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Abstract: It is known that pollution can have significant consequences on the dynamics of the producer-consumer-

predator food chain, especially when predators have access to extra food sources due to the impact of pollution on 

environmental resources. Consequently, this paper proposes and investigates a novel mathematical model of the food 

chain that involves Producer-Consumer-Predator with extra food sources for a predator in a polluted environment. All 

the solution properties are discussed. The equilibrium points are determined along with their local stability conditions. 

Lyapunov functions are proposed to discuss the possibility of global stability. The concentrates at which the system 

undergoes persistence are found. Local bifurcation analysis is carried out to understand the influence of parameters 

on the dynamics of the system. A numerical simulation of the system is applied to confirm the analytic findings. 

Keywords: additional food; antipredator; pollution; hunting cooperation; food chain. 

2020 AMS Subject Classification: 92D25, 34L30, 92D40. 

 

1. INTRODUCTION  

One of the traditional uses of biological mathematics is to examine the interactions among 

species using differential equation models because predator-prey interactions have a strong effect 

on the dynamical system, where predators play an important role in preserving the food chain 
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structure. Furthermore, the most fundamental concept in predator-prey interaction is the functional 

response, which determines the rate at which a predator attacks a prey. There are several sorts of 

functional responses, including Holling type I, Holling type II, Holling type III, ratio-dependent, 

see [1-3] and the references therein, and Sokol-Howell [4], which is an upgraded variant of Holling 

type III [5-6]. 

More than two species can be included in the prey-predator paradigm. Numerous research has 

integrated diverse ecosystem types and taken into consideration a variety of predator-prey 

interactions, making the model more sophisticated and realistic [7-8]. In a population system, there 

are often two types of predators: generalists, or predators like lions and leopards, and specialists, 

or consumers, like wild bulls and zebras. Specialist predators only rely on specific types of food 

(producing species) for their survival and well-being, but generalist predators must ingest a variety 

of food sources and attack ferociously on their favorite prey [9]. Over the years, the examination 

of ecosystems where the predator and primary prey are provided with distinct food sources has 

been the subject of much research due to its potential implications. This area of study has become 

increasingly important to biologists, theoretical and experimental ecologists, and mathematicians 

[10-11].  It has been demonstrated that increased food intake, in particular, reduces predation 

pressure on prey by diverting the predator's attention from the target [12]. 

Cooperation in hunting, which is seen as the antithesis of self-interest, is one of the procedures 

that necessitate the availability of several species. This has reduced the amount of time and effort 

required for a hunt and increased hunting success rates [13]. There are predators in ecological 

systems that hunt in packs. This cooperative hunting often causes anxiety in the prey group; in 

such cases, the prey tends to flee or hide in a specific area [14-15]. Consequently, hunting 

cooperation increases fear indirectly. 

One mechanism that reduces predation rates through evading or hiding from high-risk areas 

is assumed to be the prey's dread of becoming prey. Fear is an ecological component that rarely 

results in death, but it can stop prey from spreading since it makes it hide and reduces the likelihood 

that it will reproduce. The victim becomes afraid as a result of the predator's terror. On rare 

occasions, this effect may be about equal to the direct impact's magnitude [16-18]. Wang et al [14] 

presented a predator-prey model that takes into account the effect of anxiety on the growth of the 

prey. Similar to the predator-prey paradigm, fear could stabilize systems by preventing population 

fluctuations. The study discovered that, for particular parameter combinations, fear could have an 

impact on the stability of limit cycle oscillations. An effect not observed in conventional predator-
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prey models is the ability of fear to change population oscillation from supercritical to subcritical.   

Antipredator behavior is now very common. Predator and prey have both evolved to adapt in 

ways that lead to this behavior. When prey displays antipredator behavior, it can protect itself from 

potential predators. The prey-predator model's dynamics, including antipredator behavior, have 

been the subject of several studies [19-20]. Their findings in the subsequent study [21] added to 

our understanding of the mechanisms underlying natural selection, particularly as they relate to 

the effects of antipredator behavior. The predator has an easier time surviving since it is less 

susceptible to antipredator measures. To illustrate antipredator behavior, they used the Holing type 

II function Ὢὼȟώ , where ὼ is the prey, ώ is the predator, while ά and ὧ stand for 

two parameters that describe antipredator behavior.  

Pollution of the environment is a significant influencing factor when dealing with natural 

resources. Pollution, exploitation, and interdependence may decrease stocks, reduce production, 

and lead to species extinction. Effective resource management, including pollution control, is 

crucial for the ecosystem's survival and production. Numerous studies show the impact of 

exploitation and pollution on the prey-predator system [22-25]. For instance, the study presented 

by Zawka and Srinivasu [26] deals with equations describing prey-predator interactions in the 

context of prey harvesting and reducing pollution activities. They conclude that Pollutants from 

outside sources affect the growth rates of both species, lowering the value of the resource. 

Considering the aforementioned, despite the components' obvious presence in the condom, no 

research on an ecosystem has examined how the factors come together, which is the goal of this 

study. For example, some of these biological components have been included in certain earlier 

research. A mathematical model of the food chain focusing on the dynamics of prey, predator, and 

scavenger populations was proposed and examined by Satar and Naji [27]. In this model, toxicants 

have a direct impact on the growth of all prey, predator, and scavenging populations. According 

to the analysis, only external sources are responsible for the pollution releases. The dynamics and 

ideal harvesting of a prey-predator system in a polluted environment with scavengers and pollution 

control are the topics of Zawka and Melese [28]. They noticed that the environment is 

contaminated by toxicants that are emitted from outside sources and the dead corpses of predators 

and prey. This reduces the amount of money that can be made from harvesting because it hinders 

the growth of both predators and prey. A mathematical eco-epidemiological model comprising a 

prey-predator model with sickness in predators involving fear created owing to the intensity of 
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hunting cooperation and anti-predator property was proposed and researched by Sahi and Satar 

[29]. Conversely, Hadi and Bahlool [30] looked at and suggested a nutritional chain model that 

included alternate food sources and a prey shelter. They hypothesized a positive correlation 

between the quantity of mid-predators and the number of refuges. A mathematical model that 

mimics the connection between prey and predator in the event of an infectious disease spreading 

throughout the predator population and the creation of new food sources for the predator has 

recently been developed and studied in [31]. Presumably, the prey slows down its growth rate 

because it feels compelled by the predator's wrath to find a place where it will feel secure and 

afraid.  

Consequently, in this paper, a mathematical model of the food chain consisting of producer-

consumer-predator that involves fear, hunting cooperation, antipredator, and additional food has 

been proposed and formulated mathematically in the next section. The equilibriaôs existence and 

local stability were discussed in section 3. Section 4 treats the determination of persistence 

requirements. The global stability analysis was the subject of section 5. Section 6, determines the 

local bifurcation of the system. A numerical simulation was applied to understand the systemôs 

dynamics in section 7. Finally, Section 8 summarizes the conclusions of the study. 

2. THE MODEL FORMULATION  

This section formulates an ecological food chain model that considers fear, hunting 

cooperation, antipredator, and additional food. Throughout the formulation process the following 

assumptions are adopted: 

In the absence of the consumer, the producer grows logistically, whereas in the presence of 

the consumer, it decays due to feed-on employing a linear functional response. Fear is often 

induced in the consumer when predators hunt together. This disrupts the consumerôs feeding 

patterns and limits the amount of food obtained from the producer. The Sokol and Howell 

functional response will be appropriate for the predation mechanism since consumers are capable 

of cooperative defense and possibly killing the predator. Also, due to the availability of additional 

food for the predator, represented by the term ὃ, a decrease in the rate of predation for the 

consumer will be observed. Moreover, the system is being operated in a polluted environment. 

External pollutants, such as industrial waste, can affect the populations of both consumer and 

predator species. As a result, the dynamics of such a system can be quantitatively simulated using 

the following first-order differential equations: 
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ὶὢρ ὢὪὢȟὣȟὤȟ                 

ήὣ Ὠὣ ὣὪὢȟὣȟὤȟ    

ήὤ Ὠὤ ὤὪὢȟὣȟὤȟ

                  (1) 

where ὢπ π, ὣπ π, and ὤπ π. Table 1 lists the variables and positive parameter 

descriptions. 

Table 1: Description of model variables and parameters: 

Symbols Description 

╧╣ The density of producer population at time ╣. 

╨╣ The density of consumer population at time ╣. 

╩╣ The density of predator population at time ╣. 

► Intrinsic growth rate for the producer.  

▓ Carrying capacity of the producer. 

╪  The consumer attack rate against producers. 

╪ ▄╪  
The rate at which the producer's biomass is converted to the consumer's 

biomass such that ▄ᶰ ȟ . 

╪  The predator's attack rate against consumers. 

□  Handling time constant. 

╬ The level of cooperation between predators when hunting. 

▪ Consumers' level of fear of predators. 

▲ The level of antipredator in the consumer. 

□  
Predator efficiency to avoid the anti-predator capability in the 

consumer 

▀ȟ▀  Natural death rates for the consumer and the predator, respectively. 

▄ɴ ȟ  
The rate at which the consumer's biomass is converted to the predator's 

biomass. 

▲ Toxicity coefficient for consumers. 

▲ Toxicity coefficient for predators. 

♪ The quality of additional food. 

♫═ The effective additional food-level term. 
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To simplify the system (1), the dimensionless parameters and variables mentioned below will be 

utilized: 

 

ὼ
  
ȟώ ȟᾀ ὲὤȟὸ ὶὝȟ

‘ ȟ‘ ȟ‘ ȟ‘ ὃȟ‘ ȟ‘ ȟ

 ‘ ȟ‘ ȟ‘ ȟ‘ ȟ‘ ȟ‘ ȟ‘ Ȣ

 

The dimensionless system can be expressed as follows: 

ὼρ ὼ ὼὪὼȟώȟᾀȟ                      

ώ ‘ώ ‘ ώὪὼȟώȟᾀȟ       

ᾀ ‘ ᾀ ‘ ᾀὪὼȟώȟᾀȢ

       (2) 

The interaction functions of the system (2) are defined on ᴙ ὼȟώȟᾀȡ ὼπ πȟώπ

πȟᾀπ π . The functions ὪȟὪ , and Ὢ  on the right-hand side of the system (2) have 

continuous partial derivatives and thus are said to be continuous. Therefore, these functions satisfy 

Lipschitz's criterion. Given the initial conditions ὼπ πȟώπ π, and ᾀπ π, the solution 

exists and is unique, according to the fundamental theorem of existence and uniqueness. 

Theorem 1. For all ὸ π, System (2) is positively invariant for all positive initial values. 

Proof. Define   ὼȟώȟᾀᶰᴙȡ ὼ πȟώ πȟᾀ π. Applying the initial conditions ὼπ

π , ώπ π , and ᾀπ π  to the mathematical equations of system (2) yields the following 

result:  

ὼὸ ὼπὩ
᷿

 

ώὸ ώπὩ
᷿

 

ᾀὸ ᾀπὩ
᷿

 

The exponential function defines that all solutions in   with positive initial conditions remain in 

the first octant. Hence, the proof is done.          ƴ 

In theoretical ecology, the system's boundedness indicates that it is biologically well-behaved. 

Because the solutions are bounded, none of the species that interact will grow fast or exponentially 

over time, due to a shortage of supplies, any species' population is limited. 
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Theorem 2. In the region, 

 ɰ ὼȟώȟᾀᶰᴙ ȡ π ὼὸ ρȟπ ὼὸ ώὸ ᾀὸ  . 

All solutions of the system (2), which initiates in ᴙ are uniformly bounded  if the following 

sufficient condition is met. 

 ‘‘ ÍÉÎ‘ ρ ‘ ȟ   .                       (3) 

Proof. Consider the solution ὼὸȟώὸȟᾀὸ  of the system (2). Then the first equation in 

system (2) indicates that ὼ ὼ. By using lemma (2.2) [32], this inequality's solution is 

provided by ὼὸ , where ὼ is the initial value s.t. ὼ ὼπ. As ὸ approaches 

Њ, the solution ὼ(ὸ) ensures that ὼ ρ. 

Now, define the function Ὄὸ ὼὸ ώὸ ᾀὸ. Differentiating Ὄὸ gives: 

 
ὼρ ὼ ‘ώ ‘ώ

‘ ᾀ ‘ ᾀ
. 

Direct computation leads to: 

ὼ ‘ώ ‘ ᾀ ᾀ. 

Furthermore, using the sufficient condition it is obtained that 

 ς Ὄ, 

where  ÍÉÎρȟ‘ ȟ‘ . 

Using lemma (2.1) [32], it is found that Ὄὸ  as ὸ approaches Њ. Thus, the solutions of 

system (2) in the region ɰ  are uniformly bounded with the initial point being non-negative. 

Hence, the proof is done.         ƴ 

It is commonly understood that an ecological system is dissipative if the environment equally limits 

each population. Consequently, system (2) has dissipative properties. 

3. EXISTENCE AND LOCAL  STABILITY OF EQUILIBRIUM POINTS 

The presence of non-negative equilibria is examined, and the stability requirements around 

these equilibria are established. The non-negative equilibrium points are defined as follows: 
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¶ The trivial point denoted by Ὡ πȟπȟπ is always exists. 

¶ The first axial point denoted by Ὡ ρȟπȟπ is always exists. 

¶ The second axial point denoted by Ὡ πȟπȟᾀǿ, where ᾀǿ , which exists 

provided that one of the following conditions holds: 

ρ ‘ ‘ ‘‘

έὶ

‘‘ ρ ‘ ‘

 .             (4) 

¶ The first planar point denoted by Ὡ ρȟπȟᾀǿ which is exists under the condition (4) too. 

¶ The second planar point Ὡ ὼȟώȟπ, where ὼ ρ ώ, while ώ is a positive root of the 

second-order polynomial ‘ώ ‘ώ ‘ ‘ π. This polynomial has a unique 

positive root written by ώ , provided that: 

‘ ‘.                      (5) 

Accordingly, the point Ὡ will exist uniquely when a positive root ώ satisfies: 

ώ ρ.                    (6) 

¶ The positive point denoted by Ὡ ὼӶȟώȟᾀӶ, where ὼӶ
Ӷ

Ӷ
 while the ώȟᾀӶ is the 

positive intersection point of the isoclines: 

Ὤ ώȟᾀ ᾀ‘ ᾀ‘ ᾀ‘‘ ᾀ‘‘

ώ‘ ώᾀ‘ ώ‘‘ ώᾀ‘‘ ώ‘‘

ώᾀ‘‘ ‘ ᾀ‘ ‘‘ ᾀ‘‘ ώ‘‘ ώᾀ‘‘ πȢ

. 

 

Ὤ ώȟᾀ ώ‘ ώᾀ‘‘ ώ‘ ώ‘‘ ώ‘‘ ώᾀ‘‘             

ώᾀ‘‘‘ ᾀ‘ ᾀ‘‘ ώᾀ‘‘ ᾀ‘ ‘ ᾀ‘‘ ‘

ώᾀ‘‘ ‘ ‘ ‘‘ ώ‘‘ ᾀ‘ ‘ ᾀ‘‘ ‘

ώᾀ‘‘ ‘ ‘‘ ᾀ‘‘‘ ᾀ‘‘ ‘ ᾀ‘‘‘ ‘ πȢ

. 

It is easy to verify that as ᾀO π the above two isoclines become 

Ὤ ώȟπ ‘‘ώ ‘‘ώ ‘‘ ‘ ‘‘ ‘‘ ώ

‘ ‘‘ ώ ‘ ‘‘ ‘ ‘‘ π
. 

Ὤ ώȟπ ‘‘ώ ‘‘ ώ ‘ ‘ ‘‘ ώ
‘ ‘‘ ‘‘ π

. 

Direct computation shows that the first isocline has a unique positive root for ώ denoted by 

ώ if the following condition holds 
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‘ ‘ ‘.                  (7) 

While the second isocline has a unique positive root for ώ denoted by ώ if the following 

condition holds 

‘ ρ ‘ ‘‘ .                  (8) 

Consequently, the above two isoclines have a unique intersection positive point denoted by 

ώȟᾀӶ if the following sufficient conditions hold: 

ώ ώ                      
ϳ

ϳ
π

ϳ

ϳ
πữ
Ữ

ử

.                         (9) 

Finally, the positive equilibrium point exists uniquely if the following condition is met in 

addition to the above set of sufficient conditions.  

ώ ρ ᾀӶ.                                       (10) 

In the next steps, the linearization technique is used to analyze the system's local stability 

around the previously discussed equilibrium points. Now the basic Jacobian matrix of system (2) 

is determined as follows: 

 ὐὼȟώȟᾀ

ở

Ở
ờ

ὼ Ὢ ὼ ὼ

ώ ώ Ὢ ώ

ᾀ ᾀ ᾀ ὪỢ

ỡ
Ỡ

ὥ  ȟ              (11) 

where: 

 ὥ ὼ ρ ὼ , ὥ , ὥ
 

, 

 ὥ , ὥ ς‘ώ ‘ώ ‘ , 

 ὥ ώ, ὥ π, 

 ὥ ᾀ, 

 ὥ ‘ ᾀ ‘ ᾀ ‘ . 

So, at the trivial point Ὡ, matrix (11) yields: 

 ὐὩ

ρ π π
π ‘ π

π π ‘
.                     (12) 
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Thus, ὐὩ   has the following eigenvalues: ‗ ρ , ‗ ‘ , and ‗ ‘  . 

Therefore, Ὡ is a saddle point. 

Also, at the first axial point Ὡ, matrix (11) yields: 

 ὐὩ

ρ ρ π
π ‘ ‘ π

π π ‘
                        (13) 

The eigenvalues of ὐὩ  are ‗ ρ, ‗ ‘ ‘, and ‗ ‘ . Therefore, Ὡ 

is locally asymptotically stable, assuming that the following conditions hold: 

 ‘ ‘.                           (14) 

 ‘‘ ‘ ρ ‘ .                               (15) 

At the second axial point Ὡ, matrix (11) yields:  

ὐὩ

ở

ờ

ρ π π

π ‘ π

π ᾀǿ ‘ ᾀǿỢ

Ỡ.       (16) 

Thus, ὐὩ   has the following eigenvalues: ‗ ρ , ‗ ‘ , and ‗

‘ ᾀǿ. Therefore, Ὡ is a saddle point. 

At the first planar point Ὡ, matrix (11) yields:  

ὐὩ

ở

Ở
ờ

ρ π

π ‘ π

π ᾀǿ ‘ ᾀǿ
Ợ

ỡ
Ỡ
.                  (17) 

Thus, ὐὩ  has the following eigenvalues: ‗ ρ, ‗ ‘, and ‗

‘ ᾀǿ . Therefore, Ὡ  is locally asymptotically stable, assuming that the following 

conditions hold:  

 ‘.                      (18) 

 ‘‘ .                        (19) 

Moreover, at the second planar point, the matrix (11) yields: 
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 ὐὩ

ở

Ở
ờ

ὼ ὼ ὼώ

‘ώ ς‘ώ ‘ὼώ

π π ‘ώ ‘

 

Ợ

ỡ
Ỡ

ὥ .             (20) 

The eigenvalues of ὐὩ  are ‗ ȟ , and ‗ ὥ . 

Since ὥ ὥ ὥ ὥ ς‘ὼώ ‘ὼώ π , and ὥ ὥ π , hence ‗   and ‗   are 

negative real parts eigenvalues. Thus, Ὡ is locally asymptotically stable, provided the following 

condition holds: 

‘ώ ‘ .                         (21) 

Additionally, the matrix (11) at the positive point Ὡ is as follows: 

 ὐὩ

ὥ ὥ ὥ
ὥ ὥ ὥ
π ὥ ὥ

                       (22) 

where: 

 ὥ ὼӶ, ὥ
Ӷ

Ӷ
, ὥ

Ӷ

 Ӷ
, ὥ

Ӷ
, ὥ

Ӷ Ӷ
ς‘ώ, 

 ὥ ώ
Ӷ

Ӷ

Ӷ
,  

 ὥ ᾀӶ
Ӷ Ӷ

Ӷ
, 

 ὥ
Ӷ Ӷ

Ӷ
‘ ᾀӶ. 

As a result, the characteristic equation of ὐὩ  can be expressed as follows: 

 ‗ ‗ ‗  πȟ                      (23) 

where: 

  ὥ ὥ ὥ , 

  ὥ ὥ ὥ ὥ ὥ ὥ ὥ ὥ ὥ ὥ , 

  ὥ ὥ ὥ ὥ ὥ ὥ ὥ ὥ ὥ ὥ , 

with 

 
  ὥ ὥ ὥ ὥ ὥ ὥ ὥ ὥ ὥ ὥ ὥ ὥ

ὥ ὥ ὥ ςὥ ὥ ὥ ὥ ὥ Ȣ
 

According to the Routh-Hurwitz criterion, Ὡ ὼӶȟώȟᾀӶ  is locally asymptotically stable 

provided  πȟ π and  , which is true if and only if the following conditions 

are satisfied: 
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Ӷ

‘ ,                     (24) 

 
ӶӶ

‘,                  (25) 

 
Ӷ

Ӷ

Ӷ
,                 (26) 

 
 Ӷ

Ӷ Ӷ

Ӷ
 .               (27) 

Consequently, the next theorem is verified. 

Theorem 3. In system (2), the positive point is locally asymptotically stable if the conditions (24-

27) are met. 

4. PERSISTENCE 

 A system is said to be persistent if and only if all species survive. Mathematically, this means 

that with a positive initial condition of the system (2), if the solution does not have an omega limit 

set placed at the boundary of its domain, the system is said to persist. 

The following expressions can be used to represent the possible subsystems located in the positive 

quadrant of the ὼᾀ-plane and ὼώ-plane of the system (2) respectively: 

ὼρ ὼ  ὼȟᾀȟ                 

ᾀ ‘ ᾀ ‘  ὼȟᾀȢ
                         (28) 

And 

ὼρ ὼ ώ  ὼȟώȟ      

ώ‘ὼ ‘ώ ‘  ὼȟώȢ
.             (29) 

The subsystems (28)-(29) in ᴙ  have a positive equilibrium point that corresponds to Ὡ

ρȟπȟᾀǿ and Ὡ ὼȟώȟπ of the system (2) respectively. To verify whether periodic dynamics 

exist near the interior positive point of the subsystems (28)-(29), the Dulac function approach [33] 

is used. 

Let Ὣ ὼȟᾀ
ȟ
 and Ὣ ὼȟώ  are continuously differentiable functions that are defined 

for every ὼȟᾀȟὼȟώᶰᴙ  and are located in the interior of the positive quadrant of the ὼᾀ-

plane and ὼώ -plane, and Ὣ ὼȟᾀ π  and Ὣ ὼȟώ π . Furthermore, the straightforward 

calculation yields that: 

 Ў ὼȟᾀ ὫȢ ὫȢ ‘ . 
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 Ў ὼȟώ ὫȢ ὫȢ . 

Then Ў ὼȟᾀ π due to the first existence condition (4), and Ў ὼȟώ π for any value of 

ὼȟώ. Consequently, there are no periodic dynamics in the interior of the positive quadrants of the 

ὼᾀ-plane and ὼώ-plane. 

Theorem 4. System (2) is uniformly persistent if the following conditions are met: 

‘ ‘,                   (30) 

‘ .                (31) 

‘ώ ‘ .                      (32) 

Proof. Define the function ɮὼȟώȟᾀ ὼ ώ ᾀ  , where ”ȟ”ȟ”  are arbitrary positive 

constants, and ɮὼȟώȟᾀ π  for all ὼȟώȟᾀᶰᴙ  with ɮὼȟώȟᾀᴼπ  if either  ὼȟώ  or ᾀ 

goes to zero. Now, let 

ɰὼȟώȟᾀ
ȟȟ

ȟȟ
”Ὢ ”Ὢ ”Ὢ. 

The functions ὪȟὪȟ and Ὢ are defined in system (2).  

The average Lyapunov approach requires demonstrating that the function ɰὼȟώȟᾀ π at all 

boundary equilibrium points [34]. Thus, 

 
ɰὼȟώȟᾀ ” ρ ὼ ” ‘ώ ‘

” ‘ ᾀ ‘
. 

That implies 

 ɰὩ ” ρ ” ‘ ” ‘ . 

Clearly, by allowing the arbitrary positive constant ” to be sufficiently greater than the positive 

constants ” and ”, ɰὩ π is obtained. 

 ɰὩ ” ‘ ‘ ” ‘ . 

According to condition (30), if the positive constant ” is sufficiently greater than the positive 

constant ”, then ɰὩ π is obtained. 

 ɰὩ ” ρ ” ‘ . 

Hence, allowing the arbitrary positive constant ”  to be sufficiently greater than the positive 

constants ”, it obtained ɰὩ π. 
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 ɰὩ ” ‘ . 

Hence, due to condition (31), it is obtained that ɰὩ π . Finally, at this point Ὡ , direct 

calculation shows that: 

   ɰὩ ” ‘ώ ‘ . 

It is obtained that ɰὩ π under condition (32). Thus, the system (2) is uniformly persistent, 

therefore the proof is done.        ƴ 

5. GLOBAL STABILITY ANALYSIS 

In this part, appropriate Lyapunov functions are used to explore the global stability within the 

bounded region ɰ  of the system's (2) locally asymptotically stable equilibrium points, as 

demonstrated in the following theorems. 

Theorem 5. The first axial point Ὡ of the system (2) is globally asymptotically stable whenever 

it is locally asymptotically stable. 

Proof. Define the real-valued function Ὃ ὼȟώȟᾀ ὼ ρ ÌÎὼ ώ ᾀ, which is a 

positive definite function since Ὃ Ὡ π  and Ὃ ὼȟώȟᾀ π  for all ὼȟώȟᾀᶰᴙȡὼ

πȟώ πȟᾀ π, and ὼȟώȟᾀ Ὡ. Furthermore, some direct computation yields: 

 ὼ ρ ρώ ᾀ ᾀ. 

Consequently,   is a negatively definite function under the local stability conditions in the 

bounded region ɰ. Hence Ὡ is globally asymptotically stable.            ƴ 

Theorem 6. If the first planar point Ὡ  is locally asymptotically stable, it is globally 

asymptotically stable, provided that the following condition is met. 

 ‘ ᾀǿ ‘.                 (33) 

Proof. Consider the following a real-valued function 

 Ὃ ὼȟώȟᾀ ὼ ρ ÌÎὼ ώ ᾀ ᾀǿᾀǿÌÎ .  

It is a positive definite function since Ὃ  Ὡ π  and Ὃ ὼȟώȟᾀ π , for all ὼȟώȟᾀᶰ

ᴙȡὼ πȟώ πȟᾀ π, and ὼȟώȟᾀ ρȟπȟᾀǿ. Furthermore, some direct computation yields: 
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ὼ ρ ώ ώ

ᾀ ᾀǿȢ

 

Therefore, it is obtained that: 

 
ὼ ρ ώ ώ

ᾀ ᾀǿȢ
 

Consequently,  is a negatively definite function under the condition (33) along with the local 

stability condition and the logistic function form of ώ. Hence Ὡ is globally asymptotically stable.    

Theorem 7. The second planar point Ὡ is globally asymptotically stable, provided the following 

conditions hold. 

 .                 (34) 

 .                          (35) 

Proof. Define Ὃ ὼȟώȟᾀ ὼ ὼ ὼÌÎ ώ ώ ώÌÎ ᾀ , which is real-

valued function. It is a positive definite function since Ὃ  Ὡ π and Ὃ ὼȟώȟᾀ π, for all 

ὼȟώȟᾀᶰᴙȡὼ πȟώ πȟᾀ π , and ὼȟώȟᾀ ὼȟώȟπ . Furthermore, some direct 

computation yields: 

 
ὼ ὼ ώ ώ ώ ώ ᾀ

ᾀȢ
 

Consequently,  is a negatively definite function under the conditions (34)-(35). Hence Ὡ is 

globally asymptotically stable.      

Theorem 8. The positive equilibrium point Ὡ has a basin of attraction in the interior of ɰ that 

satisfies the following conditions. 

Ӷ Ӷ
‘,                 (36) 

 ‘ ,              (37) 

 ὓ ςὓ ,                   (38) 
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 ὓ ςὓ ὓ ,                (39) 

where the new symbols are defined in the proof. 

Proof. Consider the following real-valued function 

 Ὃ ὼȟώȟᾀ ὼ ὼӶὼӶÌÎ
Ӷ

ώ ώ ώÌÎ ᾀ ᾀӶᾀӶÌÎ
Ӷ
. 

It is a positive definite function since Ὃ  Ὡ π  and Ὃ ὼȟώȟᾀ π , for all ὼȟώȟᾀᶰ

ᴙȡὼ πȟώ πȟᾀ π, and ὼȟώȟᾀ Ὡ. Furthermore, some direct computation yields: 

 

ὼ ὼӶ ὼ ὼӶᾀ ᾀӶ ‘
Ӷ Ӷ

ώ ώ ώ ώ

‘ ᾀ ᾀӶ

Ӷ Ӷ Ӷ

ώ ώ ᾀ ᾀӶ ὼ ὼӶ ὓ ὼ ὼӶᾀ ᾀӶ

ὓ ώ ώ ὓ ᾀ ᾀӶ ὓ ώ ώ ᾀ ᾀӶȟ

 

where ὄ ρ ᾀȟὄ ρ ᾀӶ , ὄ ρ ‘ ‘ώ ȟὄ ρ ‘ ‘ώ  , ὄ ρ

‘ ᾀ, and ὄ ρ ‘ ᾀӶ. While ώ  is the upper bound of ώ within ɰ. 

Therefore, according to the conditions (36)-(39) the derivative  becomes negative definite. 

Hence, Ὡ is an asymptotically stable point for any trajectory starting in the region that satisfies 

the given condition. Hence the proof is complete.            ƴ 

6. LOCAL BIFURCATION ANALYSIS 

This section employs the Sotomayor theorem [33] for local bifurcation to investigate how 

changing parameters impact the system's (2) qualitative dynamics close to non-hyperbolic points. 

Rewrite system (2) using the vector norm: 

 
ἦ
ἐἦȟ‘, ἦ ὼȟώȟᾀ , ἐ ὼὪἦȟ‘ȟώὪἦȟ‘ȟᾀὪἦȟ‘ , 

where the system (2) specifies Ὢἦȟ‘ȟᶅὭ ρȟςȟσ. The potential bifurcation parameter ‘ᶰᴙ is 

also specified. Direct computation of the second and third derivatives of vector ἐ  yields the 

following: 

    Ὀἐἦȟ‘Ȣἤȟἤ ὧ ,                  (40) 

where ἤ ὺȟὺȟὺ  be any vector and  

 ὧ ςὺ ὺὺ ὺὺ ὺὺ ὺ , 
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ὧ ς ς ὺὺ           

ς ώὺ ς σ‘ ώὺ
. 

ὧ ς ὺ

ς ‘ ὺ

ς ὺὺ

. 

Furthermore, 

 Ὀἐἦȟ‘Ȣἤȟἤȟἤ Ὠ ,              (41) 

where: 

 Ὠ ὺὺὺ ὺὺ ὺὺ ὺ  

 

Ὠ ὺ ὺὺὺ ὺὺ ὺὺ

ὺὺ φ ὺὺ

φὺ ‘

.  

 

Ὠ ὺ ὺὺ

φ ὺὺ

ὺ

. 

Theorem 9: Near the first axial point, the system (2) experiences a transcritical bifurcation when 

the parameter ‘  passes through the value ‘ᶻ ‘. 

Proof: The matrix (13) at Ὡȟ‘ᶻ yields: 

 ὐ ὐὩȟ‘ᶻ
ρ ρ π
π π π

π π ‘
 . 

The eigenvalues of ὐ  are as follows: ‗ ρ , ‗ π , and ‗ ‘  , which 

implies that Ὡ non-hyperbolic point. Let 6 ὺ ȟὺ ȟὺ , and 7 ύ ȟύ ȟύ  be 

the eigenvectors corresponding ‗ π  of ὐ  and ὐ  respectively. The straightforward 

computation yields that 6 ρȟρȟπ  , 7 πȟρȟπ  . Moreover, equation (40) is used to 

provide the following: 

 ἐ πȟ ȟπ   ἐ Ὡȟ‘ᶻ πȟπȟπ   ἥ ἐ Ὡȟ‘ᶻ π. 
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 ἥ Ὀἐ Ὡȟ‘ᶻȢἤ πȟρȟπ
π
ρ
π

ρ π. 

 ὈἐὩȟ‘ᶻȢἤȟἤ πȟς‘ᶻȟπ   ἥ ὈἐὩȟ‘ᶻ ἤȟἤ ς‘ π. 

Hence, when ‘ᶻ ‘, system (2) experiences a transcritical bifurcation at the equilibrium point 

Ὡ. Thus, the proof is completed.            ƴ 

Theorem 10: Near the first planer point Ὡ , system (2) experiences a transcritical bifurcation 

when the parameter ‘  passes through the positive value ‘ᶻ  if the following 

condition holds: 

 ς — ς — ς — π,          (42) 

where —  and —  are given in the proof. Otherwise, pitchfork bifurcation occurs when the 

following condition holds: 

 —— — φ — φ ‘ π.          (43) 

Proof: The matrix (17) at Ὡȟ‘ᶻ yields: 

 ὐ ὐὩȟ‘ᶻ
ρ π

π π π

π ᾀǿ ‘ ᾀǿ

 . 

The eigenvalues of ὐ are as follows: ‗ ρ, ‗ π and ‗ ‘ ᾀǿ. Hence 

a non-hyperbolic point Ὡ  has been obtained. Let ἤ ὺ ȟὺ ȟὺ   and ἥ

ύ ȟύ ȟύ   be the eigenvectors corresponding ‗ π  of ὐ  and ὐ  respectively. The 

straightforward computation yields that ἤ —ȟρȟ—  , and ἥ πȟρȟπ  , where —

  and —   . Moreover, equation (40) is used to provide the 

following: 

 ἐ πȟώȟπ   ἐ Ὡȟ‘ᶻ πȟπȟπ   ἥ ἐ Ὡȟ‘ᶻ π. 

 ἥ Ὀἐ Ὡȟ‘ᶻȢἤ πȟρȟπ
π
ρ
π

ρ π. 

 ὈἐὩȟ‘ᶻȢἤȟἤ

ή
ή
ή

, 
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where: 

ή ς— — — , 

ή ς — ς — ς —. 

ή ς ς ‘ — ς —. 

Thus 

  ἥ ὈἐὩȟ‘ᶻȢἤȟἤ ή. 

Hence, when ‘ ‘ᶻ, the system (2) experiences a transcritical bifurcation at the equilibrium 

point Ὡ when the condition (42) holds. However, when condition (42) fails to be met, equation 

(41) yields the following result: 

 ὈἐὩȟ‘ᶻȢἤȟἤȟἤ

ὶ
ὶ
ὶ
, 

where: 

 ὶ —— — 

 ὶ —— — φ — φ ‘ .  

 ὶ — φ — . 

Hence 

 ἥ ὈἐὩȟ‘ᶻȢἤȟἤȟἤ ὶ. 

Thus, the proof proceeds and the pitchfork bifurcation occurs under the condition (43).        ƴ 

Theorem 11: Near the second planar equilibrium point, system (2) experiences a transcritical 

bifurcation when the parameter ‘  passes through the positive value ‘ᶻ ‘ώ if 

the following condition holds: 

 ς‘  ‘ ώ ς‘ π,     (44) 

where   is given in the proof. Otherwise, pitchfork bifurcation occurs when the following 

condition holds: 

 φ‘‘  ‘ ώ π.        (45) 

Proof: The matrix (20) at Ὡȟ‘ᶻ  yields: 
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 ὐ ὐὩȟ‘ᶻ
ὼ ὼ ὼώ

‘ώ ς‘ώ ‘ὼώ

π π π

 . 

The eigenvalues of ὐ  are as follows: ‗ ȟ ‘ώ  , and 

‗ π . This causes a non-hyperbolic point Ὡ  to be obtained. Let ἤ ὺ ȟὺ ȟὺ   and 

ἥ ύ ȟύ ȟύ  be the eigenvectors corresponding ‗ π of ὐ and ὐ respectively. 

The straightforward computation yields that ἤ ȟȟρ , and ἥ πȟπȟρ , where 

ώ   and    . Moreover, 

equation (40) is used to provide the following: 

 ἐ πȟπȟᾀ   ἐ Ὡȟ‘ᶻ πȟπȟπ   ἥ ἐ Ὡȟ‘ᶻ π. 

 ἥ Ὀἐ Ὡȟ‘ᶻ Ȣἤ πȟπȟρ
π
π
ρ

ρ π. 

 ὈἐὩȟ‘ᶻ Ȣἤȟἤ

ί
ί
ί
, 

where: 

 ί ς ς ςώ ςὼ ςὼώ , 

 ί ς‘  ὼ  ώ φ‘ώ, 

 ί ς‘  ‘ ώ ς‘ . 

Thus 

  ἥ ὈἐὩȟ‘ᶻ Ȣἤȟἤ ί. 

Hence, when ‘ ‘ᶻ, system (2) experiences a transcritical bifurcation at the equilibrium point 

Ὡ if the condition (44) holds. When the condition (44) fails to be met, equation (41) yields the 

following result: 

 ὈἐὩȟ‘ᶻ Ȣἤȟἤȟἤ

ό
ό
ό

, 

where: 

 ό φ ὼ  ώ, 
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ό

φ‘  ὼ  ώ φ‘
, 

 
ό

φ‘‘  ‘ ώ
. 

Hence 

 ἥ ὈἐὩȟ‘ᶻ Ȣἤȟἤȟἤ ό. 

Thus, the proof proceeds and the pitchfork bifurcation occur under the condition (45).        ƴ 

Theorem 12: Assuming the conditions (24)-(26) hold, as the parameter ‘  reaches the value 

‘ᶻ
Ӷ Ӷ

 , system (2) experiences a saddle-node 

bifurcation around the positive point if the following condition holds: 

 ύ ὧᶻ ύ ὧᶻ ὧᶻ π,                            (46) 

where the definition of each new symbol is represented in the proof. 

Proof: The matrix (22) at Ὡȟ‘ᶻ  yields: 

 ὐ ὐὩȟ‘ᶻ
ὥ ὥ ὥ
ὥ ὥ ὥ 

π ὥ ὥᶻ
, 

where ὥᶻ ὥᶻ ‘ᶻ . 

Simple computations show that the determinant of ὐ, represented by  in equation (23), is zero. 

Therefore, ὐ will have a zero eigenvalue (‗ᶻ π) and two additional eigenvalues of negative 

real parts. Thus, the point Ὡ  becomes a non-hyperbolic point. Let ἤ ὺ ȟὺ ȟὺ   and 

ἥ ύ ȟύ ȟύ  be the eigenvectors corresponding ‗ᶻ π of ὐ and ὐ respectively. 

Then straightforward computation yields that:  

 ἤ

ở

ờ

 

 

  

 

ρ Ợ

Ỡ
ὺ
ὺ
ρ
,  ἥ

ở

ờ

  

 

 

 

ρ Ợ

Ỡ
ύ
ύ
ρ
.  

Moreover, equation (40) is used to provide the following: 

 
ἐ πȟπȟᾀ ἐ Ὡȟ‘ᶻ πȟπȟᾀӶ

ἥ ἐ Ὡȟ‘ᶻ ᾀӶ π
. 

In addition, it is obtained that: 
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 ὈἐὩȟ‘ᶻ Ȣἤȟἤ

ὧᶻ

ὧᶻ

ὧᶻ
, 

where ὧᶻ ὧ Ὡȟ‘ᶻȟἤ  , ὧᶻ ὧ Ὡȟ‘ᶻȟἤ  , and ὧᶻ ὧ Ὡȟ‘ᶻȟἤ  . Hence, due to 

condition (46), it is obtained that: 

  ἥ ὈἐὩȟ‘ᶻ Ȣἤȟἤ ύ ὧᶻ ύ ὧᶻ ὧᶻ π 

Hence, when ‘ ‘ᶻ , system (2) experiences a Saddle-node bifurcation at the equilibrium 

point Ὡ. Thus, the proof is completed.                      ƴ 

7. NUMERICAL SIMULATION  

This section investigates many aspects of system (2) dynamics. The main objective is to learn 

how the system responds when its parameters are changed and verify the validity of the previously 

offered hypotheses and their results, by choosing biologically acceptable values for the parameters 

‘ȡρ Ὥ ρσɴ ᴓ. System (2) will be solved numerically, and the numerical solutions will be 

presented in different forms using MATLAB R2023b. The set 3 represents the set of parameters 

that are utilized to demonstrate the numerical trajectory shown in Fig. 1, using multiple initial 

points that are specified as Ὅ πȢχυȟπȢχυȟπȢχυȟὍ πȢρȟπȢςυȟπȢωȟὍ πȢωȟπȢρȟπȢωȟὍ

ρȟπȢυȟπȢςȟὍ ρȟρȟπȢυȟὍ πȢυȟπȢςυȟπȢχυȟὍ πȢςυȟπȢυȟπȢρȟὍ πȢυȟπȢυȟπȢυȟὍ

πȢπςȟπȢπςȟπȢπς and Ὅ πȢςȟπȢπρȟπȢπρ. 

 
Ὓ ‘ πȢχυȟ‘ ρȢυȟ‘ πȢπυȟ‘ πȢρȟ‘ υȟ‘ πȢρȟ‘ πȢρȟ

 ‘ πȢψȟ‘ πȢρȟ‘ υȟ‘ πȢρȟ‘ πȢρȟ‘ πȢρ
        (47) 

Note that, the red dots in the following phase portraits represent the approaching equilibrium points, 

while the blue dots refer to the starting points.  
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Figure 1. The trajectory of the system (2) using the set of parameters (47) shows a bi-stable 

behavior for system (2) between Ὡ πȢςρȟπȢχψȟπ and Ὡ πȢωσȟπȢπωȟπȢσς. (a) 3D phase 

portrait of the system (2) and its time series that is given in (b). (c) The projection of the phase 

portrait on the ὼώ -plane. (d) The projection of the phase portrait on the ώᾀ -plane. (e) The 

projection of the phase portrait on the ὼᾀ-plane. 

 

According to Fig. 1, system (2) approaches to the positive point Ὡ  for the initial points 

ὍȟȣȟὍ, and to the second planar point Ὡ for the initial points Ὅ and Ὅ, which suggests that 

the system exhibits bi-stable behavior.   Moreover, the set of data (47) does not satisfy all the 

persistence conditions given in Theorem 4, and hence there is no guarantee for the persistence of 

the system.  

Now, the changing of the parameter ‘ and its effect on the system (2) appear to indicate that 

when ‘ πȢρ, the system approaches the first axial point Ὡ, the positive point Ὡ will be the 

approaching point when πȢρ ‘ πȢφφ  that indicates satisfying the persistence and global 

stability conditions, while the system (2) undergoes a bi-stable behavior between Ὡ and Ὡ for 
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the range πȢφφ ‘ ρȢςρ as in Fig. 1. Moreover, when ‘ ρȢςρ the system approaches Ὡ, 

see Fig. 2. 

 

 

Figure 2. The bi-stable behavior of the system (2) with the set of parameters (47). (a) 3D phase 

portrait approaches Ὡ ρȟπȟπ  when ‘ πȢρ . (b) 3D phase portrait approaches Ὡ

πȢωσȟπȢπχȟπȢςρ  when ‘ πȢυ . (c) 3D phase portrait approaches Ὡ πȢρρȟπȢψψȟπ  when 

‘ ρȢυ. 

 

The effect of changing the parameter ‘ on the dynamic behavior of the system (2) is only a 

quantitative impact so that the system still has a bi-stable behavior between the points Ὡ and Ὡ 

with an increase in the magnitude of the basin of attraction of the point Ὡ for values in the range 

‘ τȢχ, see Fig. 3. 
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Figure 3. The bi-stable behavior of the system (2) with the set of parameters (47). (a) 3D phase 

portrait approaches Ὡ πȢςρȟπȢχψȟπ and Ὡ πȢωσȟπȢπψȟπȢςυ when ‘ ς. (b) The time 

series with ‘ ς . (c) 3D phase portrait approaches Ὡ πȢςρȟπȢχψȟπ  and Ὡ

πȢωτȟπȢπφȟπȢρρ when ‘ υ. (d) The time series with ‘ υ. 

 

For the values of ‘ ρ, it is noted that the system (2) has a bi-stable behavior between Ὡ 

and Ὡ, while it has a bi-stable behavior between Ὡ and 3D periodic attractor for ρ ‘ ρȢχρ. 

However, system (2) has a bi-stable behavior between Ὡ and Ὡ when ‘ ρȢχρ, See Fig. 4. 
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Figure 4. System (2) trajectories using the set of parameters (47). (a) 3D phase portrait shows bi-

stable behavior between Ὡ  and Ὡ  when ‘ πȢυ . (b) 3D phase portrait shows bi-stable 

behavior between Ὡ and 3D periodic attracter when ‘ ρȢρυ. (c) 3D phase portrait shows bi-

stable behavior between Ὡ ρȟπȟςȢτ and Ὡ when ‘ ς.  

 

Changing the parameter ‘ and its effect on the system's (2) dynamic reveals that when ‘

πȢρχ , the system has a bi-stable behavior between Ὡ  and Ὡ . However, for ‘ πȢρχ , it 

approaches asymptotically from different initial points to the positive point Ὡ, it is observed all 

the conditions of persistence of the system are satisfied in this range. See Fig. 5.  
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Figure 5. Using the data set (47) with different values of ‘ shows that: (a) 3D phase portrait 

shows bi-stable behavior between Ὡ πȢρτȟπȢψυȟπ  and Ὡ πȢωσȟπȢπωȟπȢσς  when ‘

πȢπρ . (b) 3D phase portrait shows approaching Ὡ πȢωσȟπȢπωȟπȢσς  using different initial 

points when ‘ ρ. 

 

The system's (2) dynamic is affected by varying the parameter ‘, and the results indicate that 

when ‘ πȢρτ the system has a bi-stable behavior between Ὡ and Ὡ. While, for the range 

πȢρτ ‘ πȢχυ  it approaches asymptotically the positive point Ὡ  starting from different 

initial points. Finally, when ‘ πȢχυ, system (2) approaches asymptotically to the first axial 

point Ὡ. See Fig. 6.  
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Figure 6. Using the data set (47) with different values of ‘ shows that:  (a) 3D phase portrait 

shows bi-stable behavior between Ὡ πȢρρȟπȢψψȟπ  and Ὡ πȢωςȟπȢπωȟπȢσχ  when ‘

πȢπρ. (b) 3D phase portrait shows approaching Ὡ πȢωτȟπȢπυȟπȢρ using different initial points 

when ‘ πȢυ . (c) 3D phase portrait shows approaching Ὡ ρȟπȟπ  using different initial 

points when ‘ ρ. 

 

Now, adjusting the value of ‘ affects the dynamics of the system (2). When ‘ πȢχυ the 

system approaches Ὡ. For πȢχυ ‘ πȢψυ it has a bi-stable between Ὡ and Ὡ as shown in 

Fig. 1. For the range πȢψυ ‘ ρȢυ, the system approaches asymptotically the positive point 

Ὡ, it is observed all the conditions of persistence of the system (2) are satisfied in this range. 

Finally, when ‘ ρȢυ, the system's persistence is lost due to the failure to achieve condition (30), 

and approaches asymptotically to the first planar point Ὡ. See Fig. 7.  
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Figure 7. Using the data set (47) with different values of ‘ shows that: (a) 3D phase portrait 

approaching Ὡ πȢςρȟπȢχψȟπ  using different initial points when ‘ πȢυ . (b) 3D phase 

portrait approaching Ὡ πȢωτȟπȢπχȟπȢσς when ‘ πȢψυ. (c) 3D phase portrait approaching 

Ὡ ρȟπȟπȢσω when ‘ ρȢυ. 

 

It is observed from Fig. 7 that, increases in the value of ‘ lead to reduce in the magnitude 

of the basin of attraction of Ὡ and an increase in the magnitude of the basin of attraction of the 

point Ὡ for the range ‘ ρȢυ. However, for ‘ ρȢυ, the system loses its persistence. 

The effect of varying the parameter ‘  on the system's (2) dynamic shows that when ‘

πȢπρ, the system undergoes a bi-stable behavior between Ὡ and a 3D periodic attracter. However, 

for the range πȢπρ ‘ πȢςς, the system (2) undergoes a bi-stable behavior between Ὡ and 

Ὡ, as in Fig. 1. Moreover, the system approaches asymptotically to Ὡ when ‘ πȢςς, which 

means losing the persistence, see Fig. 8. 


