCk is the proportion of candidate individuals transitioning to the category of individuals

permanently not involved in immigration at time step k. The second control can be interpreted

as the proportion to raise awareness of the crucial importance of local skills to contribute to

socio-economic development. Therefore, we note that u2,kEk is the proportion of individuals

transitioning from the category of emigrants to that of individuals definitively returning to their

country at time step k. Indeed, the system above (S’) presents four different models, as ex-

plained in Table 1.

The problem that we face here is how to minimize the objective functional:

(3) J(u1,u2) =
T−1

∑
k=0

(
AkCk +BkEk +

Φk

2
r1u2

1,k +
ψk

2
r2u2

2,k

)
+AT CT +BT ET

Where the parameters Ak > 0, Bk > 0, φk > 0, and ψk > 0 are the cost coefficients; they are

selected to weigh the relative importance of Ck, Ek, u1,k, and u2,k at time k. T is the final time.

In other words, we seek the optimal controls u1,k and u2,k such that

(4) J(u∗1,u
∗
2) = min

(u1,u2)∈Uad
J(u1,u2)

(5) Uad = {(u1,k,u2,k) : a≤ u1,k≤ b,c≤ u2,k≤ d; k = 0,1,2, . . . ,T −1}

The sufficient condition for the existence of optimal controls (u1,u2) for problem (S’) and (2)

comes from the following theorem.
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Theorem 3.1. There exists an optimal control (u∗1, u∗2) such that

(6) J(u∗1,u
∗
2) = min

(u1,u2)∈Uad

J(u1,u2)

Subject to the control system (S’) with initial conditions.

Proof. Since the coefficients of the state equations are bounded and there are a finite num-

ber of time steps, P = (P0,P1, . . . ,PT ), C = (C0,C1, . . . ,CT ), E = (E0,E1, . . . ,ET ), R =

(R0,R1, . . . ,RT ) are uniformly bounded for all (u1,u2) in the control set Uad,and thus (u1,u2)

is bounded for all (u1,u2) ∈ Uad. Since J(u1,u2) is bounded, inf(u1,u2)∈Uad
J(u1,u2) is finite,

and there exists a sequence (u1, j ,u2, j ,) ∈Uad such that lim j→+∞ J(u1, j ,u2, j ) = in f(u1,u2)∈Uad

J(u1,u1) And corresponding sequences of states P j, C j, E j,and R j. Since there is a finite

number of uniformly bounded sequences, there exist (u∗1,u
∗
2) ∈ Uad and P∗

j , C ∗j , E ∗j , R∗j

∈ RT+1 such that, on a subsequence, (u1, j ,u2, j )→ (u∗1,u
∗
2), P j →P∗, C j → C ∗, E j → E ∗,

and R j → R∗. Finally, due to the finite-dimensional structure of system (2) and the objec-

tive function J(u1,u1), (u∗1,u
∗
2) is an optimal control with corresponding states P∗,C ∗,C ∗,R∗.

Therefore, inf(u1,u2)∈Uad
J(u1,u2) is achieved. �

In order to derive the necessary condition for optimal control, the Pontryagin’s maximum

principle in discrete time given in [9][10][11][12][13] was used. This principle converts into a

problem of minimizing a Hamiltonian Hk at time step k defined by

(7) Hk = AkCk +BkEk +
φk

2
r1u2

1,k +
ψk

2
r2u2

2,k +
4

∑
j=1

λ j,k+1 f j,k+1,

where f j,k+1 is the right side of the system of difference equations (S’) for the j-th state variable

at time step k+1.

Theorem 3.2. Given an optimal control (u∗1,u
∗
2) ∈ Uad and the solutions P∗

k,C
∗

k,E
∗

k and

R∗k of the corresponding state system (S’), there exist an adjoint functions λ1,k,λ2,k,λ3,k and

λ4,k satisfying:

λ1,k = λ1,k+1(1− γ−µ)+λ2,k+1(1−η)γ +λ3,k+1ηγ(8)

λ2,k = Ak +λ1,k+1(δ + r1u1,k)+λ2,k+1((1−δ −µ)−αEk− r1u1,k)+λ3,k+1αEk(9)
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λ3,k = Bk−λ2,k+1αCk +λ3,k+1((1−ρ−µ)+αCk− r2u2,k)+λ4,k+1(ρ + r2u2,k)(10)

λ4,k = λ4,k+1(1−µ)(11)

with the transversality conditions at time T, λ1,T = λ4,T = 0, λ2,T = AT and λ3,T = BT .

Furthermore, for k = 0,1,2, . . . ,(T −1) and r1 = r2 = 1, the optimal controls u∗1 and u∗2 are

given by:

(12)
u1,k+1 = min

[
b,max

(
a,

1
φk

(λ1,T−k+1−λ2,T−k+1)Ck

)]
u2,k+1 = min

[
d,max

(
c,

1
ψk

(λ3,T−k+1−λ4,T−k+1)Ek

)]
Proof: The Hamiltonian at time step t is given by:

Hk = AkCk +BkEk +
φk

2
r1u2

1,k +
ψk

2
r2u2

2,k +λ1,k+1. f1,k+1 +λ2,k+1. f2,k+1 +λ3,k+1. f3,k+1

(13)

+λ4,k+1. f4,k+1

= AkCk +BkEk +
φk

2
r1u2

1,k +
ψk

2
r2u2

2,k +λ1,k+1[Λ+(1− γ−µ)Pk +δ .Ck + r1u1Ck]

+λ2,k+1[(1−δ −µ).Ck−α.CkEk +(1−η).γ.Pk− r1u1Ck]+λ3,k+1[(1−λ −µ)Ek

+α.CkEk +η .γ.Pk− r2u2Ek]+λ4,k+1[(1−µ).Rk +ρEk + r2u2Ek]

For k = 0, 1, . . . ,(T-1) the optimal controls u∗1 and u∗2 can be solved from the optimaly condition,

∂Hk

∂u1,k
= 0

∂Hk

∂u2,k
= 0

That are

∂Hk

∂u1,k
= φkr1u1,k +(λ1,k+1−λ2,k+1 )r1Ck = 0

∂Hk

∂u2,k
= ψkr2u11,k+(λ4,k+1−λ3,k+1 )r1Ek = 0

Thus, for r1 = r2 = 1 we have:
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u1,k =
(λ2,k+1−λ1,k+1)Ck

φk

u2,k =
(λ2,k+1−λ1,k+1)Ek

φk

However, if ri = 0 for i = 1,2 , the control attached to this case will be eliminated and

removed.

By the bounds in Uad of the controls, it is easy to obtain u∗1 and u∗2 in the form (8).

4. NUMERICAL SIMULATION

4.1. Algorithm. In this section, we present the results obtained by solving numerically the

optimality system.

This system consists of the state system, adjoint system, initial and final time conditions, and

the controls characterization.

P0 2.106

C0 9.105

E0 18.104

R0 104

ρ 0,003

γ 0,05

η 0,003

δ 0,02

µ 0,001

α 0.15

Table 2 : The description of parameters used for the definition of discrete time system (S).

We just used an academic data.
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FIGURE 2. Simulation of P,C ,E and R over time without controls

FIGURE 3. Simulation of P,C ,E and R over time with only u1 control
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FIGURE 4. Simulation of P,C ,E and R over time with only u2 control

FIGURE 5. Simulation of P,C ,E and R over time with controls u1 and u2
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In this formulation, there were initial conditions for the state variables and terminal condi-

tions for the adjoints.

That is, the optimality system is a two-point boundary value problem with separated boundary

conditions at time steps k = 0 and k = T . We solve the optimality system by an iterative method

with forward solving of the state system followed by backward solving of the adjoint system.

We start with an initial guess for the controls at the first iteration and then before the next itera-

tion we update the controls by using the characterization.

We continue until convergence of successive iterates is achieved.

4.2. Discussion. In this section, we study and analyse numerically the effects of optimal control

strategies such as awareness of the crucial importance of local skills to contribute to socio-

economic development and administrative and financial facilitation of scientific research (Table

2 ).

4.2.1. Strategy A: Control with awareness of the crucial importance of local skills to contribute

to socio-economic development administrative , we propose an optimal strategy for this pur-

pose. Hence, we activate the optimal control variable u1 which represents awareness program

for emigrants candidates. Figure 2 compares the evolution of candidates with and without con-

trol u1 in which the effect of the proposed awareness program through media and education is

proven to be positive in decreasing the number of candidates.

4.2.3. Strategy B: Control with administrative and financial facilitation of scientific research

aimed at emigrants, with the goal of encouraging their return to the country . In this strategy,

we propose an optimal strategy by using the optimal control V in the beginning. We notice that

the numbers returned emigrants are creased markedly which leads to satisfactory results.

5. CONCLUSION

In this current article, we have defined a discrete model of the phenomenon of emigration

of Moroccan high-level cadres, with the aim of minimizing the number of emigrants and can-

didates thinking of emigrating, in order to maximize the number of permanent and returning

cadres.

We also imposed two controls which, respectively, represent raising awareness of the high

importance of local skills to contribute to the socio-economic development of their countries,



OPTIMAL CONTROL FOR A DISCRETE-TIME OF BRAIN DRAIN 13

and administrative and financial facilitation for scientific research aimed at emigrants to encour-

age them to return and invest their experience and skills where they belong.

We succeeded in obtaining the expected characterizations of optimal controls after rigorous ap-

plication of the results of control theory. The effectiveness of the proposed strategies was well

demonstrated by numerical simulation of the theoretical results obtained.

And we’d like to emphasize here that all other theoretical controls will no longer do their main

job of retaining senior executives in various potential and critical professions - Professors, Doc-

tors, Engineers, Computer Programmers, Finance Specialists, Technicians, etc. - without a real

political will to tackle this brain drain crisis, whose consequences are remarkable in both the

short and long term, and which is having a destructive impact on the country’s social and eco-

nomic development, which the latter will pay dearly from its time, resources and effort.

And We are preparing a work on the fractional optimal control of a similar system.
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