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Abstract: Parkinson's disease is a disease that attacks the motor parts of the body so that it can reduce the quality of 

life of sufferers. Treatment is limited to dopaminergic and physical therapy. This study aims to determine the factors 

suspected of influencing motor complications, especially in clinical participants of the Movement Disorder Society's 

Unified Parkinson's Disease Rating Scale (MDS-UPDRS) who are diagnosed with Parkinson's disease. MDS-UPDRS 

is an assessment instrument used to measure the severity of motor complication symptoms. Motor complication data 

obtained from MDS-UPDRS shows excessive distribution characteristics at excess zero values (zero inflation), which 

indicates overdispersion due to excess zero. Therefore, Hurdle regression is needed to overcome this problem. The 

predictor variables used are part of the measurement of MDS-UPDRS, namely motor aspects, non-motor aspects in 

daily life, and motor examinations by medical professionals. The results shows that Hurdle negative binomial 

regression model was better than the Hurdle Poisson and Hurdle Conway Maxwell Poisson when applied to motor 

complication data. Based on the Hurdle negative binomial regression model, it is known that clinical participants who 

do not experience motor complications are significantly influenced by non-motor aspect variables in daily life. In 

addition, in the count model, each increase in the score on the non-motor aspect variable tends to increase the average 

motor complication score by 1.0217. 

Keywords: Parkinson’s disease; overdispersion; Hurdle; Hurdle negative binomial; Hurdle Conway Maxwell Poisson. 
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1. INTRODUCTION 

Parkinson's disease is a neurological disorder in the brain that causes the loss of dopamine neurons 

in the midbrain, namely the substantia nigra, which regulates balance and motor skills. This disease 

usually attacks the elderly, but it is possible for it to attack young people. This can happen because 

of genetic and environmental factors that increase the risk of developing Parkinson's disease. The 

motor symptoms that usually occur are bradykinesia, uncontrollable tremor at rest, muscle stiffness, 

and postural impairment [1]. The treatment that can be given is by providing dopaminergic and 

physical therapy. However, sometimes in the treatment process, motor complications can occur. To 

evaluate the severity of symptoms and monitoring possible motor complications, the Movement 

Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) is used. This tool helps 

medical professionals evaluate the patient's overall condition, including motor and non-motor 

symptoms. The characteristics of individuals at high risk for motor complications can be evaluated 

using three parts of the MDS-UPDRS measurement, including non-motor aspects in daily life, motor 

aspects in daily life, and motor examinations carried out directly by medical professionals [2].  

Therefore, a method is needed that can be used to identify factors suspected of influencing the 

occurrence of motor complications. The relationship between the number of motor complications 

and factors suspected of influencing them can be determined using the Poisson regression model. 

The Poisson regression model is used to model data whose response variable is count data. The 

assumptions are equidispersion, the average value and variance of the response variable must have 

the same value. However, it often happens in data when the average value and variance have different 

values. When the average value is smaller than the variance value, the data is overdispersion and 

vice versa when the average value is greater than the variance value, the data is underdispersion [3]. 

One possible cause of this is the presence of excess zero [4]. To overcome this, a method is needed 

that can overcome equidispersion violations due to excess zero, namely by using Hurdle regression. 

Hurdle regression consists of two model parts, namely: the logit model (logistic regression) and the 

count model (truncated regression) [5]. In this study, several count models will be used in Hurdle 

regression, namely Poisson, negative binomial, and Conway Maxwell Poisson which will be applied 

to the data on the number of motor complications of MDS-UPDRS clinical participants. 

2. MATERIAL AND METHODS 

2.1.Dispersion  

Dispersion testing is done with a deviance test to check for possible equidispersion violations in 
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data. If the calculated deviance value divided by the degrees of freedom is greater than one, it 

indicates that the data is overdispersion. Conversely, if the result of dividing the deviance value 

by the degrees of freedom is less than one, it indicates that the data is underdispersion. The 

deviance test is calculated using the following equation [6]: 

𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 2 ∑ [𝑦𝑖 log
𝑦𝑖

�̂�𝑖
− (𝑦𝑖 − �̂�𝑖)]

𝑛

𝑖=1

 (1) 

df : degrees of freedom, 𝑑𝑓 = 𝑛 − (𝑝 + 1) 

𝑦𝑖 : value of the ith response variable with 𝑖 = 1,2, … , 𝑛 

�̂�𝑖 : Poisson regression estimator, �̂�𝑖 = 𝑒𝑥𝑖𝛽𝑃𝑜𝑖𝑠𝑠𝑜𝑛 

2.2.Poisson Regression 

If 𝑦𝑖 is a response variable that has a Poisson distribution for each observation 𝑖, which describes 

the number of events with 𝑛 observations, then the probability density function for 𝑦𝑖: 

𝑓(𝑦𝑖; 𝜇𝑖) =
𝑒−𝜇𝑖𝜇𝑖

𝑦𝑖

𝑦𝑖!
 

(2) 

with 𝑦 = 0,1,2, … , 𝑛 . The natural parameters of the euuation are ln 𝜇  with the log natural 

canonical link function, 𝜂𝑖 = ln 𝜇𝑖. If the relationship between 𝜇𝑖 and the linear predictor 𝜂𝑖 is 

expressed by ln(𝜇𝑖) = 𝜂𝑖 then the Poisson regression model is obtained as follows [6]: 

𝜇𝑖 = exp(𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝) 
 (3) 

2.3.Negative Binomial Distribution 

The negative binomial distribution is an effective approach used to handle overdispersion in count 

data [7]. The negative binomial distribution has a dispersion parameter that controls the variability 

of the data. The probability density function is as follows [5]: 

𝑓(𝑦; 𝜇, 𝜙) =
Γ(𝑦 + 𝜙)

Γ(𝑦 + 1)Γ(𝜙)
(

𝜇

𝜇 + 𝜙
)

𝑦

(
𝜙

𝜇 + 𝜙
)

𝜙

 (4) 

with 𝑦 is the count data value, 𝜇 = 𝐸(𝑦), and 𝜙−1 is the dispersion parameter. 

2.4.Conway Maxwell Poisson Distribution 

The Conway Maxwell Poisson (CMP) distribution is a development of the Poisson distribution, 

which was first introduced by Conway and Maxwell. According to Sellers et al. [8] the CMP 
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distribution can handle data that experiences overdispersion or underdispersion. The CMP 

distribution controls the level of data dispersion with parameter 𝑣 , namely euuidispersion 

(𝑣 = 1) , overdispersion (0 ≤ 𝑣 < 1) , and underdispersion (𝑣 > 1) . This distribution also 

includes several general distributions as special cases: the Poisson distribution ( 𝑣 = 1) , the 

geometric distribution (𝑣 = 0  dan 𝜇 < 1) , and the Bernoulli distribution (𝑣 → ∞) . The 

following is the form of the CMP distribution probability density function:  

           𝑓(𝑦; 𝜇, 𝑣) =
𝜇𝑦

(𝑦!)𝑣

1

𝑍(𝜇;𝑣)
, 𝜇 > 0; 𝑣 ≥ 0 (5) 

with 𝑍(𝜇, 𝑣) = ∑
𝜇𝑘

(𝑘!)𝑣
∞
𝑘=0   is the normalization constant, 𝜇 = 𝐸(𝑦) , and 𝑣  is the dispersion 

parameter [9].  

2.5.Hurdle Regression 

One of the methods to overcome overdispersion is Hurdle regression. Overdispersion occurs when 

the data variance is greater than the average value. One of the causes of overdispersion is excessive 

zero values in the response variable (excess zero). Hurdle regression divides the model into two 

parts, namely: a model for binary data with zero or positive values, which is estimated using 

logistic regression, and a model for data with positive values, estimated with a truncated model. 

The Hurdle regression probability distribution is as follows [10]: 

 
𝑓(𝑦𝑖) = {

𝑓1(0),                                    𝑦𝑖 = 0 

1 − 𝑓1(0)

1 − 𝑓2(0)
𝑓2(𝑦𝑖),                  𝑦𝑖 > 0

 (6) 

𝑓1(0) is the probability when 𝑦𝑖 = 0 

𝑓2(𝑦𝑖) is the probability density function of 𝑦𝑖 when 𝑦𝑖 > 0 

2.6.Hurdle Poisson Regression 

If 𝑦𝑖 = 1,2, … , 𝑛 is the 𝑛𝑡ℎ response variable from the 𝑖𝑡ℎ observation measurement, then the 

probability density function of the Hurdle Poisson (Hpois) regression formed based one Euuation 

(2) and (6) is shown in Euuation (7):  

𝑃(𝑌𝑖 = 𝑦𝑖) = {

(1 − 𝜋𝑖),                   𝑦𝑖 = 0 

(𝜋𝑖)
𝑒−𝜇𝑖𝜇𝑖

𝑦𝑖

𝑦𝑖! (1 − 𝑒−𝜇𝑖)
, 𝑦𝑖 > 0

 (7) 

The probability of a value other than zero occurring is defined as 𝜋𝑖, with 0 < 𝜋𝑖 < 1. 𝜇𝑖 is the 

mean of a Poisson distribution with 𝜇𝑖 > 0 . It is known that 𝜋𝑖  dan 𝜇𝑖  depend on vector of 
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predictor variables, which can be defined as follows: 

𝜋𝑖 =
exp(∑ 𝑧𝑖𝑗𝛿𝑗

𝑝
𝑗=1 )

1 + exp (∑ 𝑧𝑖𝑗𝛿𝑗
𝑝
𝑗=1 ) 

                       𝜇𝑖 = exp (∑ 𝑥𝑖𝑗𝓊𝑗

𝑝

𝑗=1

)  

with 0 < 𝜋𝑖 < 1, 𝑖 = 1,2, … , 𝑛, and 𝑗 = 1,2, … , 𝑝. 

2.7.Hurdle Negative Binomial Regression 

Hurdle Negative Binomial (HNB) Regression is a Hurdle regression whose second part of the 

model uses a negative binomial distribution. This regression is effective for data that shows 

overdispersion due to excessive zeros in the response variable [11]. If 𝑦𝑖 = 1,2, … , 𝑛 is the 𝑛𝑡ℎ 

response variable from the 𝑖𝑡ℎ observation measurement, then the probability density function of 

the HNB regression formed based on Euuation (4) and (6) is shown in Euuation (8) [12]: 

𝑃(𝑌𝑖 = 𝑦𝑖) = {

(1 − 𝜋𝑖),                                                                               𝑦𝑖 = 0 

(𝜋𝑖)
Γ(𝑦𝑖 + 𝜙)

Γ(𝑦𝑖 + 1)Γ(𝜙)
(

𝜇𝑖

𝜙 + 𝜇𝑖
)

𝑦𝑖 (1 + 𝜙−1𝜇𝑖)
−𝜙

1 − (1 + 𝜙−1𝜇𝑖)−𝜙
, 𝑦𝑖 > 0

 (8) 

The probability of a value other than zero occurring is defined as 𝜋𝑖, with 0 < 𝜋𝑖 < 1. 𝜇𝑖 is the 

mean of a negative binomial distribution with 𝜇𝑖 > 0 and 𝜙−1 is the dispersion parameter with 

𝜙 > 0. It is known that 𝜋𝑖 dan 𝜇𝑖 depend on vector of predictor variables, which can be defined 

as follows: 

𝜋𝑖 =
exp(∑ 𝑧𝑖𝑗𝛿𝑗

𝑝
𝑗=1 )

1 + exp (∑ 𝑧𝑖𝑗𝛿𝑗
𝑝
𝑗=1 ) 

                       𝜇𝑖 = exp (∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)  

with 0 < 𝜋𝑖 < 1, 𝑖 = 1,2, … , 𝑛, and 𝑗 = 1,2, … , 𝑝. 

2.8.Hurdle Conway Maxwell Poisson Regression 

Hurdle Conway Maxwell Poisson (HCMP) regression uses Hurdle regression with a second model 

based on the CMP distribution. This regression uses the 𝑣 parameter to adjust the dispersion in 

the data so that it is flexible in dealing with overdispersion or underdispersion in the data. If 𝑦𝑖 =

1,2, … , 𝑛  is the 𝑛𝑡ℎ  response variable from the 𝑖𝑡ℎ  observation measurement, then the 

probability density function of the HCMP regression formed based on Euuation (5) and (6) is 

shown in Euuation (9) [13]: 

𝑃(𝑌𝑖 = 𝑦𝑖) = {

(1 − 𝜋𝑖),                                             𝑦𝑖 = 0 

(𝜋𝑖)
1

𝑍(𝜇𝑖; 𝑣) − 1

𝜇𝑖
𝑦𝑖

(𝑦𝑖!)
𝑣

 ,               𝑦𝑖 > 0
 (9) 
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Sellers [13] states that the function 𝑍(𝜇𝑖; 𝑣) can be approximated by 

𝑍(𝜇𝑖, 𝑣) ≈

exp (𝑣𝜇
𝑖

1
𝑣)

𝜇
𝑖

𝑣−1
2𝑣 (2𝜋∗)

𝑣−1
2  √𝑣

 (10) 

It is known that 𝜋𝑖  dan 𝜇𝑖  depend on vector of predictor variables, which can be defined as 

follows: 

𝜋𝑖 =
exp(∑ 𝑧𝑖𝑗𝛿𝑗

𝑝
𝑗=1 )

1 + exp (∑ 𝑧𝑖𝑗𝛿𝑗
𝑝
𝑗=1 ) 

                       𝜇𝑖 = exp (∑ 𝑥𝑖𝑗𝛾𝑗

𝑝

𝑗=1

) 

with 𝑖 = 1,2, … , 𝑛, and 𝑗 = 1,2, … , 𝑝. 

2.9.Algorithm of Broyden-Fletcher-Goldfarb-Shanno 

Algorithm of Broyden-Fletcher-Goldfarb-Shanno (BFGS) is a development of the Newton-

Raphson method. The main difference lies in the calculation of the hessian matrix. In Newton-

Raphson, the Hessian matrix is calculated directly from the second derivative of the log-likelihood 

function. Meanwhile, in BFGS, the Hessian matrix is calculated iteratively using information 

obtained from each iteration step. Parameter estimates are obtained with the following euuation 

[14]: 

𝜽𝑘+1 = 𝜽𝑘 − 𝜆𝑘𝑯𝑘
−1𝒈𝑘 (11) 

with 

𝜆𝑘 = min ln 𝐿(𝜽𝑘 − 𝜆𝑯𝑘
−1𝒈𝑘)  

𝒈 : the first derivative of log-likelihood function(∇𝑓( 𝜽𝑘)). 

𝑯 : the Hessian matrix 

𝑯𝑘+1 = (𝑰 −
𝒔𝑘𝒚𝑘

𝑇

𝒚𝑘
𝑇𝒔𝑘

) 𝑯𝑘 (𝑰 −
𝒚𝑘𝒔𝑘

𝑇

𝒚𝑘
𝑇𝒔𝑘

) +
𝒔𝑘𝒔𝑘

𝑇

𝒚𝑘
𝑇𝒔𝑘

 (12) 

𝒔𝑘 = 𝜽𝑘+1 − 𝜽𝑘  

𝒚𝑘 = 𝒈𝑘+1 − 𝒈𝑘  

𝑯0 = the identity matrix 𝑛 × 𝑛 

The iteration process will continue until the parameter estimates converge, namely when 

‖𝜽𝑘+1 − 𝜽𝑘‖ ≤ 𝜀, where 𝜀 is a very small number close to zero. 
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2.10. Akaike Information Criteration 

One of the important tools for selecting the best model is to use the Akaike Information Criteria 

(AIC). AIC assesses how well the model represents the data by considering the number of 

parameters and the degree of fit to the data. Models with lower AIC values are considered better. 

The AIC difference between two models indicates how much one model is better than the other. 

The AIC value can be defined as: 

𝐴𝐼𝐶 = −2 log 𝐿(𝜃) + 2𝑝 (13) 

where 𝐿(𝜃) is the likelihood value of the model given the data and p is the number of parameters 

in the model [15]. 

3. MAIN RESULTS 

3.1 Descriptive Data 

The data used are secondary data obtained from the Parkinson's Progression Markers Initiative 

(PPMI) website, updated version of April 17, 2024, accessed on April 18, 2024 [16]. The number 

of observations consist of 362 clinical participants. The secondary data in uuestion is MDS-

UPDRS clinical data, namely the number of non-motor aspect scores in daily life, the number of 

motor aspect scores in daily life, the number of motor examination scores carried out by medical 

professionals, and the number of motor complication scores. The variables used a Likert scale with 

a score range of 0-4. A higher score indicates a more severe symptom impact. An overview of 

MDS-UPDRS clinical participants by age and gender is shown in Table 1. 

 

Table 1. Freuuency by Age and Gender 

Age 

Gender 
Total 

Male Female 

Freuuency % Frekuensi Freuuency % % 

Age < 50th  11 3.04 4 1.10 15 4.14 

50th ≤ Age ≤ 59th  43 11.88 34 9.39 77 21.27 

60th ≤ Age ≤ 69th  77 21.27 49 13.54 126 34.81 

Age ≥ 70th  98 27.07 46 12.71 144 39.78 

Total 229 63.26 133 36.74 362 100.00 
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Table 1 shows that in the MDS-UPDRS clinical participants, the most based on gender category 

were male with a percentage of 63.26% while female were 36.74%. Then based on age category, 

the highest freuuency in MDS-UPDRS clinical participants was in the age group 60th ≤ Age ≤

69th and Age ≥ 70th. This shows that the highest freuuency occurs in male with the age group 

≥ 70th. 

Furthermore, in this study, an overdispersion test was conducted with a deviance test on the 

response variable, namely the number of motor complications. Based on the deviance test, a 

dispersion value of 3.733 was obtained which was greater than one. This indicates that the data on 

the number of motor complications indicates overdispersion. In addition, based on Figure 1, it can 

be seen that most of the data is concentrated on a score of zero. This can indicate that a high level 

of motor complications is relatively rare. The graph also shows an excess zero in the variable 

number of motor complication scores, where the freuuency of zero values is much greater than 

other values. Therefore, the analysis can be continued by applying the Hurdle regression model. 

Model analysis is carried out with the help of the BFGS algorithm. 

 

Figure 1. Distribution of Zero Values in Motor Complication Score  

3.2 Modeling Hurdle Regression 

Data modeling of the number of motor complications in MDS-UPDRS clinical participants was 

performed using the HPois, HNB, and HCMP regression models with the BFGS algorithm 

approach. The estimation results of each parameter are shown in Table 2: 
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Table 2. Hurdle Regression Parameter Estimation 

Models Parameter Estimate Std.error 
Wald test 

(𝑊) 

Hurdle 

Poisson 

Logit 

𝛿0 -0.5950 0.2910 - 

𝜹𝟏* 0.0811 0.0245 10.9470 

𝛿2 0.0252 0.0236 1.1462 

𝛿3 -0.0097 0.0093 1.0929 

Poisson 

Count 

𝓊0 1.1846 0.0861 - 

𝓾𝟏* 0.0215 0.0066 10.5875 

𝓾𝟐* 0.0138 0.0069 3.9644 

𝓊3 -0.0018 0.0025 0.4963 

Hurdle 

Negative 

Binomial 

Logit 

𝛿0 -0.5967 0.2911 - 

𝜹𝟏* 0.0812 0.0245 10.9654 

𝛿2 0.0252 0.0236 1.1434 

𝛿3 -0.0096 0.0093 1.0831 

Negative 

Binomial 

Count 

𝛽0 1.1545 0.1204 - 

𝜷𝟏* 0.0215 0.0096 5.0477 

𝛽2 0.0142 0.0100 2.0454 

𝛽3 -0.0019 0.0035 0.3064 

𝜙 1.6383 0.2687 37.1677 

Hurdle 

Conway 

Maxwell 

Poisson 

Logit 

𝛿0 -0.5968 0.2911 - 

𝜹𝟏* 0.0812 0.0245 10.9660 

𝛿2 0.0252 0.0236 1.1434 

𝛿3 -0.0096 0.0093 1.0829 

Conway 

Maxwell 

Poisson 

Count 

𝛾0 0.7180 0.1192 - 

𝜸𝟏* 0.0140 0.0055 6.4941 

𝛾2 0.0089 0.0056 2.5248 

𝛾3 -0.0012 0.0020 0.3366 

exp(𝑣) 0.6367 0.1122 16.1972 

*) indicates that variables have significant affect 

Each Hurdle model consists of two parts, namely the logit model and the count model. The logit 

model for each HPois, HNB, and HCMP regression has almost the same parameter estimation 

results. In addition, in the logit model based on the Wald test value presented in Table 2, a 

significant variable is obtained, namely the variable number of non-motor aspect scores in daily 

life (𝑋1) with a Wald test value of 𝑊 > 𝜒(0.05,1)
2 = 3.841. This shows that the chances of clinical 
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participants not experiencing motor complications are significantly influenced by the variable 

number of non-motor aspect scores in daily life. 

As for the count model for each regression of HPois, HNB, and HCMP, the results are uuite 

different. The Poisson count model has two variables that significantly affect the variable number 

of motor complication scores, including the variable number of non-motor aspects (𝑋1)  and 

motor in daily life (𝑋2) with a Wald test value of 𝑊 > 𝜒(0.05,1)
2 = 3.841. This means that for 

every one unit increase in non-motor scores in daily life (𝑋1) , the average number of motor 

complication scores will increase by exp(0.0215) = 1.0217 assuming other variables are 

constant, and for every one unit increase in motor scores in daily life (𝑋2), the average number of 

motor complication scores will increase by exp(0.0138) = 1.0139 assuming other variables are 

constant. 

The negative binomial count and Conway Maxwell Poisson count models have one significant 

variable respectively that affects the variable of the number of motor complication scores, namely 

the number of non-motor aspect scores in daily life (𝑋1) with Wald test value of 𝑊 > 𝜒(0.05,1)
2 =

3.841. This means that in the negative binomial count model for every one unit increase in non-

motor score in daily life, the average number of motor complication scores will increase by 

exp(0.0215) = 1.0217  assuming other variables are constant, while in the Conway Maxwell 

Poisson count model for every one unit increase in non-motor score in daily life, the average 

number of motor complication scores will increase by exp(0.0140) = 1.0141 assuming other 

variables are constant. 

3.3 Model Comparison 

The selection of the best model to apply the regression model to MDS-UPDRS clinical data will 

be tested by selecting the minimum Akaike Information Criterion (AIC) value. The respective AIC 

values for the HPois, HNB, and HCMP regression models are shown in Table 3. 

Table 3. AIC Value of Hurdle Regression Model 

Regression Model AIC Value 

HPois 1434.676 

HNB 1386.599 

HCMP 1409.921 

Table 3 shows that the HNB regression model has a smaller AIC value than the HPois and HCMP 
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regression models. This indicates that the negative binomial Hurdle regression model is better to 

be applied to MDS-UPDRS clinical data that is overdispersion with excess zero.  

In summary, the analysis of the logit and count components within the Hurdle Poisson (HPois), 

Hurdle Negative Binomial (HNB), and Hurdle Conway Maxwell Poisson (HCMP) regression 

models indicates that the HNB model is the most appropriate for modeling MDS-UPDRS clinical 

data characterized by overdispersion and an excess of zero counts. The logit models across all 

three regressions exhibit consistent results, identifying non-motor aspect scores in daily life (𝑋1) 

as a significant predictor of the probability that clinical participants will not experience motor 

complications. In contrast, the count models demonstrate variability, with the HNB model 

outperforming others based on the Akaike Information Criterion (AIC). This outcome corroborates 

prior research by Sellers [13], who also found that the negative binomial model was superior to 

the Conway-Maxwell Poisson model for handling data with overdispersion due to excess zeros, 

thereby reinforcing the suitability of the HNB model in this analytical context. 
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