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Abstract: In this paper, we investigate the dynamics of two hosts and one parasite mathematical model with the fear 

effect and Susceptible-Infected SI disease. The parasite species reproduces by logistic growth law. There is a mutual 

fear between the first host and the second host. Infecting the second host with SI disease by transmission from the first 

host by contact or leaving a mark on its surroundings according to the Lotka-Volterra function. The model is studied 

theoretically, and its validity is studied numerically after obtaining of the local and the global equilibrium points. The 

parameter’s effect on the mathematical model is studied to determine which parameters cause damage and to set 

appropriate conditions to reduce their effect. This paper explores a novel disease control model where fear of a parasite 

drives behavioral changes in a two-host, and one-parasite system. The model utilizes the established SI framework to 

track disease spread alongside fear-induced modifications in host behavior, the disease was combated by controlling 

unstable balance points and making them stable. 
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1. INTRODUCTION 

Mathematical models have been used to give an obvious view of the dynamics to understanding 

the human population with many diseases that still threaten to be a big cause of death, and due to 

changed environmental and socio-economic conditions, we have noticed the existence of one of 

the important diseases that cause human death, the main cause of which is the parasite. It is 

necessary to study the development and effectiveness of the host-parasite in the biological 

description.  

The aggressive interaction between the parasites and the hosts is very interesting in ecology. This 

is due to the negative effect of parasites on host health. The study of these interactions is essential 

in biomedical [1,2].  

Many infectious diseases are caused by viruses, bacteria, protozoa, toxins, pasties (worms), etc. 

The mechanisms of transmission affect the spread of the disease as, direct physical contact, aerosol 

droplets of an infected individual, passive vectors (water, food, etc.), active vectors rats, etc. [3,4]. 

Disease was and still is one of people's most important fears, therefore. many researchers have 

studied it. Some preview investigations in this regard are: Alabacy and Majeed [5] studied the 

effects of SIS disease that can be cured and reinfected young prey in a predatory prey model with 

a stage structure including a prey shelter. Tewa, et al. [6] considered the infectious disease SIS that 

can be cured and reinfected using a predator-prey model. Rahul and Prakash [7] considered a 

numerical simulation of the curable and immunogenic SIR diseases model for childhood using the 

fractional Adams-Bashforth method. Buonomo and Giacobbe [8] studied behavioral epidemic 

models of a curable disease (SIR): the interaction between behavior and hyperexposure.  

Hosts-parasites have attracted the attention of many researchers, such as Xu, et.al. [9], who 

investigated a parasite-host model within an oscillated environment, these interactions have also 

attracted many other researchers [10-14]. 

The fear effect is a necessary factor that must be studied ecologically. Many studies investigate 

the impact of fear on the species. Alabacy and Majeed [15] studied the fear effect, a prey shelter 

and harvesting effect on a food chain prey-predator model. As well, these effects are studied [16-

19]. Rami and Naji [20] investigated a prey-predator model with two hosts, the prey consumed 

predator by Holling type II functional response. 

In addition to their impact on such biological interactions, these systems have long fascinated 

researchers due to their intricate and often unpredictable behavior. Understanding the dynamics of 

these systems is crucial for various scientific disciplines, including biology, ecology, engineering, 
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and medicine [21-23]. 

A mathematical model was created to study the effects of how to reduce parasitic meningitis. It is 

one of the important and dangerous diseases that caught our attention. This disease represents a 

great challenge due to its severe complications and it is considered a clear danger to humans due 

to the high death rates resulting from the infection with are high. Every 1 to 10 infected people is 

at risk of death. It infects all ages and is spread by parasites, external infection and contact between 

people, and also with surfaces that have come into contact with the parasites and people. 

In this paper, the dynamics of two hosts (for example, rats and humans) and one parasite (for 

example, rat lungworm) are investigated. The mathematical model of the fear effect and SI disease 

(for example, Eosinophilic meningitis) is introduced. The parasite species reproduces by logistic 

growth law. There is a mutual fear between the first host and the second host. Infecting the second 

host with SI disease by transmission from the first host via contact or by leaving a mark on its 

surroundings according to the Lotka-Volterra function. The model is studied theoretically, and 

numerically after the founding of the local and global equilibrium points. The parameter's effects 

on the mathematical model are also discussed. 

 

2. MATHEMATICAL MODEL 

In this section, we proposed an epidemiological model, that involves the following: one parasite 

whose population density at the time T is P(T), interacting with the first host whose population 

density at time T is H1(T) and the second host whose population density at the time T is H2(T). 

All the assumptions described are presented in Table 1. 

Table 1. Parameters description 

Parameters Biological Meaning 

𝑔1, 𝑔3, 𝑔7 The growth rate of the Parasite, the first Host and the second Host respectively. 

𝑔2, 𝑔5 The infection rate from the Parasite to the first Host and from the first Host to the second Host 

respectively. 

𝑔4, 𝑔8 The internal competition rate between the first Host individuals and the second Host individuals 

respectively.  

𝑔6 The extermination rate of the first Host 

𝑔9 The death rate of the second Host 

𝐾1, 𝐾2 The fear rate of the first Host from the second Host and the second Host from the first Host 

respectively. 

𝐾 The carrying capacity of the Parasite 
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Now, the mathematical model is proposed according to the hypotheses given in Table 1 and 

through the first-order nonlinear differential equations as shown in the system (1), while Figure 1 

shows the model graphically. 

 

𝑑𝑃

𝑑𝑇
= 𝑔1𝑃 (1 − 

𝑃

𝐾
 ) − 𝑔2𝑃𝐻1 = 𝑍1(𝑃, 𝐻1, 𝐻2)

            
𝑑𝐻1
𝑑𝑇

= 
𝑔3𝐻1

1 + 𝐾1𝐻2
 − 𝑔4𝐻1

2 + 𝑔2𝑃𝐻1 − 𝑔5𝐻1𝐻2 − 𝑔6𝐻1 = 𝑍2(𝑃, 𝐻1, 𝐻2)

 
𝑑𝐻2
𝑑𝑇

=
𝑔7𝐻2

1 + 𝐾2𝐻1
− 𝑔8𝐻2

2 + 𝑔5𝐻1𝐻2 − 𝑔9𝐻2 = 𝑍3(𝑃, 𝐻1, 𝐻2) }
  
 

  
 

           (1) 

 

 

Figure 1: The Block diagram for the model given in system (1) 

Parasites may cause a rare type of meningitis called Eosinophilic Meningitis. Brain tapeworm 

infection or cerebral malaria causes parasitic meningitis. It may quickly turn into a life-threatening 

disease for the person infected with it. 

The main parasite (tapeworm) that causes meningitis usually infects animals (e.g, mice). People 

usually become infected with this disease by eating foods contaminated with these parasites or by 

touching surfaces on which the animal has passed. However, parasitic meningitis does not spread 

between humans. To interpret the parameters of the system (1) in this example as presented in 

Figure 1, it is as follows: 

1- P represents the Tapeworm (parasite): In the phrase 𝑔1𝑃 (1 − 
𝑃

𝐾
 ),where 𝑔1 is the intrinsic 

growth rate and 𝐾 is the environment's carrying capacity, refers to the logistic growth of the 
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Tapeworm population. The Tapeworm interaction 𝑔2𝑃𝐻1 shows how the Tapeworm parasite 

on the rat. 

2- 𝐻1 represents the rat (first host): The phrase 
𝑔3𝐻1

1+ 𝐾1𝐻2
 , where 𝑔3  is the growth rate and  𝐾1 

is the fear rate of the first Host from the second Host. In the phrase 𝑔4𝐻1
2, 𝑔4 refers to the 

internal competition rate between the first Host individuals. The phrase 𝑔5𝐻1𝐻2 represent 

the infection term of the disease of Lotka Volterra type, where 𝑔5 is the infection rate from 

the first Host to the second Host. The phrase 𝑔6𝐻1 represent the extermination of the first 

Host by the second host, and 𝑔6 is the extermination rate of the first Host. 

3- 𝐻2 represents the human (second host): In the phrase 
𝑔7𝐻2

1+ 𝐾2𝐻1
 , where 𝑔7  is the growth rate 

and 𝐾2 is the fear rate of the second Host from the first Host. The phrase 𝑔8𝐻2
2 represents 

the internal competition between the second host individuals, where 𝑔8  is the internal 

competition rate between the second Host individuals. The phrase 𝑔9𝐻2 represent the death 

term of the second Host by second Host and 𝑔6 is the death rate of the second Host. 

In a dynamic epidemiological model, the system and its solutions must be studied in such a way 

that all the organisms in the system are uniformly bounded. That is, a limited system is a system 

in which the movement of all organisms in the epidemiological model is limited to a limited area 

of space. Therefore, the system will be studied in the following theorem. 

Theorem: All the solutions of system (1) in 𝑅+
3  are uniformly bounded. 

Proof: To confirm that the system's (1) solutions are uniformly bounded, we have to suppose a 

function [2]: 𝑀(𝑇) = 𝑃(𝑇) + 𝐻1(𝑇) + 𝐻2(𝑇). 

Let (𝑃(𝑇), 𝐻1(𝑇),𝐻2(𝑇)) be any solution of system (1) with an initial non-negative condition 

(𝑃(0), 𝐻1(0),𝐻2(0)) ∈ 𝑅+
3 . Taking the time derivative of M(T) along the solution of the system 

(1), we get: 
𝑑𝑀

𝑑𝑇
≤ 𝑁3 − 𝑁4𝑀, where 𝑁3 =

𝑔1
2𝐾 

2
+
𝑁1𝑔3 

𝑔4
+
𝑁2𝑔7 

𝑔8
 ,  

 𝑁4 = min{𝑔1, 𝑔6, 𝑔9} , 

From the first equation of system (1) and by the comparison theory and the initial point 𝑃(0) =

𝑃0, we get  
𝑑𝑃

𝑑𝑇
≤

𝑔1𝐾 

4
. Thus, Sup. [24] is 𝑆𝑢𝑝. 𝑃(𝑇) = 𝑙𝑖𝑚

𝑇→∞
𝑃(𝑇) ≤

𝑔1𝐾 

4
, ∀𝑇 > 0. 

From the second equation of system (1) we have 

𝑑𝐻1

𝑑𝑇
≤ 𝑁1𝐻1 − 𝑔4𝐻1

2, where 𝑁1 = 𝑔3 +
𝑔1𝐾 

4
.  
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Therefore, using the comparison theory and the initial point 𝐻1(0) = 𝐻1,0,   we get  

𝐻1(𝑇) ≤
𝑁1 

𝑔4+𝑁1𝑐𝑒−𝑁1𝑇
. Thus,  𝑆𝑢𝑝. 𝐻1(𝑇) = 𝑙𝑖𝑚

𝑇→∞
𝐻1(𝑇) ≤

𝑁1 

𝑔4
 , ∀𝑇 > 0.  

Now, by using the third equation of system (1), we have 

𝑑𝐻2

𝑑𝑇
≤ 𝑔7𝐻2 − 𝑔8𝐻2

2 + 𝑔5𝐻1𝐻2 ≤ 𝑁2𝐻2 − 𝑔8𝐻2
2. 

Here 𝑁2 = 𝑔7 +
𝑔1𝑁1 

𝑔4
.  

Therefore, using the comparison theory and the initial point 𝐻2(0) = 𝐻2,0 , we get  

𝐻2(𝑇) ≤
𝑁2 

𝑔8+𝑁2𝑐𝑒
−𝑁2𝑇

. Thus,  𝑆𝑢𝑝. 𝐻2(𝑇) = 𝑙𝑖𝑚
𝑇→∞

𝐻2(𝑇) ≤
𝑁2 

𝑔8
 , ∀𝑇 > 0.  

Now, for the initial value  𝑀(0) = 𝑀0 , we get: 

𝑀(𝑇) ≤
𝑁3

𝑁4
+ 𝑐𝑒−𝑁4𝑇. Thus, 𝑙𝑖𝑚

𝑇→∞
𝑀(𝑇) ≤

𝑁3

𝑁4
,  where, 0 ≤ 𝑀 ≤

𝑁3

𝑁4
 , ∀𝑇 > 0 .  

Therefore, all solutions are uniformly bounded. 

 

3. EXISTING EQUILIBRIUM POINTS 

In this section, all possible equilibrium points of system (1) are found in the following:  

• The trivial equilibrium point E0(0,0,0) is always exists. 

• The equilibrium point 𝐸1(0, 𝐻̇1, 0) where  𝐻̇1 =
𝑔3−𝑔6

𝑔4
 is exists if 

g3 > g6 .  

• The equilibrium point 𝐸2(0,0, 𝐻̈2) where  𝐻̈2 =
𝑔7−𝑔9

𝑔8
 is exists if 

𝑔7 > 𝑔9 .                                                                                                                                      (2) 

• The equilibrium point E3(P,H1, 0) is exists if and only if the following two equations have 

positive solutions: 

𝑔1𝑃 (1 − 
𝑃

𝐾
 ) − 𝑔2𝑃𝐻1 = 0                                                                                                  (3) 

𝑔3𝐻1  − 𝑔4𝐻1
2 + 𝑔2𝑃𝐻1 − 𝑔6𝐻1 = 0                                                                                    (4) 

From equation (3) we have, 

𝐻1 =
𝑔1
𝑔2
 (1 − 

𝑃

𝐾
 )                                                                                                                   (5) 

Now, by substituting equation (5) in (4) we obtain: 

𝐴1𝑃
2 + 𝐴2𝑃 + 𝐴3 = 0,                                                                                                             (6) 
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where,  𝐴1 =
𝑔1(𝐾2

2𝑔2
2− 𝑔1𝑔4)

𝑔2
2𝐾2

, 𝐴2 =
𝑔1[2 𝑔1𝑔4+𝑔2𝑔6−𝑔2( 𝐾+ 𝑔3)] 

𝑔2𝐾
, nd  𝐴3 =

𝑔1

𝑔2
2 [𝑔2𝑔3 − (  𝑔2𝑔6 +

𝑔1𝑔4 )]. 

The Discarte rule, equation (6) has a unique positive root say P̂ as long as  

2𝑔1𝑔4 + 𝑔2𝑔6 < 𝑔2(𝐾 + 𝑔3),                                                                                             (7) 

𝐾2
2𝑔2

2 > 𝑔1𝑔4,                                                                                                                          (8) 

So  𝐻̂1 > 0 if 𝐾 > 𝑃̂,                                                                                                           (9) 

Hence E3(P̂, Ĥ1, 0)  is exists under the conditions (7) − (9) . Also If we reverse the 

conditions (7)and(8) with the condition  𝑔2𝑔3 > 𝑔2𝑔6 + 𝑔1𝑔4 ,                            (10) 

 So, 𝐸3(𝑃̂, 𝐻̂1, 0) exist under conditions (9) and (10). 

• The equilibrium point E4(P, 0, H2)  exists if and only if the following two equations have 

positive solutions : 

𝑔1𝑃 (1 − 
𝐶

𝐾
 ) = 0                                                                                                                  (11) 

g7H2 − g8H2
2 − g9H2 = 0                                                                                                     (12) 

From equation (11) we have 𝑃 = 𝐾 > 0 . 

From equation (12) we have 𝐻2 =
1

𝑔8
(𝑔7 − 𝑔9).  

So H⃛2 is positive if under condition (2), so E4(P⃛, 0, H⃛2) exists. 

• The equilibrium point E5(P,H1, H2) exists if and only if the following three equations have   

positive solutions: 

𝑔1  (1 − 
𝑃

𝐾
 ) − 𝑔2𝐻1 = 0,                                                                                              (13) 

𝑔3
1 + 𝐾1𝐻2

 − 𝑔4𝐻1 + 𝑔2𝑃 − 𝑔5𝐻2 − 𝑔6 = 0,                                                            (14) 

𝑔7
1 + 𝐾2𝐻1

− 𝑔8𝐻2 + 𝑔5𝐻1 − 𝑔9 = 0,                                                                          (15) 

From equation (13) we get 

 𝐻1 =
𝑔1

𝑔2
(1 − 

𝑃

𝐾
 )  

By substituting H1 in equation (14) we get: 

  𝑃 =
𝐾[𝑔2(𝑔5𝐻2+𝑔6)+𝑔1𝑔4−𝑔2𝑔3]

𝐾𝑔2
2+𝑔1𝑔4

,                                                                                         (16)  

Now, by substituting H1 and P in equation (15) we get: 

𝐵1𝐻2
2 − 𝐵2𝐻2 + 𝐵3 = 0, 
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where 𝐵1 =
𝐾2𝑔5

𝐾𝑔2
2+𝑔1𝑔4

(𝑔2𝑔8 + 𝑔1
2𝑔5

2) > 0 ,  

𝐵2 = 𝑔8 +
𝐾2(𝑔1𝑔8 + 2𝑔1

2𝑔5
2)

𝑔2
+

1

𝐾2𝑔2
2 + 𝑔1𝑔4

[𝑔8𝐾2(𝑔2[𝑔6 + 𝑔3] − 𝑔1𝑔4)

+ 𝑔5[𝑔1(𝑔5 − 𝑔9𝐾2) − 2𝑔2𝑔5𝐾(𝑔2(𝑔2[𝑔6 + 𝑔3] − 𝑔1𝑔4)]] 

𝐵3 = 𝑔7−𝑔9 +
𝑔5𝐾2𝑔1

2

𝑔2
2 (𝑔2(𝐾2𝑔2 − 2[𝑔6 − 𝑔3] − 𝑔1𝑔4) +

1

𝐾2𝑔2
2 + 𝑔1𝑔4

[𝑔1(𝑔5

− 𝑔9𝐾2)( 𝑔2[𝐾2𝑔2 − 𝑔6 + 𝑔3] + 𝑔5𝐾2𝑔1
2𝑔6

2(𝑔1𝑔4 − 𝑔2𝑔3)(𝑔2[2𝑔6 − 𝑔3]

− 𝑔1𝑔4) 

Now 𝐻2(1,2) =
𝐵2±√𝐵2

2−4𝐵1𝐵3

2𝐵1
> 0,  under the following conditions are hold: 

 𝑔2[𝑔6 + 𝑔3] > 𝑔1𝑔4 > 𝑔2[2𝑔6 − 𝑔3],                                                                            

𝑔5
𝑔9
> 𝐾2 >

𝑔6 − 𝑔3
𝑔2

,                                                                                                            

𝑔1(𝑔5 − 𝑔9𝐾2) > 2𝑔2𝑔5𝐾(𝑔2(𝑔2[𝑔6 + 𝑔3] − 𝑔1𝑔4)],                                             

𝑔1𝑔4 > 𝑔2𝑔3.                                                                                                                         

So we get H1
∗ = H1(H2

∗) > 0 and P∗ = P(H2
∗) > 0 , under the following conditions 

𝐾 > 𝑃∗,                                                                                                                                    

𝑔2(𝑔5𝐻2
∗ + 𝑔6) + 𝑔1𝑔4 > 𝑔2𝑔3,                                                                                     

Therefore, E5 is exist.  

 

4. LOCAL STABILITY ANALYSIS 

In this section, the analysis of the stability of all feasible equilibrium points of system (1) is studied 

analytically by linearization method [15] as below. Note that, from now onward the characters 

𝑖𝑋 ,𝑖𝑌 and 𝑖𝑍   represent the eigenvalues of the Jacobian matrix 𝐽𝑖 = 𝐽(𝐸𝑖); 𝑖 = 0,1,2,3,4,5 

which describes the dynamics in the P, 𝐻1 and 𝐻2 direction respectively. For system (1) it can 

be written as: 

𝐽𝑖 =

[
 
 
 
 
 
 𝑔2𝐻1 −

𝑔1𝐻

𝐾1 − 1
−𝑔2𝑃 0

𝑔2𝐻1 𝑔2𝑃 − 2𝑔4𝐻1 − 𝑔5𝐻2 − 𝑔6 +
𝑔3

𝐻2𝐾1 + 1
−𝑔5𝐻2 −

𝑔3𝐻1𝐾1
(𝐻2𝐾1 + 1)

2

0 𝑔5𝐻2 −
𝑔7𝐻2𝐾2

(𝐻1𝐾2 + 1)
2

𝑔5𝐻1 − 𝑔9 − 2𝑔8𝐻2 +
𝑔7

𝐻1𝐾2 + 1]
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I. For 𝑬𝟎(𝟎, 𝟎, 𝟎) 

𝐽0 = 𝐽(𝐸0) = [

𝑔1 0 0
0 𝑔3 − 𝑔6 0
0 0 𝑔7 − 𝑔9

].                                                                     

Its corresponding characteristic equation is: 𝜆3 + (𝑔6−𝑔3 − 𝑔1 − 𝑔7 + 𝑔9)𝜆
2 + [𝑔1(𝑔3 − 𝑔6) + (𝑔7 −

𝑔9)(𝑔1 + 𝑔3 − 𝑔6)]𝜆 − 𝑔1(𝑔3 − 𝑔6)(𝑔7 − 𝑔9) 

In which the eigenvalues are:  𝜆1 = 𝑔1 > 0, 𝜆2 = 𝑔3 − 𝑔6, 𝜆3 = 𝑔7 − 𝑔9 . Hence, 𝐸0 is unstable. Therefore, 

to make the point stable, control can be made over the conditions of the point to ensure that the environment 

remains without the presence of any living organism and without the presence of the disease.   

II. For 𝑬𝟏(𝟎, 𝑯̇𝟏, 𝟎) , where  𝑯̇𝟏 =
𝒈𝟑−𝒈𝟔

𝒈𝟒
, we have: 

𝐽1 = 𝐽(𝐸1) =

[
 
 
 
 
−𝑔2𝐻̇1 0 0

𝑔2𝐻̇1 𝑔3 − 𝑔6 − 2𝑔4𝐻̇1 −𝑔5𝐻̇1 − 𝑔3𝐻̇1𝑘1

0 0 𝑔5𝐻̇1 − 𝑔9 +
𝑔7

𝐻̇1𝑘2 + 1]
 
 
 
 

.                                  

The characteristic equation is given by :  𝜆3 + 𝛼1𝜆
2 + 𝛼2𝜆 + 𝛼3, where 

𝛼1 = [[𝑔2 + 2𝑔4 + 𝑔5]𝐻̇1 + 𝑔6 + 𝑔9 − 𝑔3 −
𝑔7

𝐻̇1𝑘2+1
], 

𝛼2 = (𝑔3 − 𝑔6 − [𝑔2 + 2𝑔4]𝐻̇1)(1 + 𝑔5𝐻̇1 +
𝑔7

𝐻̇1𝑘2+1
− 𝑔9), and 

𝛼3 = 𝑔2𝐻̇1(𝑔3 − 𝑔6 − 2𝑔4𝐻̇1)(𝑔9 − 𝑔5𝐻̇1 −
𝑔7

𝐻̇1𝑘2+1
). 

The eigenvalues are:  𝜆1 =
𝑔7+𝑔5𝐻̇1(1+𝐻̇1𝑘2)−𝑔9(1+𝐻̇1𝑘2)

𝐻̇1𝑘2+1
, 𝜆2 = 𝑔1 − 𝑔2𝐻̇1 , and 

 𝜆3 = 𝑔3 − 𝑔6 − 2𝑔4𝐻̇1. So the equilibrium point is asymptotically stable if the following conditions hold 

 
𝑔7+𝑔5𝐻̇1(1+𝐻̇1𝑘2)

𝐻̇1𝑘2+1
< 𝑔9, 𝑔1 < 𝑔2𝐻̇1, and 𝑔3 < 𝑔6 + 2𝑔4𝐻̇1. 

III. For 𝑬𝟐(𝟎, 𝟎, 𝑯̈𝟐), where 𝑯̈𝟐 =
𝒈𝟕−𝒈𝟗

𝒈𝟖
 we have: 

𝐽2 = 𝐽(𝐸2) =

[
 
 
 
𝑔1 0 0

0
𝑔3

𝐻̈2𝐾1 + 1
− 𝑔5𝐻̈2 − 𝑔6 0

0 (𝑔5 − 𝑔7𝐾1)𝐻̈2 𝑔7 − 𝑔9 − 2𝑔8𝐻̈2]
 
 
 

,              

The characteristic equation is given by :  𝜆3 + 𝛽1𝜆
2 + 𝛽2𝜆 + 𝛽3 , where 

𝛽1 = 𝑔7 − 𝑔9 − 2𝑔8𝐻̈2 − 𝑔1 +
((1+𝐻̈2𝐾1)[𝑔6+𝑔5𝐻̈2]−𝑔3)

𝐻̈2𝐾1+1
 , 

𝛽2 = [𝑔9 + 2𝑔8𝐻̈2−𝑔7 − 𝑔1][
((1+𝐻̈2𝐾1)[𝑔6+𝑔5𝐻̈2]−𝑔3)

𝐻̈2𝐾1+1
− 1], and 
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𝛽3 =
𝑔1(𝑔9+2𝑔8𝐻̈2−𝑔7)((1+𝐻̈2𝐾1)[𝑔6+𝑔5𝐻̈2]−𝑔3)

𝐻̈2𝐾1+1
. 

Therefore, 𝜆1 = 𝑔1 > 0, 𝜆2 =
(𝑔3−(1+𝐻̈2𝐾1)[𝑔6+𝑔5𝐻̈2])

𝐻̈2𝐾1+1
, and  𝜆3 = 𝑔7 − 𝑔9 − 2𝑔8𝐻̈2. 

So, 𝐸2 is unstable. However, to make the point asymptotically stable, we have to control the conditions of the 

point to ensure that the human remains only in an environment free of parasites that cause the disease and free 

from the first host that transmits the disease.   

IV. For 𝑬𝟑(𝑷̂, 𝑯̂𝟏, 𝟎), we have   

𝐽3 = 𝐽(𝐸3) =

[
 
 
 
 
 𝑔2𝐻̂1 −

𝑔1𝑃̂

𝐾1(𝐾1 − 1)
−𝑔2𝑃̂ 0

𝑔2𝐻̂1 𝑔3 − 𝑔6 − 2𝑔4𝐻̂1 + 𝑔2𝑃̂ −𝐻̂1(𝑔3𝐾1 + 𝑔5)

0 0
𝑔5𝐻̂1 − 𝑔9 + 𝑔7

𝐻̂1𝐾2 + 1 ]
 
 
 
 
 

 , 

The characteristic equation is given by :  𝜆3 + 𝛾1𝜆
2 + 𝛾2𝜆 + 𝛾3 = 0, where 

𝛾1 = (𝑔6 − 𝑔3 − 𝑔1 + 𝑔2[𝐻̂1 − 𝑃̂] + 2𝑔4) (
2𝑔1𝑃̂

𝐾1
) −

𝑔5𝐻̂1(𝐻̂1𝐾2+1)+𝑔7−𝑔9(𝐻̂1𝐾2+1)

𝐻̂1𝑘2+1
, 

𝛾2 = [𝑔1(𝑔3 − 𝑔6 − 2𝑔4𝐻̂1) + 𝑔2𝐻̂1(𝑔6 − 𝑔3 + 2𝑔4𝐻̂1)]
1

𝐾1
(𝑔1𝑃̂(2𝑔6 − 2𝑔3 + 𝑔2(1 − 2𝑃̂) +

4𝑔4𝐻̂1)) −
1

𝐾1(𝐻̂1𝐾2+1)
(𝑔7 + 𝑔5𝐻̂1𝐾2(1 + 𝐻̂1) − 𝑔9)(𝐾1[𝑔6−𝑔3 − 𝑔1 + 2𝑔4𝐻̂1 + 𝑔2(𝐻̂1 − 𝑃̂)] − 2𝑔1𝑃̂) ,  

and 𝛾3 =
1

𝐾1(𝐻̂1𝐾2+1)
(𝑔9(𝐻̂1𝐾2 + 1) − 𝑔7 − 𝑔5𝐻̂1(1 + 𝐻̂1𝐾2)) (𝑔1𝐾1[𝑔3 − 𝑔6 − 2𝑔4𝐻̂1 + 𝑔2𝑃̂] +

2𝑔2𝑃̂[𝑔6 − 𝑔3 + 2𝑔4𝐻̂1 + 𝑔2𝑃̂] + 𝑔2𝐻̂1𝐾1[𝑔6 − 𝑔3 + 2𝑔4𝐻̂1]). 

By Routh-Hurwitz principle [25] the roots of the characteristic equation should have negative real parts if and 

only if 𝛾
1
> 0,𝛾

3
> 0, and ∆= 𝛾

4
− 𝛾

3
> 0, where 𝛾

4
= 𝛾

1
𝛾
2
 . Which are satisfied : 

𝑔7

(𝐻̂1𝐾2 + 1)
+ 𝑔5𝐻̂1 < 𝑔9, 𝑔1 + 𝑔3 + 𝑔2𝑃̂ < 𝑔6 + (𝑔2 + 2𝑔4)𝐻̂1, 𝑐 < 2𝑔2𝑃̂, and 𝑐1 > 𝑐2.     

Where: 𝑐 = (𝑐1 − 𝑐2)
1
2⁄  

𝑐1 = [𝐾1
2(𝑔1[𝑔1 + 4𝑔4𝐻̂1 + 2𝑔6] + 𝑔2(𝑃̂ + 𝐻̂1)(𝑔2 + 2𝑔3) + 4𝑔4𝐻̂1(𝑔4𝐻̂1 + 𝑔6) + 𝑔3

2 +

𝑔6
2) + 4𝑃̂𝑔1(𝑃̂[𝑔1 + 𝑔2𝐾1] + 𝐾1[𝑔2𝐻̂1 + 𝑔3])], and 

 𝑐2 = [2𝐾1
2 (𝑔1[𝑔2(𝑃̂ + 𝐻̂1) + 𝑔3] + 𝑔2 (𝐻̂1[𝑃̂ + 2𝑔4(1 + 𝑃̂)] + 𝑔6(𝑃̂ + 𝐻̂1) + 𝑔3(2𝑔4𝐻̂1 +

𝑔6))) + 4𝑔1𝑘1𝑃̂(𝑔1 + 2𝑔4𝐻̂1 + 𝑔6)]. 

So, 𝐸3 is asymptotically stable. 

V. For 𝑬𝟒(𝑷⃛, 𝟎, 𝑯⃛𝟐), we have 
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𝐽4 = 𝐽(𝐸4) =

[
 
 
 
 
 
𝑔1𝑃

1 − 𝐾1
−𝑔2𝑃 0

0 𝑔2𝑃 − 𝑔5𝐻2 − 𝑔6 +
𝑔3

1 + 𝐾2𝐻2 
−𝑔5𝐻2

0 (𝑔5 − 𝑔7𝐾2)𝐻⃛2 𝑔7 − (𝑔9 + 2𝑔8𝐻2)]
 
 
 
 
 

 ,         

The characteristic equation is:  𝜆3 + 𝜎1𝜆
2 + 𝜎2𝜆 + 𝜎3 = 0, where  

𝜎1 = (
𝑔9−𝑔7+2𝑔8𝐻⃛2

𝐻⃛2𝐾1+1
 −

𝑔1𝐾1−2𝑔1𝑃

𝐾1(𝐻⃛2𝐾1+1)
 ) (𝐻2𝐾1 + 1) +

1

(𝐻⃛2𝐾1+1)
(𝑔6 − 𝑔3 + 𝑔5𝐻2 − 𝑔2𝑃 + 𝑔6𝐻2𝐾1 + 𝑔5𝐻2

2𝐾1 −

𝑔2𝐻2𝐾1𝑃), 

𝜎2 = (
(𝑔9−𝑔7+2𝑔8𝐻⃛2)

𝐻⃛2𝐾1+1
−
𝑔1𝐾1−2𝑔1𝑃 

𝐻⃛2𝐾1+1
𝑔6 − 𝑔3 + 𝑔5𝐻2 − 𝑔2𝑃 + 𝑔6𝐻2𝐾1 + 𝑔5𝐻2

2𝐾1 −

𝑔2𝐻2𝐾1𝑃)(−
(𝑔1𝐾1−2𝑔1𝑃)(𝑔9−𝑔7+2𝑔8𝐻⃛2

𝐾1
, and 

𝜎3 = −
1

𝐾1(𝐻⃛2𝐾1+1)
(𝑔1𝐾1 − 2𝑔1𝑃)(𝑔9 − 𝑔7 + 2𝑔8𝐻2)(𝑔6 − 𝑔3 + 𝑔5𝐻2 − 𝑔2𝑃 + 𝑔6𝐻2𝐾1 +

𝑔5𝐻2
2𝐾1 − 𝑔2𝐻2𝐾1𝑃). 

By Routh-Hurwitz principle the roots of the characteristic equation should have negative real parts if and only 

if 𝜎1 > 0, 𝜎3 > 0, and ∆= 𝜎4 − 𝜎3 > 0 , where 𝜎4 = 𝜎1𝜎2  . where the eigen values are: λ1 =

𝑔1

𝐾1
(𝐾1 − 2𝑃),λ2  = 𝑔7 −  𝑔9  − 2 𝑔8𝐻̅2, and 

λ3  =   
𝑔3+𝑔2𝑃(𝐻⃛2𝐾1+1)− 𝐻⃛2 [ 𝑔5(𝐻⃛2𝐾1+1)+ 𝑔6𝐾1]   

(𝐻⃛2𝐾1+1)
.  

So, 𝐸4 is asymptotically stable if and only if  

𝐾1 < 2𝑃, 𝑔7 <  𝑔9 + 2 𝑔8𝐻2, and 𝑔3 + 𝑔2𝑃(𝐻2𝐾1 + 1) <  𝐻̅2 [ 𝑔5(𝐻2𝐾1 + 1) + 𝑔6𝐾1].  

 VI. For 𝑬𝟓(𝑷
∗, 𝑯𝟏

∗ , 𝑯𝟐
∗), we have 

𝐽5 = 𝐽(𝐸5) = [
a11 𝑎12 0
𝑎21 𝑎22 𝑎23
0 𝑎32 𝑎33

] , where 

𝑎11 = 𝑔2𝐻1
∗ −

𝑔1𝑃
∗

𝐾1−1
 , 𝑎12 = −𝑔2𝑃

∗, 𝑎21 = 𝑔2𝐻1
∗,   𝑎22 = 𝑔2𝑃

∗ − 2𝑔4𝐻1
∗ − 𝑔5𝐻2

∗ − 𝑔6 +
𝑔3

𝐻2
∗𝐾1+1

 ,

𝑎23 = −𝑔5𝐻2
∗ −

𝑔3𝐻1
∗𝑘1

(𝐻2
∗𝐾1+1)2

 , 𝑎32 = 𝑔5𝐻2
∗ −

𝑔7𝐻2
∗𝐾2

(𝐻1
∗𝐾2+1)2

 , and 𝑎33 = 𝑔5𝐻1
∗ − 𝑔9 − 2𝑔8𝐻2

∗ +
𝑔7

𝐻1
∗𝐾2+1

 . 

The characteristic equation is:  𝜆3 + 𝒥1𝜆
2 + 𝒥2𝜆 + 𝒥3, where 

𝒥1 = −(𝑎11 + 𝑎22 + 𝑎33), 𝒥2 = 𝑎11(𝑎22 + 𝑎33) + 𝑎33(𝑎22 − 𝑎12𝑎21) − 𝑎23𝑎32, and 

𝒥3 = 𝑎12𝑎21𝑎33 − 𝑎11(𝑎22𝑎33 − 𝑎23𝑎32). 

By Routh- Hurwitz the characteristic equation should have negative real parts if and only if: 𝒥1 >
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0, 𝒥3 > 0, and   𝒥1𝒥2 − 𝒥3 > 0 . Hence, 𝐸5 is asymptotically stable if the following conditions 

are held: 

2𝑃∗ > 𝐾1, 𝑔2𝑃
∗ +

𝑔3

𝐻2
∗𝐾1+1

 < 2𝑔4𝐻1
∗ + 𝑔5𝐻2

∗ + 𝑔6, 𝑔5𝐻1
∗ +

𝑔7

𝐻1
∗𝐾2+1

 < 𝑔9 + 2𝑔8𝐻2
∗, and 

𝑔5𝐻1
∗(𝐻1

∗𝐾2 + 2) > 𝑔7. 

 

5. THE GLOBAL STABILITY ANALYSIS  

In this section, we discuss the global stability analysis of the epidemiological model, which is key 

to understanding the resilience and behavior of epidemiological systems in the long term subject 

to different environmental conditions. Local and global analysis approaches that complement each 

other are: global stability provides the most integrated vision and reveals system dynamics over 

the entire phase space, and local stability substantiates the behavior of the system in the vicinity 

of equilibrium points. The goal of this section is to find out whether the previously obtained 

equilibrium states are global. 

𝑆𝑖
°(𝑃, 𝐻1, 𝐻2) = (𝑃 − 𝑃° − 𝑃° 𝑙𝑛

𝑍1

𝑃°
) + (𝐻1 − 𝐻1

° − 𝐻1
° 𝑙𝑛

𝐻1

𝐻1
°) + (𝐻2 − 𝐻2

° − 𝐻2
° 𝑙𝑛

𝐻2

𝐻2
°).  (17)  

Equation (17) for 𝑖 = 1,2,3,4 [5] is used with the Lyapunov method to study the global stability 

for all local asymptotically equilibrium points.  

Theorem 5.1. Suppose that 𝐸1(0, 𝐻̇1, 0)  of the system (1) is a local asymptotically stable (LAS) 

in 𝑅+
3 . Then 𝐸1 is globally asymptotically stable (GAS) under the conditions (18)-(20): 

𝑔2𝐻̇1  +  
𝑔1𝑃

𝐾
   >  𝑔1,                                                                                                           (18)  

𝐻1 < 𝐻̇1,                                                                                                                               (19)  

𝑔5𝐻̇1 + 𝑔8𝐻2  +  𝑔9  >  𝑔7.                                                                                              (20)  

Proof: Let 𝑆1 =  𝑃 + ( 𝐻1 – 𝐻̇1 – 𝐻̇1 𝐿𝑛 
𝐻1

𝐻̇1
 ) + 𝐻2 .                                                (21) 

Now, equation (21) is driven with respect to time to get 

 
𝑑𝑆1

𝑑𝑇
= 

𝑑𝑃

𝑑𝑇
 +  

(𝐻1−𝐻̇1)

𝐻1
 .  
𝑑𝐻1

𝑑𝑇
  + 

𝑑𝐻2

𝑑𝑇
  . 

𝑑𝑆1

𝑑𝑇
= 

𝑔1 𝑃

𝐾
 (𝐾 − 𝑃) – 𝑔2𝑃𝐻̇1 + 

𝑔3

1+𝐾1 𝐻2
(𝐻1 − 𝐻̇1)– 𝑔4(𝐻1 − 𝐻̇1)

2 – 𝑔5𝐻̇1𝐻2 +

 
𝑔7𝐻2

1+ 𝐾2𝐻1
 – 𝑔8𝐻2

2 – 𝑔9𝐻2 . 

Therefore, 
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𝑑𝑆1
𝑑𝑇

≤  −𝑃 (𝑔2𝐻1  +  
𝑃𝑔1
𝐾
 – 𝑔1 ) –  𝑔4 (𝐻1 − 𝐻̇1)

2
 +  𝑔3 (𝐻1 − 𝐻̇1)–  

𝐻2 (𝑔5𝐻̇1  +  𝑔8𝐻2  +  𝑔9 –  𝑔7 ) < 0, if the conditions (18)-(20) , we get 
𝑑𝑆1

𝑑𝑇
< 0 . So,  𝐸1 is 

global.  

Theorem 5.2. Suppose that 𝐸3(𝑃̂, 𝐻̂1, 0)  of the system (1) is LAS in 𝑅+
3 . Then 𝐸3 is GAS 

under the following conditions: 

𝑃 >   𝑃̂,                                                                                                                                     (22) 

𝐻1 < 𝐻̂1,                                                                                                                                  (23) 

𝑔8𝐻2 + 𝑔9 > 𝑔7 –  𝑔5𝐻̂1.                                                                                                    (24)  

Proof: Let 𝑆2 = (𝑃 – 𝑃̂ – 𝑃 𝑙𝑛  
𝑃

𝑃̂
 ) + (𝐻1 – 𝐻̂1–𝐻1𝑙𝑛 

𝐻1

𝐻̂1
) + 𝐻2.                              (25)  

Now, equation (25) is driven with respect to time to get, 

𝑑𝑆2

𝑑𝑇
 =  

(𝑃−𝑃̂)

𝑃
 
𝑑𝑃

𝑑𝑇
 +  

(𝐻1−𝐻̂1)

𝐻1
 
𝑑𝐻1

𝑑𝑇
  +  

𝑑𝐻2

𝑑𝑇
 . 

𝑑𝑆2

𝑑𝑇
= − 

𝑔1

𝐾
 (𝑃 − 𝑃̂)– 𝑔2(𝑃 − 𝑃̂)(𝐻1 − 𝐻̂1) + 

𝑔3𝐾1𝐻2

1+𝐾1𝐻2
(𝐻1 − 𝐻̂1)– 𝑔5𝐻2(𝐻1 − 𝐻̂1) + 𝑔2(𝑃 −

𝑃̂)(𝐻1 − 𝐻̂1)– 𝑔4(𝐻1 − 𝐻̂1)
2
+

𝑔7𝐻2

1+𝐾2𝐻2
 – 𝑔8𝐻2

2 + 𝑔5𝐻1𝐻2 – 𝑔9𝐻2, 

𝑑𝑆2

𝑑𝑇
≤ −

𝑔1

𝐾
(𝑃 − 𝑃̂)

2
− 𝑔4(𝐻1 − 𝐻̂1)

2
+ 𝑔3𝐾1𝐻2(𝐻1 − 𝐻̂1) − 𝐻2[ 𝑔8𝐻2 + 𝑔9 – 𝑔7 – 𝑔5𝐻̂1]  

𝑑𝑆2

𝑑𝑇
< 0, under the conditions (22)-(24).  So, 𝐸3 is GAS. 

Theorem 5.2. Suppose that 𝐸4(𝑃, 0, 𝐻2) of the system (1) is LAS in 𝑅+
3 . Then 𝐸4 is GAS under 

the following conditions: 

𝑃 >  𝑃,                                                                                                                                     (26)  

𝐻2  >  𝐻2,                                                                                                                                 (27)  

𝑔4 𝐻1
  + 𝑔6  +  𝑔5 𝐻2   >   𝑔2 𝑃  − 𝑔3.                                                                            (28)      

Proof: Let 𝑆3  =  ( 𝑃 − 𝑃  − 𝑃  𝑙𝑛 
𝑃

𝑃
 ) + 𝐻1  +  (𝐻2  −  𝐻2  −  𝐻2 𝑙𝑛 

𝐻2

𝐻⃛2
 ).       (29) 

Now, equation (29) is driven with respect to time to get, 

𝑑𝑆3

𝑑𝑇
= 

(𝑃 − 𝑃)

𝑃
 
𝑑𝑃

𝑑𝑇
 + 

𝑑𝐻1

𝑑𝑇
 +  

(𝐻2 − 𝐻⃛2)

𝐻2
 
𝑑𝐻2

𝑑𝑇
 .  

𝑑𝑆3

𝑑𝑇
= − 

𝑔1

𝐾
 (𝑃 − 𝑃)

2
  + 𝑔2 𝑃 𝐻1

  +  
𝑔3 𝐻1

(1+𝐾1𝐻2)
 – 𝑔4 𝐻1

2  − 𝑔6𝐻1  −  𝑔8 (𝐻2  − 𝐻2)
2
 −

 𝑔5 𝐻1𝐻2  −   
(𝑔7𝐾2𝐻1)(𝐻2 − 𝐻⃛2) 

1+𝐾2𝐻1
 , 
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𝑑𝑆3

𝑑𝑇
 <  − 

𝑔1

𝐾
 (𝑃 − 𝑃)2   −  𝑔8 (𝐻2  − 𝐻2)

2  − 𝐻1 [𝑔4 𝐻1
  +  𝑔6  +  𝑔5 𝐻2  − 𝑔2 𝑃  − 𝑔3 ]  −

 𝑔7𝐾2𝐻1 (𝐻2  − 𝐻2).  

𝑑𝑆3

𝑑𝑇
 < 0, under the conditions (26)-(28). So, 𝐸4 is GAS. 

Theorem 5.3. Suppose that 𝐸5(𝑃
∗, 𝐻1

∗, 𝐻2
∗) of the system (1) is LAS in 𝑅+

3 . Then 𝐸5 is GAS 

under the following conditions: 

𝑃 > 𝑃∗ ,                                                                                                                                   (30) 

𝐻1 < 𝐻1
∗,                                                                                                                                  (31) 

𝐻2 > 𝐻2
∗,                                                                                                                                  (32) 

𝑔3𝐾1 + 𝑔7𝐾2 + 𝐾1𝐾2(𝑔3𝐾2 𝐻1𝐻1
∗ + 𝑔3(𝐻1 + 𝐻1

∗)  + 𝑔7𝐾1𝐾2 𝐻2𝐻2
∗ + 𝑔7(𝐻2 + 𝐻2

∗)

<  2 √𝑔4𝑔8.                                                                                                 (33) 

Proof: Let 

𝑆4 = (𝑃 − 𝑃∗ − 𝑃∗ 𝑙𝑛 
𝑃

𝑃∗
) + ( 𝐻1 − 𝐻1

∗ − 𝐻1 𝑙𝑛 
𝐻1
𝐻1
∗) + (𝐻2 –  𝐻2

∗ − 𝐻2
∗ 𝑙𝑛 

𝐻2
𝐻2
∗) . (34) 

Now, equation (34) is driven with respect to time to get, 

𝑑𝑆4

𝑑𝑇
= 

(𝑃−𝑃∗)

𝑃
  
𝑑𝑃

𝑑𝑇
 +  

( 𝐻1−𝐻1
∗)

𝐻1
 
𝑑𝐻1

𝑑𝑇
 +  

( 𝐻2−𝐻2
∗)

 𝐻2
 ∗

 
𝑑𝐻2

𝑑𝑇
 .     

𝑑𝑆4

𝑑𝑇
= − 

𝑔1

𝐾
 (𝑃 − 𝑃∗)2  −  𝑔4 (𝐻1 −𝐻1

∗)2 − 𝑔8 (𝐻2 − 𝐻2
∗)2 −

(𝐻1−𝐻1
∗)(𝐻2−𝐻2

∗)

(1+𝐾1𝐻2)(1+𝐾1𝐻2
∗)(1+𝐾2𝐻1)(1+𝐾2𝐻1

∗)
 [𝑔3𝐾1  +

 𝑔7𝐾2  +  𝐾1𝐾2 (𝑔3𝐾2 𝐻1𝐻1
∗ + 𝑔3(𝐻1 +𝐻1

∗) + 𝑔7𝐾1𝐾2 𝐻2𝐻2
∗ + 𝑔7 (𝐻2 +𝐻2

∗)], 

𝑑𝑆4

𝑑𝑇
< − 

𝑔1

𝐾
 (𝑃 − 𝑃∗)2 − 𝑔4 (𝐻1 − 𝐻1

∗)2 − 𝑔8 (𝐻2 − 𝐻2
∗)2 − (𝐻1 − 𝐻1

∗)(𝐻2 − 𝐻2
∗)[𝑔3𝐾1 +

𝑔7𝐾2 + 𝐾1𝐾2(𝑔3𝐾2 𝐻1𝐻1
∗ + 𝑔3(𝐻1 +𝐻1

∗) + 𝑔7𝐾1𝐾2 𝐻2𝐻2
∗ + 𝑔7(𝐻2 + 𝐻2

∗))],    

𝑑𝑆4

𝑑𝑇
< − 

𝑔1

𝐾
 (𝑃 − 𝑃∗)2 − (√𝑔4 (𝐻1 + 𝐻1

∗) − √𝑔8 (𝐻2 − 𝐻2
∗))2 .    

𝑑𝑆4

𝑑𝑇
 < 0, under the conditions (30)-(33). So, 𝐸5 is GAS.  

 

6. CONTROLLING ANALYZING 

 The stability of this system requires investigating the equilibrium points (where all rates of 

change become zero) and their local stability properties. This can be done using techniques like 

Jacobin analysis. 

In this specific scenario, we are interested in role stabilization, which refers to the situation where 
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one host species persists at a stable positive population level, while the other host population is 

driven to extinction. This can occur under certain conditions, depending on the relative values of 

the parameters like growth and rate of infection rate from the Parasite to the first Host and from 

the first Host to the second Host. 

In some cases, the coexistence of all three species might be desirable, Researchers and experts in 

controlling insects can create methods to minimize ecological disturbance in the control of two-

host, one-parasite systems; such methods were employed in [26-29]. 

To compare the unstable equilibrium points before and after control, Table 2 was created with Fig.2. 

 

Table 2: Comparison of (Host-Parasitoid) system between instability and stabilization for equilibrium 

points 𝛦0, 𝛦2 

Feature Unstable Host-Parasitoid System Stabilized Host-Parasitoid System 

Stability 

Analysis 

1-The set of equilibrium points 

𝛦0(0,0,0), 𝛦2(0,0, 𝐻̈2), where 𝐻̈2 =
𝑔7−𝑔9

𝑔8
  

2- the set of eigenvalues 

J𝛦0 = {𝜆1 = 0.01, 𝜆2 = 0.8900, 𝜆3 = 0.9800} 

J𝐸2 = {𝜆1 = 0.01, 𝜆2 = 0.8711, 𝜆3 = 0.9600} 

have unstable equilibrium points 

1-The set of equilibrium points 

𝛦0(0,0,0), 𝛦2(0,0, 𝐻̈2), where 𝐻̈2 =
𝑔7−𝑔9

𝑔8
  

2- the set of eigenvalues 

J𝛦0 = {𝜆1 = −0.019, 𝜆2 = −0.009, 𝜆3 = 0.01} 

J𝐸2 = {𝜆1 = −0.02, 𝜆2 = −0.01, 𝜆3 = 0.01} 

have stable equilibrium points 

Behavior Small deviations from the equilibrium point lead 

to larger and diverging population changes 

(unstable or positive output) 

Small deviations from the equilibrium point are 

dampened and populations return to the equilibrium 

range (stable or negative output) 

Cause uncontrolled to regulate population (Host-

parasitoid) changes around the equilibrium point 

Controlled feedback that counteracts deviations (Host-

parasitoid) from the equilibrium point. 

Consequences 1- Large and unexpected fluctuations in the 

numbers of hosts and parasites result from 

increased growth rates of parasites (𝑔1 > 0 ) 

representing the worm, which may lead to 

environmental disasters at the equilibrium 

point 𝐸0. 

2- Large and unexpected fluctuations in the 

numbers of hosts and parasites result from an 

increase in the growth rates of the parasites 

(𝑔1 > 0) and an increase in the growth rates of 

the first host (𝑔3 > 0 ), which represents the 

mouse, that may lead to environmental disasters 

at the equilibrium point 𝐸2. 

1-Relatively small and predictable fluctuations 

By controlling the growth rate of the parasite 𝑔1 

representing the worm at the equilibrium point 𝐸0. 

2-Relatively small and predictable fluctuations 

By controlling the growth rate of the parasite 𝑔1 

representing the worm and an increase in the growth rates 

of the first host 𝑔3, which represents the mouse at the 

equilibrium point 𝐸2. 
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Figure 2: (a) The for equilibrium point 𝐸2 before control (b) The for equilibrium point 𝐸2 after control. 

 

7. NUMERICAL SIMULATION 

In previous sections, the system (1) has been studied theoretically. Now, to prove the validity of 

(1), MATLAB code [25] has been used to consider the system numerically. The effectiveness of 

the parameters has been shown in the dynamics of the model by observing the parameters set given 

in (35) which achieves the positive equilibrium point stability conditions, as seen in Fig.3(a-e). 

The solution converges asymptotically to 𝐸5 = (2.79,2.21,98.05)  starting from three initial 

points (0.1,2,0.5) , (0.3,4,0.7) and (0.1,0.4,1), which proves that the system is valid. Where three 
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randomly initial points are selected and from all of them, the solution converges to one positive 

equilibrium point 𝐸5.   

   
𝑔1 = 𝑔7 = 1,𝐾 = 5, 𝑔2 = 0.2, 𝑔3 = 0.9,

𝑔4 = 𝑔5 = 𝐾1 = 𝑔8 = 𝑔6 = 𝐾2 = 0.01, 𝑔9 = 0.02
}.                                    (35) 

 

 

 

 

Figure 3: Time series (TS) of system's (1) (a) Trajectories of  𝑃, (b) Trajectories of  𝐻1, (c) Trajectories of 𝐻2, (d) 

TS of the system's (1) solution converges to 𝐸5 = (2.79,2.21,98.05), (e) the Phase portraits of the model (PPM). 
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To argue the impacts of the system's (1) parameters on the dynamic system behavior, one parameter 

is changed each time for data given in (35). 

Changing the parameter 𝑔1(the growth rate of the Parasite), it is seen that in the range of 0.1 ≤

𝑔1 ≤ 1, system's (1) path converges to 𝐸5 and this means that changing this parameter did not 

cause the extinction of this food chain, see Fig.4 (a,b), for the perfect value 𝑔1 = 0.5. 

 

 

Figure 4: (a) PPM , (b) TS of the system's (1) solution converges to 𝐸5 = (2.73,1.133,98.013)  for perfect value 

𝑔1 = 0.5. 

Changing the parameter 𝐾  (the carrying capacity of the Parasite), it is seen that in the range of 

2.7 ≤ 𝐾 ≤ 6,  the system's (1) path converges to 𝐸5, so this parameter was unaffected and did 

not cause the extinction of this food chain, see Fig. 5(a,b), for the perfect value 𝐾 = 3. 

 

Figure 5: (a) PPM, (b) TS of the system's (1) solution converges to E5 = (2.702,0.497,98.003)  perfect value 

𝐾 = 3. 

The effect of varying the parameter 𝑔2,  (the infection rate from the Parasite to the first Host) 

while keeping the other parameters as given in (35) has been studied. It is observed that the 

system's (1) solution converges to 𝐸4  for 0.01 ≤ 𝑔2, ≤ 0.1 , it means that changing this 

parameter causes an extinction for the rat as seen in Fig.6(a1-b1) for perfect value 𝑔2 = 0.05, 
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whereas, for 0.11 ≤ 𝑔2 ≤ 0.34, the solution converges to 𝐸5, so the parameter was ineffective 

as seen in Fig.6(a2-b2) for the perfect value 𝑔2  = 0.3. 

 

 

Figure 6: (a1) PPM, (b1) TS of the system's (1) solution converges to 𝐸4 = (5,0,98) for perfect value 𝑔2 = 0.05, 

(a2) PPM, (b2) TS of the system's (1) solution converges to 𝐸5 = (4.87,0.206,98) for perfect value 𝑔2 = 0.3. 

Changing the parameter 𝑔3(the growth rate of the first Host), it is seen that in the range of 0.01 ≤

𝑔3 ≤ 0.99, system's (1) path converges to 𝐸5 and this means that changing this parameter did 

not cause the extinction of this food chain, see Fig.7(a,b), for the perfect value 𝑔3 = 0.5. 

 

Figure 7: (a) PPM, (b)TS of the system's (1) solution converges to 𝐸5 = (3.751,1.249,98.015)  for perfect value 

𝑔3 = 0.5. 
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Changing the parameter 𝐾1(the fear rate of the first Host from the second Host), it is seen that in 

the range of 0.01 ≤ 𝐾1 ≤ 0.99, the system's (1) path converges to 𝐸5 which means changing 

this parameter did not cause the extinction of this food chain, see Fig.8(a,b), for the perfect value 

𝐾1 = 0.5. 

 

Figure 8: (a) PPM, (b)TS of the system's (1) solution converges to 𝐸5 = (4.887,0.133,98)  for perfect value 

𝐾1 = 0.5. 

Changing the parameter 𝑔4(the internal competition rate between the first Host individuals), it is 

seen that in the range of 0.01 ≤ 𝑔4 ≤ 0.9, system's (1) path converges to 𝐸5 and this means that 

changing this parameter did not cause the extinction of this food chain, see Fig.9(a,b), for the 

perfect value 𝑔4 = 0.3. 

 

Figure 9: (a) PPM, (b) TS of the system's (1) solution converges to 𝐸5 = (4.887,0.133,98) for perfect value 𝑔4 =

0.3. 

The effect of varying the parameter 𝑔5,  (the infection rate from the first Host to the second Host) 

has been studied. It is observed that the system's  (1) solution converges to 𝐸4  for 0.005 ≤

𝑔5 ≤ 0.014, so the parameter was effective as only the rats disappeared as seen in Fig.10(a1-b1) 

for perfect value 𝑔5 = 0.011, whereas for 0.015 ≤ 𝑔5 ≤ 0.9, the solution converges to 𝐸5, it 

means that changing this parameter keeps this food chain free from extinction as seen in Fig.10(a2-

b2) for perfect value 𝑔5 = 0.5 . 
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Figure 10: (a1) PPM, (b1) TS of the system's (1) solution converges to 𝐸4 = (0.999,0,34,723) for perfect value 

𝑔5 = 0.011, (a2) PPM, (b2) TS of the system's (1) solution converges to  𝐸5 = (3.267,1.733,98.203) for perfect 

value 𝑔5 = 0.5. 

The effect of varying only the parameter 𝑔6,  (the extermination rate of the first Host) has been 

studied. It is observed that the system's  (1) solution converges to 𝐸5 for 0.001 ≤ 𝑔6  ≤ 0.47, 

thus means that changing this parameter keeps this food chain free from extinction as seen in 

Fig.11(a1-b1) for perfect value 𝑔6 = 0.3, whereas for 0.48 ≤ 𝑔6 ≤ 0.99,  the solution converges 

to 𝐸4, so the parameter was effective as the warms and the humans remained as seen in Fig.11(a2-

b2) for perfect value 𝑔6 = 0.6. 
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Figure 11: (a1) PPM, (b1) TS of the system's (1) solution converges to 𝐸5 = (4.169,0.831,98,007) for perfect 

value 𝑔6 = 0.3, (a2) PPM, (b2) TS of the system's (1) solution converges to 𝐸4 = (5,0,98) for perfect value 𝑔6 =

0.6. 

 

Changing the parameter 𝑔7(the growth rate of the second Host), it is seen that in the range of 

0.7 ≤ 𝑔7 ≤ 1, system's (1) path converges to 𝐸5 which means changing this parameter did not 

cause the extinction of this food chain, see Fig.12(a,b), for the perfect value 𝑔7 = 0.8. 

 

Figure 12: (a) PPM, (b) TS of the system's (1) solution converges to 𝐸5 = (1.639,3.361,78.76)  for perfect value 

𝑔7 = 0.8. 

Changing the parameter 𝑔8(the internal competition rate between the second Host individuals), it 

is seen that in the range of 0.001 ≤ 𝑔8 ≤ 0.007,  system's (1) path converges to 𝐸4  and this 

means that changing this parameter causes the extinction of the first host, see Fig.13(a1-b1), for the 

perfect value 𝑔8 = 0.005, then in the range 0.008 ≤ 𝑔8 ≤ 0.018, system's (1) path converges 

to 𝐸5 and this means that changing this parameter did not cause the extinction of the food chain, 

see Fig.13(a2-b2), for the perfect value 𝑔8 = 0.017 . 
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Figure 13: (a1) PPM, (b1) TS of the system's (1) solution converges to 𝐸4 = (5,0,196) for perfect value 𝑔8 =

0.005,(a2) PPM, (b1) TS of the system's (1) solution converges to 𝐸5 = (0.812,4.188,65.446) for perfect value 

𝑔8 = 0.015. 

Changing the parameter 𝐾2(the fear rate of the second Host from the first Host), it is seen that in 

the range of 0.001 ≤ 𝐾2 ≤ 0.07, system's (1) path converges to 𝐸5 and this means that changing 

this parameter did not cause the extinction of this food chain, see Fig.14, for the perfect value 

𝐾2 = 0.03. 

 

 

Figure 14: (a) PPM, (b) TS of the system's (1) solution converges to 𝐸5 = (1.639,3.361,78.76) for perfect value 

𝐾2 = 0.03. 
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Changing the parameter 𝑔9 (the death rate of the second Host), it is seen that in the range of 

0.001 ≤ 𝑔9 ≤ 0.4,  system's (1) path converges to 𝐸5  and this means that changing this 

parameter did not cause the extinction of this food chain, see Fig.15(a,b), for the perfect value 

𝑔9 = 0.3. 

 

Figure 15: (a) PPM, (b) TS of the system's (1) solution converges to 𝐸5 = (1.107,3.893,70.146) for perfect value 

𝑔9 = 0.3. 

By changing the parameters 𝑔5, 𝑔7, 𝑔8, 𝑔9, 𝐾2 (the infection rate from the first Host to the second 

Host, the growth rate of the second Host, the internal competition rate between the second Host 

individuals, the death rate of the second Host, the fear rate of the second Host from the first Host 

respectively) in the range 0.0001 <  𝑔5 , 𝑔7  ≤ 0.002 , 3.5 < 𝑔8 ≤  10, 0.955 < 𝑔9 ≤ 0.9999,

0.5 < 𝐾2 ≤ 6, it is seen that the system's (1) path converges to 𝐸1 and this means that changing 

these parameters keeps only the first Host (rats) alive, see Fig.16(a,b), for the perfect values 𝑔5 =

𝑔7 = 0.001, 𝑔8 = 5, 𝑔9 = 0.99, 𝐾2 = 3. 

 

 

Figure 16: (a) PPM, (b) TS of the system's (1) solution converges to 𝐸1 = (0,65.888,0) for perfect values 𝑔5 =

𝑔7 = 0.001, 𝑔8 = 5, 𝑔9 = 0.99, 𝐾2 = 3. 
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By changing the parameters 𝑔1, 𝑔2, 𝑔5, 𝑔7, 𝑔8, 𝑔9, 𝐾 (the growth rate of the Parasite, infection rate 

from the Parasite to the first Host, the infection rate from the first Host to the second Host, growth 

rate the second Host, the internal competition rate between the second Host individuals, the death 

rate of the second Host, the Carrying capacity of the Parasite respectively) in the range 2 < 𝑔1 ≤

10, 0.01 < 𝑔2 ≤ 0.4,0.0001 < 𝑔5 ≤ 0.003 ,0.001 < 𝑔7 ≤ 0.03, 3.5 < 𝑔8 ≤  11, 0.955 < 𝑔9 ≤

0.9999, 0.1 < K ≤ 8 , it is seen that system's (1) path converges to 𝐸3  and this means that 

changing these parameters keep only the Parasite and first Host (rats) alive, see Fig.17(a,b), for the 

perfect values 𝑔1 = 4, 𝑔2 = 0.02, 𝑔5 = 0.002, 𝑔7 = 0.001, 𝑔8 = 𝐾 = 6, 𝑔9 = 0.99. 

 

 

Figure 17: (a) PPM, (b) TS of the system's (1) solution converges to 𝐸3 = (3.142,95.283,0) for perfect values 

𝑔1 = 4, 𝑔2 = 0.02, 𝑔5 = 0.002, 𝑔7 = 0.001, 𝑔8 = 𝐾 = 6, 𝑔9 = 0.99. 

So, the most effective parameters are shown in Table 3. Whereas, Table 4 shows the ineffective 

parameters that only converge to 𝐸5 . Whereas Table 5 shows the parameters in which the 

bifurcation appeared. Table 6 shows the effective parameters that only converge to 𝐸1. Table 7 

shows the effective parameters that only converge to 𝐸3. 

 

Table 3. The most effective parameters 

Parameter Converge Parameter Converge 

0.01 ≤ 𝑔2  ≤ 0.1 

0.11 ≤ 𝑔2 ≤ 0.34 

𝐸4 

𝐸5 

0.001 ≤ 𝑔6 ≤ 0.47 

0.48 ≤ 𝑔6 ≤ 0.99 

𝐸5 

𝐸4 

0.005 ≤ 𝑔5 ≤ 0.014 

0.015 ≤ 𝑔5 ≤ 0.9 

𝐸4 

𝐸5 

0.001 ≤ 𝑔8 ≤ 0.007 

0.008 ≤ 𝑔8 ≤ 0.018 

𝐸4 

𝐸5 
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Table 4. The ineffective parameters converge to 𝐸5 

Parameter Parameter 

0.1 ≤ 𝑔1 ≤ 1 0.7 ≤ 𝑔7 ≤ 1 

0.01 ≤ 𝑔4 ≤ 0.9 0.001 ≤ 𝐾2 ≤ 0.07 

0.01 ≤ 𝑔3 ≤ 0.99 0.001 ≤ 𝑔9 ≤ 0.4 

0.01 ≤ 𝐾1 ≤ 0.99 2.7 ≤ 𝐾 ≤ 6 

 

Table 5. The bifurcation parameters  

Parameter Converge Bifurcation 

0.1 ≤ 𝑔1 ≤ 1 𝐸5  

0.01 ≤ 𝑔2  ≤ 0.1 

0.1 < 𝑔2 ≤ 0.34 

𝐸4 

𝐸5 

𝑔2 = 0.1 

0.01 ≤ 𝑔3 ≤ 0.99 𝐸5  

0.01 ≤ 𝑔4 ≤ 0.9 𝐸5  

0.005 ≤ 𝑔5 ≤ 0.009 

0.009 < 𝑔5 ≤ 0.9 

𝐸4 

𝐸5 

𝑔5 = 0.009 

0.001 ≤ 𝑔6 ≤ 0.47 

0.47 < 𝑔6 ≤ 0.99 

𝐸5 

𝐸4 

𝑔6 = 0.47 

0.7 ≤ 𝑔7 ≤ 1 𝐸5  

0.001 ≤ 𝑔8 ≤ 0.007 

0.007 < 𝑔8 ≤ 0.018 

𝐸4 

𝐸5 

𝑔8 = 0.007 

0.001 ≤ 𝑔9 ≤ 0.4 𝐸5  

2.7 ≤ 𝐾 ≤ 6 𝐸5  

0.01 ≤ 𝐾1 ≤ 0.99 𝐸5  

0.001 ≤ 𝐾2 ≤ 0.07 𝐸5  

 

Table.6. The most effective parameters that together converge to 𝐸1  

Parameter Parameter 

0.0001 <  𝑔5  ≤ 0.002 0.955 < 𝑔9 ≤ 0.9999 

3.5 < 𝑔8 ≤  10  0.5 < 𝐾2 ≤ 6 

 

Table 7. The most effective parameters that together converge to 𝐸3 

Parameter Parameter 

0.01 < 𝑔2 ≤ 0.4 0.001 < 𝑔7 ≤ 0.03 

3.5 < 𝑔8 ≤  10 3.5 < 𝑔8 ≤  11 

0.0001 < 𝑔5 ≤ 0.003 0.955 < 𝑔9 ≤ 0.9999 

0.1 < 𝐾 ≤ 8  
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8. CONCLUSIONS AND DISCUSSION  

In this work, we investigate the dynamics of two hosts and one parasite mathematical model with 

the fear effect and SI disease. The parasite species reproduces by logistic growth law. There is a 

mutual fear between the first host and the second host. Infecting the second host with SI disease 

through transmission from the first host through contact or by leaving a mark on its surroundings 

according to the Lotka-Volterra function. The model has been studied theoretically and its validity 

has been studied numerically after the founding of the local and global equilibrium points. The 

effects of parameters on the mathematical model are studied. This research also explores a new 

model of disease control, where disease is combated by controlling unstable equilibrium points 

and making them stable. 

 Therefore, the model is solved numerically for the given set of parameters in (35) with three 

initial points. The following observations were obtained: 

1- The model has four global equilibrium points. 

2- The model has one kind of attraction in Int. 𝑅+
3  for the data given in (35). 

3- The solution of the model converges asymptotically to 𝐸5 = (2.79,2.21,98.05) for the data 

given in (35). 

4- The most effective parameters 𝑔2, 𝑔5, 𝑔6, 𝑔8. 

5- The ineffective parameters 𝑔1, 𝑔3, 𝑔7, 𝑔4, 𝑔9, 𝐾, 𝐾1, 𝐾2. 

6- We conclude that changing only the parameters 𝑔5, 𝑔7, 𝑔8, 𝑔9, 𝐾2, it is seen that the system's 

(1) path converges to 𝐸1. This means that changing these parameters keeps only the first Host 

(rats) alive. 

7- Changing only the parameters 𝑔1, 𝑔2, 𝑔5, 𝑔7, 𝑔8, 𝑔9, 𝐾 , it is seen that the system's (1) path 

converges to 𝐸3 and this means that changing these parameters keeps only the Parasite and 

first Host (rats) alive.  

8-Around the equilibrium point 𝛦0, 𝛦2, as indicated by Table 2, stabilization work.  
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