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Abstract. In recent years, there has been significant interest in forecasting volatilities within multivariate frame-

works for financial assets. Previous research has utilized the VAR-DCC-GARCH model to explore these relation-

ships, offering valuable insights into market dynamics. This paper presents a novel VAR-CNN-BiLSTM model

to forecast the conditional correlation between BTC-USD exchange rates and gold prices. The study aimed to

improve the accuracy of volatility forecasting for financial assets by introducing this hybrid approach. The hybrid

VAR-CNN-BiLSTM model employed the VAR model to capture the linear features and the deep learning network

structure that combines the CNN, to capture the hierarchical data structure and BiLSTM layers to capture the

long-term dependencies in the data. Results have confirmed that the VAR-CNN-BiLSTM model can achieve better

prediction accuracy than the hybrid VAR-DCC GARCH model, in terms of Root Mean Squared Error (RMSE)

and Mean Absolute Error (MAE) performance measures. The results of this study further indicate a unidirectional

causality from the BTC-USD exchange rate to Gold prices. The findings provide valuable insights for traders,

financial analysts, and policymakers aiming to understand and anticipate market behaviors involving cryptocurren-

cies and traditional assets.
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1. INTRODUCTION

The volatility of stock prices has long been a subject of research interest in financial markets,

as it significantly affects investors, traders, and financial institutions. To address this challenge,

researchers are employing various statistical and deep learning methods, which have proven

to enhance the accuracy of volatility predictions. [1] investigated a novel method of predict-

ing volatility in a univariate setting by utilizing a hybrid model that blends deep learning and

GARCH methods. This study demonstrated that by feeding the deep learning models with the

residuals from the GARCH model, the new approach outperformed earlier models in terms of

predicted accuracy. The prediction of asset return series co-volatility has garnered substantial

interest from scholars, professionals, and portfolio managers [2]. Bitcoin and gold are two ma-

jor financial assets. Bitcoin is a digital asset, whereas gold is a fundamental commodity. The

volatilities in these assets are a key concern for policymakers and investors. A substantial rise

in commodity and digital exchange prices negatively affects domestic and global economies by

increasing inflation and decreasing economic activity.

Since Bitcoin (BTC) has such high volatility and the potential for large profits, it has attracted

a lot of attention from investors and researchers in the past several years. At the same time, gold,

which is seen as a safe-haven asset due to its stability, has continued to be a mainstay of the

financial system. Determining the dynamics and conditional connection between these two

assets is essential for managing a portfolio, evaluating risk, and making smart trading choices.

The risk level of a portfolio is affected by the simultaneous movements of individual assets

across various markets and the inherent risk of assets within a single market. p Analyzing the

volatility spillovers between asset and commodity prices has important ramifications for risk

management and portfolio optimization on the part of investors and governments [3].

[4] utilized the Baba, Engle, Kraft, and Kroner(BEKK) GARCH model to examine the trans-

mission of shocks and volatility among Bitcoin, Ethereum, and Litecoin. The study found

evidence of bidirectional shock spillovers between the Bitcoin-Ethereum and Bitcoin-Litecoin
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pairs. [5] employed a rolling window bootstrap method to investigate the causal link between

gold and silver returns in the Chinese market. Their findings revealed that across various sub-

periods, gold exerted both positive and negative influences on silver. [6] investigated the return

and volatility transmission among Bitcoin, Ethereum, and Lithecoin during the pre-COVID-

19 and COVID-19 periods using the Vector Autoregression-Dynamic Conditional Correlation-

Generalized Autoregressive Conditional Heteroskedasticity (VAR-DCC-GARCH) model. It

was discovered that the volatility spilovers are bidirectional between Etheruem and Litecoin

and unidirectional between Bitcoin and Etheruem. The Dynamic Conditional Correlation-

Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model has two key

improvements over earlier models, which are why it has been used in many contemporary stud-

ies on stock markets. First off, the DCC model can estimate large correlation coefficient ma-

trices and has obvious computational benefits. Second, the DCC model makes it simple to

estimate the parameters required for the correlation process by using a two-step estimation pro-

cedure [7, 8].

A VAR model and three Multivariate GARCH models (CCC-GARCH, BEKK-GARCH, and

DCC-GARCH) to study the volatility spillover between bitcoin, gold, and crude oil returns

[9]. The study also investigated that the data better fits the model and there was a bidirectional

spillover between the returns of gold and crude oil and further showed that the DCC-GARCH

model provides a better fit than the CCC-GARCH ( Constant Conditional Correlation Gener-

alized Autoregressive Conditional Heteroskedasticity) model and the BEKK-GARCH model.

[10] studied the return and volatility spillovers between the Ghanaian and Nigerian equities mar-

kets.The return series for the two markets were analyzed using VARMA-AMGARCH (Vector

Autoregressive Moving Average-Asymmetric Multivariate Generalized Autoregressive Condi-

tional Heteroskedasticity). The two stock market return and volatility spillovers showed a strong

cross-transmission, according to the authors. Nevertheless, it was also observed that the volatil-

ity of the Ghanaian stock market was more susceptible to that of the Nigerian stock market.

The impact of volatility spillover on the returns of the East African securities markets in

Nairobi, Uganda, and Dar el-Sahara was investigated [11]. The Vector Autoregressive model
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was utilized in the study to model the evolution of return series. Furthermore, possible co-

integration was examined using the Johansen co-integration test. To investigate the dynamics

of conditional variances, a further dynamic conditional correlation model was used. The re-

sults of the study showed that there is a causal relationship that is bidirectional between the

Nairobi Securities Exchange and the Dar es Salaam Securities Exchange. The fact that corre-

lations between stock returns change over time is widely known. [12, 13] have observed that

there is a tendency for correlations among market returns to decrease during bull markets and

increase during bear markets. Furthermore, it is now well acknowledged that there is a substan-

tial increase in correlation between foreign stock markets at times of market volatility, or stock

market crises . [14] evaluated the volatility interconnectedness between oil and coffee markets

using multivariate GARCH models, focusing on covolatility forecasting with high-frequency

data. The study concluded that the varying conditional correlation (VCC) model with Student’s

t-distributed innovation terms provides the most accurate forecasts. [15] studied the hybrid

DCC-GARCH models with Deep Learning models to check the forecasting performance of

correlations. improves the latter’s DCC-GARCH models. These studies have concentrated on

the relationships between the stock markets in China, Hong Kong, and the US. The results im-

ply that the DCC-GARCH models’ ability to predict market dynamics is much enhanced by the

use of deep learning techniques. [15] investigated the integration of hybrid DCC-GARCH mod-

els with Deep Learning techniques to improve the forecasting performance of DCC-GARCH

model. Their study demonstrates that the incorporation of Deep Learning methods enhances

the performance of traditional DCC-GARCH models.

[16] introduced the VAR-CNN-Long Short Term Memory (VACL) model to address the chal-

lenge of forecasting volatility. However, there remains a research gap in extending these find-

ings to include additional forecasting of volatility and conditional correlations, particularly in

comparison to the DCC-GARCH model. This paper aimed to fill this gap and do a compara-

tive analysis of two advanced forecasting models: the Vector Autoregressive - Convolutional

Neural Network - Bidirectional Long Short-Term Memory (VAR-CNN-BiLSTM) and the Vec-

tor Autoregressive Dynamic Conditional Correlation Generalized Autoregressive Conditional
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Heteroskedasticity (VAR-DCC-GARCH) model. The primary objective is to predict the con-

ditional correlation and volatility of BTC-USD exchange rates and gold prices. The VAR-

CNN-BiLSTM model integrates traditional time-series analysis with deep learning techniques,

leveraging the strengths of CNN for feature extraction and BiLSTM for capturing long-term de-

pendencies in the data. In contrast, the VAR-DCC-GARCH model employs a well-established

econometric approach to model time-varying correlations and volatilities, making it a robust

benchmark for comparison.

By analyzing the predictive performance of these models, this study aimed to provide insights

into their effectiveness and applicability in financial markets, contributing to the broader field of

econometric and machine learning-based forecasting methods. The results of this research have

significant implications for traders, financial analysts, and policymakers who seek to understand

and anticipate market behaviors involving cryptocurrencies and traditional assets like gold.

2. METHODOLOGY

The study used VAR , CNN and BiLSTM as components to create a new hybrid models and

compare with VAR- DCC-GARCH. Each of these components has unique traits that may be

extracted from historical data.

2.1. VAR model. [17] popularized the Vector Autoregression (VAR) model, which is a promi-

nent econometric technique for examining the dynamic interactions between several time series

variables. According to [17], all variables within a VAR system are considered endogenous.

The rationale behind constructing a VAR model is based on the assumption that all variables

being investigated are endogenous, with typically none being treated as exogenous [18]. Vector

auto-regression is a useful technique when two or more time series interact with one another.

This model is autoregressive, meaning that each variable is defined as a function of the vari-

ables’ historical values [19]. The study stated that the VAR Model cannot be applied unless the

time series data is stationary [16].

Mathematical model for VAR model. Let Yt = (Y1,t ,Y2,t , . . . ,Yn,t)
> represent an n× 1 vector

comprising time series variables. The fundamental vector autoregressive model of order p is

denoted as VAR(p), is
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Yt = c+
p

∑
i=1

πiYt−i + εt

εt|Ft−1 ∼ N(0,Ht)

(1)

In this context, πi refers to n×n coefficient matrices, c represents an n×1 vector of constants,

and εt denotes an n× 1 unobservable white noise vector process with a mean of zero. Ht is

a positive definite covariance matrix, and Ft−1 is a set of past information. Determining the

lag length of the VAR model involves finding the value of p that minimizes specific model

selection criteria by fitting VAR(p) models of different orders, such as p = 0, ..., pmax. The

Akaike Information Criterion (AIC) was used in this study to identify the optimal lag length (p)

for the model.

2.2. DCC-GARCH model. Once the VAR (p) model has been estimated, the residuals have

been gathered for subsequent DCC- GARCH modeling. The Dynamic Conditional Correlation

(DCC) model, developed by [20] and [21], builds upon [22] Constant Conditional Correlation

(CCC) model by introducing time-varying correlation matrices that are parameterized using a

limited number of variables. This model represented one of the most adaptable iterations of

MGARCH models. The conditional variance-covariance matrix Ht is determined based on the

information available up to Ωt and is broken down using the Cholesky method in the following

manner:

Ht =


h2

11,t · · · h1n,t

h12,t · · · h2n,t
... . . . ...

h1n,t · · · h2
nn,t

=



√
h2

11,t 0 · · · 0

0
√

h2
22,t · · · 0

...
... . . . ...

0 · · ·
√

h2
nn,t




1 ρ12,t · · · ρ1n,t

ρ12,t 1 · · · ρ2n,t
...

... . . . ...

ρ1n,t · · · 1




√
h2

11,t 0 · · · 0

0
√

h2
22,t · · · 0

...
... . . . ...

0 · · ·
√

h2
nn,t



(2)

Furthermore, Eq. (2) can be expressed as Ht = DtRtDt

Hence, Ht is the conditional covariance matrix with elements [Ht ]i j =
√

hiith j jt ρi j, where ρii =
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1. Dt represents a k×k diagonal matrix having conditional variance
√

hiit on its diagonal, while

Rt signifies a correlation matrix that varies with time. Every individual element hiit can be

represented using a univariate GARCH model in the following manner:

hiit = αi0 +
p

∑
i=1

αipε
2
i,t−p +

q

∑
j=1

β jqh2
j,t−q, for i = 1,2, . . . ,m (3)

Where, ai0 > 0, αii > 0, and βii > 0 are non-negative, and ∑
qi
q=1 αii,p+∑

pi
p=1 βii,q < 1. According

to [23], the selection of a lag order of (1,1) within the GARCH family model is deemed sufficient

to encapsulate all observed volatility clustering present in the data. This assertion underscores

the effectiveness of the GARCH(1,1) model in capturing the essential characteristics of financial

data, particularly in terms of volatility dynamics. When constructing the conditional correlation

matrix Rt , it is necessary to confirm that the covariance matrix Ht is positive definite, and that all

elements of Rt are less than or equal to one. In order to determine whether these requirements

are met, [24, 25] recommend the following method:

Rt = Q∗
−1

t QtQ∗
−1

t (4)

Q∗t =


q11 0 0 · · · 0

0 q22 0 · · · 0
...

...
... . . . ...

0 0 0 · · · qmm

 (5)

where Q∗t is a diagonal matrix consisting of the diagonal elements specified in Eq. (5). A

symmetric positive definite conditional covariance matrix, Qt = (qi j,t) can be expressed as fol-

lows:

Qt = (1−α−β )Q̄+αεt−1ε
′
t−1 +βQt−1 (6)

Q̄ = cov(εtε
′
t ) = E(εtε

′
t ) is an N×N unconditional covariance of the standadized residual of

univariate GARCH model. Parameters α and β are nonnegative scalars, ensuring that α+β < 1

to maintain positivity of the covariance matrix. The conditional correlation ri j,t =
qi j,t√qii,tq j j,t

can

be represented in the standard correlation form by defining Qt = (qi j,t) as shown:

ri j,t =
(1−α−β )Q̄+αεt−1ε ′t−1 +bQt−1√

(1−α−β )Q̄+αεt−1ε ′t−1 +bQt−1 ·
√

(1−α−β )Q̄+αεt−1ε ′t−1 +bQt−1

(7)
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2.3. CNN model. [26] pioneered the Convolutional Neural Network (CNN), which has since

become one of the most popular and widely adopted neural network architectures. The core

structure of the CNN model includes a convolutional layer, a pooling layer, and a fully con-

nected layer [27].Convolutional layer is CNN’s fundamental structural component. It utilitzed

to extract features such as temporal patterns, trends, anomalies, and local relationships by ap-

plying a series of filters to the incoming data. The feature map’s dimensions are decreased and

the overfitting issue is lessened with the use of the pooling layer. In order to emphasize pat-

terns and notable spikes in time series data, the study used a max-pooling layer, which tends to

maintain the most salient aspects of the input.

If the input vector is x0 ∈ {x1,x2, . . . ,xn}, the output y1
i j from the initial convolutional layer

can be described as follows [28]:

y1
i j = Relu

(
b1

j +
M

∑
m=1

w1
m, jx

0
i+m−1, j

)
(8)

In this context, the output y1
i j is determined using the input x0

i j from the preceding layer, with

b1
j denoting the bias associated with the jth feature map. The kernel weights are denoted by w,

and the ReLU activation function was employed in the investigation [29]. In a similar manner,

the output vector of the kth convolutional layer is expressed as follows:

yl
i j = Relu

(
bl

j +
M

∑
m=1

wl
m, jx

l−1
i+m−1, j

)
(9)

Following the convolutional layer, the max pooling layer reduces the spatial dimensions of

the feature maps the convolutional layer generates, hence reducing the number of parameters

and computing expense.

2.4. BiLSTM model. The study will initially addressed a unidirectional LSTM model in or-

der to provide a better understanding of the design and functionality of a BiLSTM network.

LSTM models excel in handling long-term dependencies and processing long-sequence data.

The gradient disappearance and explosion issues in modeling training were successfully re-

solved by the LSTM model, which enhances the hidden layer structure of RNN by adding a set

of gating units made up of input gates, forgetting gates, and output gates [30]. The structure of

the LSTM network is shown in Fig. 1. In order to anticipate time-series outcomes, the LSTM
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architecture processes data using a particular algorithm in the forget gates. The forget gate is

first fed the input for the current time step as well as the output from the previous time step.

ft = σ(Wf · [ht−1,xt ]+b f ) (10)

Here, the input value at the current time is xt , the output from the previous time step is ht−1,

the bias applied to the forget gate is b f , the forget gate’s weight is Wf , and the range of ft is

(0,1). Additionally, the input gate receives inputs from both the past and current times as well

as their output values. The state of the candidate cell at the input gate as well as the output value

are calculated using the following formula:

it = σ(Wi[·ht−1,xt ]+bi) (11)

C̃t = tanh(Wc · [ht−1,xt ]+bc) (12)

where Wc is the weight of the candidate gate, bc is the bias value of the candidate gate , Wi is the

weight of the input gate, and the value range of it is (0, 1). The process of changing cell values

or model parameters at this point is the next step in the LSTM model, and it is done as follows:

Ct = ft ·Ct−1 + it ·C̃t (13)

The range of values for Ct is (0, 1). At processing time t, the output value ht−1 and the input

value xt serve as inputs for the output gate, and the output from this gate is determined using

the following formula:

Ot = σ(Wo · [ht−1,xt ]+bo) (14)

where bo is the output gate’s bias value, Wo is the output gate’s weight, and the value range of

Ot is (0.1). Ultimately, the output gate produces the LSTM’s ultimate output value, which is the

outcome of a computation made with the following formula:

ht = Ot · tanh(Ct) (15)

After elucidating the activity of the LSTM network, the operation of BiLSTM networks can

be explained. BiLSTM networks represent an advancement of bidirectional RNN-based LSTM

networks. By integrating a forward LSTM layer with a backward LSTM layer, BiLSTM net-

works fully capture both past and future information, unlike traditional LSTM networks, which
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predict the next output based solely on past time series data. This dual input of forward and

backward sequence information enhances the model’s robustness [31]. This paper utilized

the BiLSTM neural network to capture bidirectional sequential features from the information

extracted by the CNN layer, effectively leveraging the long-term dependencies in the sample

data for learning, and ultimately producing the output. The fully connected layer produces the

volatility and correlation prediction results. Fig. 1 illustrates the BiLSTM structure, constructed

with LSTM blocks. BiLSTM, comprising both forward and backward LSTM components, ne-

cessitates a reversal of the computation.

Fig. 1. Internal architecture of the BiLSTM model.

2.5. VAR-CNN-BiLSTM model. The study proposes a novel methodology for forecasting

the conditional correlation and volatility of assets by employing a hybrid multivariate model

integrating Vector autoregressive model(VAR), Convolutional Neural Network (CNN) and

Bidirectional Long Short-Term Memory (BiLSTM) architectures. First, the mean model was

built using VAR , which allowed simultaneous analysis of multiple time series variables,

capturing the interdependencies and dynamic relationships between them. VAR models

facilitate Granger causality testing, allowing researchers to assess the causal relationships

between variables. The parameters of the VAR model can be estimated using various tech-

niques, such as ordinary least squares (OLS) or maximum likelihood estimation (MLE). After

doing mean model, the standard residuals will be an input for the hybrid CNN-BiLSTM

model. CNN-LSTM model can indeed be utilized for investigating dynamic relationships

and dependencies between multiple time series variables, including how their correlations

and volatilities evolve in response to changing market conditions and economic factors.
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Lastly, CNN and BiLSTM architectures receive the predicted output of the GARCH family

models. CNN effectively captures spatial dependencies, while BiLSTM excels at capturing

long-term dependencies, leveraging both temporal and spatial features for improved forecasting.

Data Preprocessing

The missing values were addresed through an imputation of interpolation. Additionally, identify

outliers in the data that may skew the analysis and consider removing or correcting them using

statistical methods or domain knowledge. Data points that are located at the outermost limits of

a dataset are referred to be outliers. In order to ensure that the values contributed equally and

support the effectiveness of the training process, the study normalized the residual data series

as described in [32].

y j
i =

x j
i − x̄ j

s j (16)

In this context, y j
i denotes the standardized value of the j-th series at index i, x j

i refers to the

original input data value for series j, x̄ j represents the mean of the input data values for series

j, and s j indicates the standard deviation of the input data for series j. Each economic and

financial time series dataset was divided into two subsets: a training set and a test set, with 80%

of the data allocated for training and the remaining 20% reserved for testing model accuracy.

After this division, the data must be reshaped into a 3D format to be used as input for the

hybrid CNN-BiLSTM model. Thus, input dimensions are samples, time steps, and features.

The number of time steps (window size) was a hyperparameter that represents the number of

previous lags used as input to predict the next time steps. The study used empirical testing to

fix an optimal value of the windows hyperparameter. The sequence of observations for asset i

is {xi,t1 ,xi,t2, . . . ,xi,tn} , where i is the number of assets. This observations can be rearranged in

a supervised learning form as shown in the matrics below


[a1,t1,a2,t1] [a1,t2,a2,t2] . . . [a1,tp,a2,tp]

[a1,t2,a2,t2] [a1,t3 ,a2,t3] . . . [a1,t(p+1),a2,t(p+1)]
...

... . . . ...

[a1,t(m−1),a2,t(m−1)] [a1,tm ,a2,tm] . . . [a1,t(m+p−1),a2,t(m+p−1)]
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Once the assets residuals are prepared as inputs for the CNN, they are further processed. The

output for the hybrid CNN-BiLSTM model will be in the form of 2x2 covariance matrices,

where the diagonal elements represent the variances and the off-diagonal elements represent

the correlations of the asset residuals.

 h11,t1 h12,t1

h21,t1 h22,t1


· · · h11,tm h12,tm

h21,tm h22,tm




This observations have to changed to multiple examples (samples) by developing a matrix X

which served as independent variable of the model and y as dependent variable of the model of

which the model can learn. Then, divide the time series to examples where each sample has size

equal to the number of time steps (lagged variables) that is p and the size of learning samples

is m. The obtained size of the independent and predicted matrix will have size (m−1)× p and

m×1. The Deep learning models described in this paper are outlined in Table 1. The goal

is to pick out features from the input dataset using CNN layers. Subsequently, the outputs of

these CNN layers are fed into layers of BiLSTM and an output dense layer to aid with sequence

prediction.

Table 1. Deep learning models’ internal hybrid structure.

HDL model Structure of Layer

CNN-BiLSTM conv1D layer (filters: 32, filter size:3, relu activation)

+maxpooling1D(Pooling size:1,padding:same) + conv1D

layer (filters: 128, filter size: 2, relu activation) + max-

pooling1D (polling size:1, padding: same) + flatten layer

+ BiLSTM layer (neurons: 64, relu activation) + BiLSTM

layer (neurons: 32;relu activation) + dense layer (neuron: 4,

linear activation)
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2.6. Forecasting performance evaluation. The assessment of forecasting efficacy in multi-

variate DCC-GARCH and CNN-LSTM models was undertaken utilizing the root mean square

error (RMSE) and mean squared error (MSE) as primary estimation criteria.

MAE =
1
N

N

∑
k=1
|Yk− Ŷk| (17)

RMSE =

√√√√ 1
N

N

∑
k=1

(Yk− Ŷk)2 (18)

Where N is the number of observations, Yt are the actual values at time t, and Ŷk are the predicted

values of the model at time t.

3. DATA

This paper utilized daily time series data of Bitcoin and Gold closing prices, expressed in US

dollars. Both series contain data spanning from 16 May 2019 to 15 May 2024, extracted from

the yahoo Finance.com website. A total of 1828 daily observations were recorded. The missed

values were filled using linear interpolation. The dataset was split into three portions: the

training set, which accounted for 60% of the data, and the validation set, which constituted the

remaining 20% to assess the performance of the trained model. The remaining 20% was used for

testing to evaluate the final performance of the model. Fig. 2 below depicted the historical trends

of Bitcoin USD (BTC-USD) exchange rate and gold prices. It was evident that both variables

exhibited similar directional movements. Additionally, both price series appeared to be non-

stationary. [33] noted that most financial research favored the use of asset returns over asset

prices. This preference was due to the fact that returns provided investors with a comprehensive

and scale-independent overview of the investment’s performance. Furthermore, return series

exhibited beneficial statistical characteristics. For the sake of interpretation, financial returns

are commonly calculated in percentage as:

ri,t = log
(

Pi,t

Pi,t−1

)
×100 (19)

where Pi,t denotes the current closing prices of the ith asset and Pi,t−1 is the previous trading day

of the ith assets. The descriptive statistics and timing diagrams for the returns series are pre-

sented in Fig. 3 and Table 2. These visuals reveal several abnormal peaks in the return sequence



14 HAILABE T. ARAYA, JANE ADUDA, TESFAHUN BERHANE

data for both series. Daily returns oscillate around zero, visually suggesting the stationarity

of the return series. The daily return series also revealed periods of high volatility, which is

stylized to represent returns, frequently followed by other high volatility, and small volatility,

which is typically followed by other small volatility.

(a) Gold prices (b) BTC-USD prices

Fig. 2. Time series graphs of BTC-USD and Gold prices.

(a) Gold return (b) BTC-USD return

Fig. 3. Time series graphs of BTC-USD and Gold returns.
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Table 2. Descriptive statistics of BTC-USD and Gold returns.

Statistic BTC-USD Gold

Mean 0.0011 0.0003

Median 0.0004 0.0003

Variance 0.0012 5.86*10-5

Skewness -1.278 -0.217

Kurtosis 18.526 7.539

Standard deviation 0.0354 0.0076

Jarque-Bera 26626.95 4341.257

(0.00) (0.00)

** Values below the Jarque–Bera statistics represent p-values at 5% significance

level.

In addition to visually examining the time plot of the log return series for the BTC-USD ex-

hange rate and Gold prices, the study conducted stationarity tests using the Augmented Dickey-

Fuller test. Table 3, revealed p-values that provide sufficient evidence to reject the null hypothe-

sis of non-stationarity. Consequently, the log return series were found to be stationary at the 5%

significance level. Given that stationarity is an essential characteristic for time series analysis,

we proceeded with further analysis of the return series.

Table 3. The ADF unit root test for log returns stationarity.

Series t-statistic MacKinnon approximate p-

value

BTC-USD -16.23 -2.86

GOLD -21.26 -2.12

Table 4 presents the results of ARCH-LM test, F statistic and TR2 statistic, which indicates

that all time series have ARCH effect, meanwhile, Ljung-Box statistic is also different from

zero, so it is suitable for building GARCH model.
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Table 4. ARCH LM test summary statistics.

return series LM-statistic p-value

BTC-USD 2.13 0.0071

GOLD 24.2 0.006

Table 4 presents the results of the ARCH LM test for the two return series. The p-values

suggest rejecting the null hypothesis of “no ARCH effect” at the 5% significance level. These

findings imply that the price log return series exhibit volatility, necessitating the use of GARCH

models for accurate modeling.

4. RESULTS AND DISCUSSION

VAR(2) was constructed using the lag order test of the VAR model. Furthermore, the Granger

causality test was employed to examine the correlation between the prices of gold and BTC-

USD. In this study, past returns of exchange rates Bitcoin-USD are useful in forecasting the

returns of Gold reported in Table 5. This implies a unidirectional causal relationship from

Bitcoin-USD to Gold.

Table 5. The return series’ Granger causality(F) test results.

BTC-USD GOLD

BTC-USD 6.186( 0.01293)

GOLD 0.5244(0.469)

Note that the parenthesis indicates the p-value.

Various criteria were employed to determine the optimal lag length of the VAR model with the

results presented in Table 6. The performance of each criterion in the simulation study depends

on the sample size to which it is applied [34]. The study showed that the Schwarz information

criterion and Hannan-Quinn criterion perform better in large samples, whereas the Akaike in-

formation criterion and final prediction error perform better in small samples.This finding has

been further corroborated by [11]. Because the Schwarz information criterion performs better
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than other criteria in bigger samples, it was used in this investigation. As a result, the inves-

tigation determined that two was the ideal lag time for the VAR model. The residuals from

the VAR(2) model were estimated and subsequently examined for serial and cross-correlation

using the multivariate Portmanteau test. The findings, presented in Table 7, indicate that the

test did not provide enough evidence to reject the null hypothesis, suggesting that there are no

significant serial or cross-correlations in the residuals of the VAR(2) model.

Table 6. Findings from the VAR(2) model.

Parameter Estimate Standard Error t-value Pr(>| t |)

r1.l1 -0.05805 0.02631 -2.206 0.0275 *

r2.l1 0.0684 0.0189 2.575 0.04651

r1.l2 0.0443 0.0263 1.682 0.032

r2.l2 0.1603 0.1186 1.352 0.1767

r1.l1 0.015 0.0058 2.578 0.0100 *

r2.l1 0.0001 0.02631 0.005 0.9957

r1.l2 0.004 0.0058 0.801 0.4234

r2.l2 0.053 0.026 2.037 0.0418 *

Note. r1 represents the BTC-USD exchange return; r2

corresponds to the Gold return. The terms .l1 and .l2

indicate the first and second lags, respectively.

4.1. Volatility Transmission Analyzed Using the DCC Model. The results obtained from

the DCC-GARCH model indicate that the conditional variance of the standardized residuals is

affected by the previous volatility of the two residual series as well as their correlations. Us-

ing the DCC-GARCH model, the study discussed the dynamic process of the co-movement

between the BTC-USD exchanges and Gold indices. The parameter of the univariate GARCH

model is estimated, and the results are shown in Table 8. Since σi,t is assumed to follow a

univariate GARCH(1,1) process, the coefficient Ai,i represents ARCH effects, while Bi,i (i=1,2)
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represents GARCH effects. All parameters of the univariate GARCH(1,1) model for the two as-

sets are statistically significant at 5% level of significance. The study found that the coefficients

of lagged conditional variance Bi,i (i=1,2) in the GARCH model are greater than the coeffi-

cients of past return errors Ai,i. This suggests a fundamental stability effect in the volatilities of

BTC-USD exchange and gold returns. The statistically significant parameter of the univariate

GARCH model Bi,i in a DCC-GARCH model not only showed us past volatilities have a strong

and persistent effect on current volatilities for the given time series of an individual indices but

also the presence of bi-directional volatility transmission among the indices. The significance of

all ARCH and GARCH coefficients α and β respectively showed as the DCC-GARCH model

can effectively incorporate and respond to external information. This results that the impact

of external information in the model was long-lasting and persistent. Furthermore, the esti-

mated parameters of the DCC -GARCH model are greater than zero. This indicated that the

conditional correlations are time-varying. This challenges the assumption of constant condi-

tional correlations, which was often unrealistic in empirical studies, as discussed by [35]. Since

α +β < 1, the DCC-GARCH models were mean-reverting but did so gradually.

Table 7. Results of Multivariate Portmanteau test for autocorrelation in the

residuals of VAR(2).

Variable m Q(m) df p-value

BTC-USD 1 0.03484757 2 0.12493

GOLD 2 9.36262447 4 0.05264784
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Table 8. Results obtained from the DCC-GARCH model.

Parameter Estimate Standard Error t-value Pr(>| t |)

µ1 -0.009445 0.031433 -0.30049 0.763806
ω1 0.033092 0.018284 1.80990 0.070311
A11 0.032966 0.019812 1.66393 0.036127
B11 0.931179 0.033146 28.09308 0.00000
µ2 -0.008644 0.029881 -0.28927 0.772372
ω2 0.089103 0.067123 1.32746 0.184358
A22 0.045781 0.033632 1.36124 0.0273437
B22 0.870627 0.087084 1.36124 0.00000
α 0.006869 0.003809 1.80351 0.071308
β 0.987513 0.004418 223.53295 0.00000

4.2. Prediction results of conditional volatility on hybrid models. The study introduced

a novel hybrid model, denoted as the hybrid VAR-CNN-BiLSTM, for forecasting conditional

volatility and correlations. After forecasting correlation and covariance using the proposed

model, the study compared it with an existing hybrid econometric model, the VAR-DCC-

GARCH model. Fig. 4 and Fig. 5 illustrated the conditional volatility of BTC-USD exchanges

and Gold using the hybrid VAR-DCC-GARCH model and the hybrid VAR-CNN-BiLSTM

model, respectively.

(a) (b)

Fig. 4. Volatility forecasts for a hybrid of VAR-DCC-GARCH models. (a) Con-

ditional volatility forecast for BTC. (b) Conditional volatility forecast for GOLD.
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(a) (b)

Fig. 5. Volatility forecasts for a hybrid of VAR-CNN-BiLSTM models. (a)

Conditional volatility forecast for BTC. (b) Conditional volatility forecast for

GOLD.

The evaluation results, presented in Table 9, demonstrated that the hybrid VAR-CNN-

BiLSTM models outperform the hybrid VAR-DCC-GARCH models in forecasting the volatility

of BTC-USD exchange rates. The prediction results of the new proposed models were shown

in Fig. 5(a)–(b). In comparison to hybrid VAR-DCC-GARCH model, the hybrid VAR-CNN-

BiLSTM exhibited notable improvements, with a decrease of 28.57% in MAE and 36.58% in

MSE for BTC-USD exchanges and a decrease of 22.9% in MAE and 14.29% in MSE for Gold.

Consequently, the hybrid VAR-CNN-BiLSTM model outperforms optimal prediction perfor-

mance.

TABLE 9. Bivariate model comparison under normal distribution for volatility

of BTC-USD exchanges and Gold.

Model MAE MSE

BTC-USD GOLD BTC-USD GOLD

Hybrid VAR-DCC-GARCH 0.3416 0.093 0.3516 0.014

Hybrid VAR-CNN-BiLSTM 0.244 0.0717 0.223 0.012

The evaualtion results of the the forecasted covolatility of BTC-USD and Gold return sereis

are shown on Table 10. The MSE and RMSE results obtained from the models VAR-DCC-

GARCH is larger than VAR-CNN-Bilstm mode under the normal distrbution. Therefore, the
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hybrid VAR-CNN-BiLSTM model is more effective for estimating and forecasting the variance-

covariance of the BTC-USD and Gold return series. In addition to predicting the conditional

correlation, the correlation was found to be positive and significant [14]. This suggests that the

two return series tend to increase or decrease in tandem.

Table 10. Comparison of the bivariate hybrid model under normal distribution

for the covolatility of gold and BTC-USD exchanges.

Statistics VAR-DCC VAR-CNN-BiLSTM

MSE 0.05 0.03484757

MAE 0.127 0.00689

5. CONCLUSION

In conclusion, the key findings are as follows: The study used the dynamic relationships

between BTC-USD exchanges and Gold using historical data. it also examined spillover effects

in variances between them. The mean model were studied using VAR model and the conditional

covarinaces were further investigated using DCC-GARCH and hybrid CNN-BiLSTM models.

In addition to this the causality test between the series were checked using the returns. There is

a unidirectional effect across the series. Further more, the research analysis the predictive power

accuracy between DCC-GARCH and CNN-BiLSTM in forecasting the conditional voaltility in

each indeces and correlation between them. The result indicated that the hybrid VAR-CNN-

BiLSTM model had higher accuracy as compared to VAR-DCC-GARCH model.

6. RECOMMENDATION

The study was limited to investigating the co-volatility prediction of BTC-USD exchanges

with Gold using the two hybrid models. As a result , the study recommended the following

ideas for future works. Future study aiming at the co-movement of securites and forcasting it

using both asymmetric and symmetric DCC-GARCH models and further will compare it with

deep learning models like Gated neural networks. Furthermore, the study can give a way to

constracd a new hybrid DCC-GARCH-LSTM model in order to model conditional correlation

between assets.
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