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Abstract. With the increasing development of autonomous driving, there is a need for an accurate deep learning model 

to detect and segment important objects such as other vehicles, traffic lights, road signs, road segments, pedestrians, 

and drivers accurately. Urban road scene segmentation presents the greatest challenge due to the presence of numerous 

obstacles, including pedestrians, roadside vegetation, buildings, and various other elements. The proposed model is a 

combination InternImage as the backbone and taking the Adapter of ViT-Adapter applied in the first block of the 

backbone model. The outputs of the output of InternImage last block and adapter output will be combined by element-

wise addition then fed to segmentor. The model evaluated by public dataset Cityscapes with mIoU as the measuring 

metric. The result achieved is 81.93 mIoU on test data. The addition of adapter on the first block to InternImage does 

improve the performance of standalone InternImage. 

Keywords: semantic segmentation; convolution neural network; visual transformer; urban road scene; deep learning. 
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1. INTRODUCTION 

 The automotive industry is currently making a lot of progress in automating automotive 

systems. This development is also triggered by the development of electric-powered automobiles. 
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This automation is already predicted to be a trend in the automotive industry which will improve 

traffic safety and efficiency [1]. Automation in automotive can improve traffic safety. To realize 

safe automotive automation, a deep learning model is needed that is able to detect and segment 

important objects such as other vehicles, traffic lights, road signs, road segments, pedestrians, and 

drivers. This segmentation is done with a Deep Learning model, which is the method found to be 

most capable of performing Computer Vision tasks, which in this context is segmentation. 

 The approach to segmentation tends to be transfer learning from the image classification model 

as the backbone and then adding a modification layer for image detection. This model is tasked 

with labeling each pixel in the image. These labels are used to segment the image (the image is 

segmented according to the pixel labels). The most difficult road scene segmentation is in urban 

areas where many objects will hinder / interfere with the road segmentation such as many 

pedestrians, road plant objects, buildings and others, compared to highway or toll road scenes 

where most objects that appear are only vehicles, traffic signs, and road sections. Therefore, urban 

area scene datasets are popular to be used as a benchmark for the success of the model to segment 

roads accurately. A popular urban area scene dataset used for segmentation is Cityscapes [2].  

 The two leading models that achieve the best performance and are state-of-the-art on the 

Cityscapes dataset are InternImage and ViT-Adapter. InternImage mimics how Vision 

Transformer (ViT) [3] work by using dynamic sparse kernel in place of multi head self-attention 

in Vision Transformer. In ViT-Adapter [4], it is proposed an adapter mechanism that captures local 

spatial information that ViT lacks before. This addition of adapter increase the performance of ViT 

significantly. The adapter used in ViT-Adapter applyable to InternImage who mimics the 

achitecture of ViT, hence this paper proposed the implementation of adapter on InternImage that 

will act as the backbone of the model. Therefore, this experiment will combined both InternImage 

and ViT-adapter to try to improve the performance. The results will be evaluated by mIoU metric 

to measure the proposed combination performance in doing semantic segementation. 

2. RELATED WORKS 

Currently, computer vision approaches are dominated by the Vision Transformer (ViT) 
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development architecture [3], especially in semantic segmentation tasks. The Vision Transformer 

architecture generally dethroned the Convolution Neural Network architecture which was 

previously the main approach in performing tasks in the field of Computer Vision, where the ViT 

model managed to produce higher performance in accuracy than CNN-based architectures [5]. 

However, ViT has a disadvantage in that this architecture has a computational cost and requires 

very high memory and requires massive data to produce high performance. Developments of ViT 

architectures are mostly looking for ways to mitigate this shortcoming of ViT. On the other hand, 

CNN-based architectures are more lightweight than ViT-based architectures and tend to require 

less data to achieve acceptable accuracy. However, the CNN approach has the disadvantage that it 

is difficult to scale where its effectiveness decreases when scaled (the increase in performance is 

not worth the additional computational cost at large architectural scales), compared to ViT where 

models can be scaled without a significant decrease in model effectiveness. 

One of the developments made on CNN architecture is the application of Global Aggregation 

then Local Distribution (GALD) on Fully Convolutional Network proposed by [6]. This GALD is 

a combination of GA and LD modules. Global Aggregation (GA) is a module that calculates the 

feature vector at each position on the feature. The GA module takes a large feature vector even as 

large as the feature map. Since the GA module calculates the statistics of the features in a large 

window, it tends to be biased towards large patterns and oversmoothing/ignoring small patterns. 

To overcome this, the GA module combined with the Local Distribution (LD) module recalculates 

the small patterns that the GA module tends to ignore. The resulting feature map produced by the 

GA and LD modules is then concatenated into a new feature map. In the architecture, GALD is 

added at the end of FCN which is used as the final predictor of the model. This model on the 

Cityscapes test dataset (fine and coarse data) can achieve 83.3% mIoU (with ResNet101 backbone). 

Another CNN development is DSNet proposed by [7]. There are 2 models proposed, namely 

DSNet Accurate version and DSNet Fast version for segmenting road scenes. Both are CNN 

architecture-based models where the difference between the two is in the encoder layer. The fast 

version is designed with smaller layers so that it is more compact and low computation. In the fast 

version, an encoder consisting of one initial black, 4 non-bottleneck blocks (2 3x3 convolution 
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layers with concatination input to the final feature map of the block), 26 bottleneck blocks (1 1x1 

convolution layer + non-bottleneck block) and a convolution with stride 2 is used to shrink the 

feature maps (this feature map shrinking lightens the computation on the network). The number of 

channels in the Initial block output is set to 32 channels and compressed with a ratio of 0.5 before 

the pooling operation to further reduce the computational burden. 1x1 convolution layer in the 

bottleneck block aims to reduce the number of channels. The decoders of both versions consist of 

4 convolutions. The resulting feature maps are then up-sampled to 128 resolution and then 

concatenated. The fast version of DSNet was able to achieve mIoU: 68.6% on the CamVid dataset 

and mIoU: 69.1% on the Cityscapes test (fine) dataset, while the accurate version achieved mIoU: 

72.6% on the dataset. 

Another CNN development is also optimization with Dense Connected Search Space DCNAS 

proposed by [8]. The proposed Neural Architecture Search (NAS) focuses on the efficiency of its 

algorithm to produce a fast, computationally cheap, and accurate NAS. The proposed NAS was 

found to be much more efficient than other NAS algorithms with relatively small training time and 

computational load and even achieved the highest mIoU (compared to DPC [9], Auto-DeepLab 

[10], CAS [11], GAS [12], FasterSeg [13], Fast-NAS [14], Sparse Mask [15]. This approach 

achieved 84.3% mIoU on the Cityscapes test dataset. 

The CNN development by [16], Panoptic-DeepLab, is a CNN-based model with a backbone 

ImageNet-pretrained neural network coupled with an ASPP module as well as a decoder built from 

one convolution layer at each upsampling stage. This method achieved an mIoU of 84.2% on the 

Cityscapes test dataset. Then there is another CNN development by [17], namely EfficientPS 

(Efficient Panoptic Segmentation) which consists of a semantics head that outputs semantics 

prediction, class, and an instance head that outputs bounding box, mask prediction. Then all the 

outputs of these instances are fused with a fusion module that produces the final panoptic 

segmentation output. This approach successfully achieved an mIoU score of 84.21% on the 

Cityscapes test dataset. Another CNN architecture development is the proposed ResNeSt [18] 

where a Split Attention mechanism is applied that captures global contextual information in the 

image. Split Attention is the attention mechanism used in ResNeSt. This approach was able to 
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achieve a score of 83.3% mIoU on the Cityscapes test dataset. 

The development of ViT is HRNetV2 + OCR [19] where the use of Object-Contextual 

Representations (OCR) is carried out for Semantic Segmentation. For the backbone used is HRNet 

[20] and the OCR module is applied. OCR module, the context will be set at each pixel of the 

object, compared to ASPP which spreads the context to sparse pixels. This approach was able to 

achieve a score of 84.5% mIoU on the Cityscapes test dataset. Then the proposed development of 

the ViT model is LawinTransformer [21]. LawinTransformer is a ViT-based model where 

modifications are made to the decoder using LawinASPP replacing atrous spatial pyramid pooling 

(ASPP). The difference between Lawin and ASPP is the size of the window used. In Lawin, the 

window used is large (Large Window) to capture multi-scale contextual information. This lawin 

acts as the attention mechanism used. Due to the large window used, the computation will increase 

with the size of the context patch, so pooling of large context patches captured to the spatial 

dimension in the query patch is done, then a multi-head mechanism is applied to the large window 

attention and sets the head size to a squared downsample ratio. Then the MLP-Mixer concept is 

also applied to strengthen the spatial representation. This approach was able to achieve 84.4% 

mIoU on the Cityscapes test dataset. 

InternImage is a CNN base model with modifications to mimic the architecture of the Visual 

Transformer which is the state-of-the-art of visual deep learning tasks [22]. This is achieved by 

applying a dynamic sparse kernel instead of multi-head seft-attention. The convolution layer that 

uses this dynamic sparse kernel is called Deformable convolution (DCN). InternImage can also 

efficiently scale to a large number of parameters up to 1 billion parameters and 400 million training 

images. InternImage was also found to be less data hungry than other popular models. The data 

hungry test was conducted by training the model 300 times on the ImageNet-1K dataset at 1%, 

10%, 50%, and 100% data and then comparing the accuracy achieved by each model. As a result, 

InternImage beat ResNet, ConvNeXt-T, and Swin-T where InternImage achieved the highest 

accuracy at 1%, 10%, and 100% data (5.9%, 56%, 83.5%). On the Cityscapes dataset [2] which is 

the dataset for semantic segmentation task, InternImage equipped with Mask2Former as the 

segmentation framework, InternImage can achieve mIoU of 86.1% (Cityscapes Test). 
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ViT-Adapter is a ViT [3] model at the end of which an adapter is added that overcomes the 

shortcomings of the Visual Transformer to capture local spatial information [4]. This adapter is an 

additional layer that does not require pre-training that can make ViT efficiently adapt to perform 

task prediction. [4] designed 3 modules, namely: spatial prior module to capture local semantics 

(spatial prior) from input, spatial feature injector allows ViT to utilize spatial prior, and multi-scale 

feature extractor to reconstruct multi-scale features needed for prediction tasks. The proposed 

model consists of 2 parts, namely, plain ViT which consists of patch embedding and layer L 

transformer encoder, and ViT Adapter which consists of 3 modules previously mentioned. For the 

attention mechanism used in the adapter is Deformable Attention because it is considered lighter 

and performs better than other attention mechanisms (attention compared to Global Attention [23], 

CSwin Attention [24], Pale Attention [25], Deformable Attention [26]. This approach was able to 

achieve 85.2% mIoU on the Cityscapes dataset. 

In the study of ViT-Adapter, integration of Adapter has demonstrated significant improvement 

when applied to ViT based model. Given InternImage is a CNN based model that built mimicking 

the structure of ViT, there is a potential that an addition of adapter from ViT-Adapter [4] would 

improve InternImage model performance [22]. 

3. PROPOSED METHOD  

 The proposed model is InternImage-Adapter where InternImage [22] is combined as the 

backbone and Adapter from ViT-Adapter [4]. The InternImage architecture will be the same until 

the third. The adapter is added to the first block/step this addition of adapter will enrich produced 

feature map by InternImage that will be fed to the segmentor. 
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Figure 1. Proposed model (InternImage-Adapter) Architecture 
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The backbone InternImage implementation has no structural modifications from original 

InternImage implementation [22]. For the adapter, the only changes is on spatial prior module 

(SPM) where there is no stem in the module since it will take outuput straight from InternImage 

stem to remove redundancy. Injector and Extractor module remain the same with original 

implementation [4]. The Adapter then applied on first block where SPM take output straight from 

InternImage stem. Injector module take inputs from spm and InternImage stem. Then output is 

taken with stage 1 of InternImage before downsampling for Extractor module. The output of 

Adapter will be added (element-wise addition) with the output of stage 4 of InternImage before 

being fed to the segmentor (UperNet [27]).  

4. EXPERIMENTS 

4.1. Dataset 

The dataset used is Cityscapes fine annotated image [2]. The Cityscapes dataset is data that 

focuses on understanding urban streets scenes. This dataset contains 30 classes labels grouped into 

8 groups (Table 1). The data total of Cityscapes is 25000 data, with 5000 fine annotated images, 

20000 coarse annotated images. The dataset that is used is Fine annotated images excluding the 

test data. This dataset is collected from scenes taken from 50 cities, in different seasons, during 

daytime, with good to moderate weather (no bad weather). This dataset is popularly used because 

the urban area scenes in one scene have many instances that must be segmented, resulting in a 

challenging dataset for the model to segment. This means that the dataset is rich in information 

making the model trained on this dataset capable of segmenting a scene well. 
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Table 1. Cityscapes dataset group and class label [2]. 

Group Classes 

flat road, sidewalk, parking, rail track 

human person, rider 

vehicle car, truck, bus, on rails, motorcycle, bicycle, caravan, trailer 

construction building, wall, fence, guard rail, bridge, tunnel 

object pole, pole group, traffic sign, traffic light 

nature vegetation, terrain 

sky sky 

void ground, dynamic, static 

 

4.2. Experimental Design 

4.3.1 Device and Environtment Configuration. 

The implementation of the proposed model is built using python (version 3.7.12) with anaconda 

for managing the libraries environment. The experiment runs Ubuntu OS that is run on Windows 

machines through WSL2. The model accelerated by a single NVIDIA RTX 3080 Ti 12GB 

GDDR6X GPU. 

Table 2. Device specification used for the experiment. 

Parts Specification 

CPU Ryzen 5 7500F 

GPU NVIDIA RTX 3080 Ti 12GB GDDR6X 

RAM 32 GB DDR5 6000MHz (dual channel configuration 2*16 GB) 

OS Windows 11 Pro (64 bit) (Version: 22H2; Build: 22621.2715) (Code runs on WSL2 Ubuntu) 

 

4.3.2 Data splitting and preprocessing 

 The data used Cityscapes fine annotated images which the training data is splitted for training 

and validation and the validation data used for testing. The data totaled 2475 training data, 500 

validation data, 500 testing data. The data preprocessing follows default preprocessing 

implementation applied InternImage implementation on Cityscapes dataset [22]. 
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Table 3. Data train preprocessing done. 

Preprocessing Configuration 

Resize and Random scaling img_scale=(2048, 1024), 

ratio_range=(0.5, 2.0) 

Random Crop crop_size= (512, 1024), 

category_max_ratio=0.75 

Random Flip probability=0.5 

Photo Metric Distortion - 

Normalize mean=[123.675, 116.28, 103.53], 

std=[58.395, 57.12, 57.375], 

to_rgb=True 

Padding size=(512, 1024), pad_val=0, 

seg_pad_val=255 

 

4.3.3 Configuration of Hyperparameter 

The training process will be performed as in the InternImage paper [22] training InternImages 

on the Cityscapes dataset [2] and accelerated with GPU. The InternImage used is InternImage-T 

which is the smallest model that is proposed in the paper (Li et al,. 2022). The proposed model 

backbone applies transfer learning from pre-trained checkpoint provided by open-source 

InternImage repository [22]. Then the model is fine-tuned on the dataset of the experiment. The 

model will be trained 160800 iteration (134 Epoch, 1200 iteration each), and using AdamW as the 

optimizer with learning rate of 0.00006 and weight decay of 0.05. The first epoch is warmup epoch 

where the learning rate will increase from 0 to 0.00006 at the end of the warmup epoch. The dataset 

fed to the model in 2 batches. 

4.3.4 Performance Metric 

The mIoU score will be the benchmark for evaluating the InternImage-Adapter model on the 

Cityscapes dataset. mIoU (mean Intersection of Union) is the average of IoU. IoU is a measure 

that calculates the amount of overlap in the predicted segmentation mask against the ground truth 

mask for a specific label (one label). It is calculated as the ratio of the intersected area between the 

predicted and ground truth masks to the union area of the predicted and ground truth masks. IoU 

can be calculated with the following formula (1). 
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(1) 𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 

4.3. Experimental Result 

4.3.1 Validation Result 

Table 5. Validation result comparison: IoU per classes and  

the mIoU of InternImage-T versus InternImage-T Adapter. 

Class InternImage-T (val 

IoU) 

InternImage-T 

Adapter (val IoU) 

road 99.04 99.11 

sidewalk 92.42 93.17 

building 95.37 95.52 

wall 78.81 82.39 

fence 81.69 84.12 

pole 70.58 70.70 

traffic light 74.77 74.55 

traffic sign 85.18 85.06 

vegetation 94.09 94.42 

terrain 81.02 84.14 

sky 95.96 95.98 

person 87.26 87.36 

rider 74.75 75.78 

car 96.68 96.72 

truck 94.38 94.65 

bus 95.34 95.31 

train 95.62 95.74 

motorcycle 79.57 81.24 

bicycle 82.85 82.96 

mIoU 87.13 87.84 

On per class IoU, the most pronounced increase is on class wall, fence, terrain, and 

motorcycle (wall by 3.58 IoU, fence by 2.43 IoU, terrain by 3.12, and motorcycle by 1.67). 

Most of other class only increased by little. Overall result of the validation during the training 

shows the proposed model InternImage-T-Adapter mIoU is greater than mIoU achieved by 

InternImage-T standalone[22] by 0.71 mIoU. 
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The validation results show particularly on segmenting wall, fence, terrain, and motorcycle 

categories experienced noticeable gains in performance. While the other categories also show 

gains of performance, but the improvement are less pronounced. This indicates that addition 

of adapter on InternImage first block does improve noticibly at the performance of most 

categories where InternImage initially achieved mid performance (75-85 mIoU), while in 

categories where InternImage already achieved high mIoU (more than 85 mIoU), the 

improvement is less pronounced. 

4.3.2 Testing Result 

Table 6. Testing result comparison: IoU per classes and  

the mIoU of InternImage-T versus InternImage-T Adapter. 

Class InternImage-T 

(testing IoU) 

InternImage-T 

Adapter (testing IoU) 

road 98.52 98.62 

sidewalk 87.24 88.11 

building 93.55 93.52 

wall 57.72 59.11 

fence 67.44 66.34 

pole 71.04 70.42 

traffic light 74.09 73.38 

traffic sign 83.26 82.99 

vegetation 93.31 93.28 

terrain 67.87 67.05 

sky 95.49 95.56 

person 84.94 84.8 

rider 65.89 66.35 

car 96.07 96.06 

truck 85.87 86.52 

bus 92.31 93.68 

train 82.67 88.06 

motorcycle 71.42 72.0 

bicycle 81.15 80.82 

mIoU 81.57 81.93 
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In the testing results, the changes in  performance on per class IoU more varies than evalution 

and training results, where the noticeable increase in mIoU is on categories sidewalk by 0.87, wall 

by 1.39, bus by 1.37, train by 5.39. In the other categories, the performance changes varies from 

slightly increased to slightly decreased. The overall result of testing, the proposed model 

InternImage-T Adapter achieved 0.36 mIoU increase from what standalone InternImage-T 

achieved. 

Overall the testing results show more spreadout noticeable gains throughout all the categories 

than train and validation results, where there also slight decrease in some categories indicating on 

specific categories the proposed model InternImage-T Adapter performs more or less the same 

with standalone InternImage-T [22]. 

5. CONCLUSION AND FUTURE WORK 

 In this work we have applied adapter on the first block of InternImage-T [22] model. The model 

then evaluated by public dataset Cityscapes dataset [2] and the results shows that the addition of 

Adapter on InternImage-T does achieve better mIoU than the standalone InternImage-T, 

improving the mIoU by 0.36 (from 81.57 to 81.93) in testing results. The addition of adapter has 

the potential to improve models’ performance in semantic segmentation task. 

 The increase in performance is not significant. But this result achieved by implementing 

adapter block only in the first block of InternImage-T [22]. For future work, this research can be a 

reference for the researcher to develop InternImage-Adapter on all the InternImage block or bigger 

InternImage model to find out if the addition of adapter on models is consistently improving results 

across all scales of InternImage model (the backbone) or applying adapter on better performing 

backbone models.  
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