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Abstract. Mpox, a zoonotic disease similar to smallpox, has garnered increasing attention due to its sporadic

outbreaks across different regions. This study employs a comprehensive statistical approach, combining Poisson

regression, Generalized Linear Mixed Models (GLMM), and Bayesian Hierarchical Models (BHM) to analyze the

spread of Mpox. The analysis accounts for regional variations in transmission dynamics and provides probabilistic

estimates of key epidemiological parameters. Our findings reveal significant variability in the impact of covariates

such as population density, healthcare capacity, and mobility on Mpox transmission. The Bayesian Hierarchical

Model, in particular, offers a robust framework for understanding the complex transmission dynamics of the dis-

ease across diverse regions. These insights underscore the necessity of region-specific public health strategies to

effectively control and prevent Monkeypox outbreaks.
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1. INTRODUCTION

Monkeypox, a zoonotic disease caused by the Monkeypox virus, has emerged as a significant

public health concern due to its increasing prevalence and the potential for widespread outbreaks

beyond endemic regions, [1, 2, 3, 4]. The virus is closely related to the variola virus, which

causes smallpox, and shares many clinical features such as fever, rash, and lymphadenopathy,

[5, 6]. However, unlike smallpox, monkeypox continues to pose a threat even in the post-

smallpox eradication era, particularly in areas with limited healthcare infrastructure, [7, 8, 9].

Historically confined to certain regions of Central and West Africa, Mpox has recently been

reported in various non-endemic countries, triggering global concerns about its potential to

cause widespread outbreaks, [10]. The disease is primarily transmitted through direct contact

with the blood, bodily fluids, or skin lesions of infected animals or humans, [11]. Secondary

human-to-human transmission occurs through respiratory droplets and contaminated objects,

making it a highly contagious disease, [12].

Understanding the transmission dynamics of Mpox is crucial for developing effective public

health interventions, [13]. Traditional epidemiological models, such as the SIR (Susceptible-

Infectious-Recovered) model, have been widely used to estimate key parameters like the basic

reproduction number (R0) and to predict the course of infectious disease outbreaks, [14, 15].

However, these models often assume homogeneous mixing within populations, which may not

accurately reflect the complex and heterogeneous nature of real-world populations. Factors

such as regional variations in population density, healthcare access, and social behavior can

significantly influence disease transmission dynamics.

To address these limitations, this study employs a Bayesian Hierarchical Model (BHM) to

analyze the spread of Mpox across different regions. The BHM framework allows for the in-

corporation of regional heterogeneity and provides a probabilistic approach to estimating key

epidemiological parameters. By accounting for regional variations, this model offers a more

complex and detailed understanding of Mpox transmission dynamics and provides a robust

method for forecasting the potential spread of the disease. The findings of this study underscore

the importance of region-specific public health strategies to effectively control and prevent mon-

keypox outbreaks.
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The study of infectious disease dynamics has a rich history, with numerous models developed

to understand and predict the spread of diseases, [16, 17, 18]. The SIR (Susceptible-Infectious-

Recovered) model is one of the most foundational approaches in epidemiology, providing a

framework for estimating the basic reproduction number (R0) and understanding the progres-

sion of infectious diseases within a population, [19, 20]. However, the SIR model’s assumption

of homogeneous mixing has been critiqued for oversimplifying the complex social and environ-

mental factors that influence disease transmission, [21, 22].

Recent advances in epidemiological modeling have sought to address these limitations by

incorporating more realistic assumptions about population structure and behavior [23, 24, 25].

Bayesian Hierarchical Models (BHMs) have emerged as a powerful tool for modeling infectious

disease spread, particularly in contexts where regional heterogeneity plays a significant role,

[26]. Unlike traditional compartmental models, BHMs allow for the incorporation of multiple

levels of data hierarchy, enabling researchers to account for variations in disease transmission

across different regions or subpopulations, [27].

The application of BHMs in epidemiology has been well-documented, with successful im-

plementations in modeling the spread of diseases such as Ebola, COVID-19, and Zika virus,

[28, 29]. These models have provided valuable insights into the factors driving regional dif-

ferences in disease transmission and have highlighted the importance of tailoring public health

interventions to specific local contexts.

In the context of Mpox, the use of BHMs is particularly relevant given the disease’s sporadic

outbreaks and the significant variability in transmission dynamics across different regions. Stud-

ies have shown that factors such as population density, healthcare infrastructure, and mobility

patterns can greatly influence the spread of monkeypox, making it essential to adopt model-

ing approaches that can capture this complexity. This study builds on the existing literature

by applying a BHM to model the spread of monkeypox to provide more accurate estimates of

transmission dynamics and inform targeted public health responses.

2. DATA AND METHODOLOGY

2.1. Data Collection. Data for this study was gathered from multiple authoritative sources,

including the World Health Organization (WHO) and various national health agencies. The
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dataset comprises detailed records of confirmed monkeypox cases across different regions

over a defined period(From 1 st January 2024 to 23 Aug 2024, a total cases of Mpox have

been recorded from 13 African Union (AU) Member States (MS): Burundi, Cameroon, Cen-

tral Africa Republic, Congo, Côte d’Ivoire, Democratic Republic of Congo, Gabon, Liberia,

Kenya, Nigeria, Rwanda, South Africa and Uganda.). In addition to epidemiological data, we

incorporated demographic and socio-economic variables such as population density, healthcare

capacity, and human mobility patterns. These covariates are critical for understanding the fac-

tors driving regional variations in monkeypox transmission. A summary of the key variables

utilized in the analysis is provided in Table 1.

TABLE 1. Summary of Data variable description

Variable Description Source

Number of Cases Confirmed monkeypox cases by region and time WHO

Population Density Number of people per square kilometer National Census

Healthcare Capacity Number of hospital beds per 1000 people National Health Agency

Mobility Data Movement patterns within and between regions Mobile Data Provider

3. METHODOLOGY

3.1. Poisson Regression Model. The Poisson regression model is used for count data, assum-

ing that the response variable follows a Poisson distribution.

3.1.1. Model Specification. Let Yi be the count of monkeypox cases for observation i. The

Poisson regression model is given by:

Yi ∼ Poisson(λi)

where λi is the rate parameter for observation i, linked to the covariates via a log link function:

log(λi) = β0 +β1Xi1 +β2Xi2 + · · ·+βpXip

Where, Xi1,Xi2, . . . ,Xip are the covariates ( population density, healthcare capacity, mobility

index), and β0,β1, . . . ,βp are the coefficients to be estimated.
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3.1.2. Likelihood. The likelihood function for the Poisson model is:

L(β ;Y ) =
n

∏
i=1

λ
Yi
i e−λi

Yi!

Taking the log-likelihood:

logL(β ;Y ) =
n

∑
i=1

(Yi log(λi)−λi− log(Yi!))

Substituting λi = eβ0+∑
p
j=1 β jXi j :

logL(β ;Y ) =
n

∑
i=1

(
Yi

(
β0 +

p

∑
j=1

β jXi j

)
− eβ0+∑

p
j=1 β jXi j − log(Yi!)

)
Maximizing this log-likelihood gives the maximum likelihood estimates (MLE) of the coef-

ficients β .

3.2. Generalized Linear Mixed Model (GLMM). The GLMM extends the Poisson regres-

sion by incorporating random effects, accounting for variability across groups (e.g., different

countries).

3.2.1. Model Specification. Let Yi j be the count of monkeypox cases for observation i in group

j. The GLMM can be expressed as:

Yi j ∼ Poisson(λi j)

The rate λi j is linked to the covariates and random effects via:

log(λi j) = β0 +β1Xi j1 + · · ·+βpXi jp +u j

Where, u j is the random effect for group j, assumed to follow a normal distribution:

u j ∼N (0,σ2
u )

3.2.2. Likelihood. The likelihood for GLMM involves integrating out the random effects:

L(β ,σ2
u ;Y ) =

m

∏
j=1

∫  n j

∏
i=1

e−λi jλ
Yi j
i j

Yi j!

 1√
2πσ2

u
e
−

u2
j

2σ2u du j

Given the complexity of this integral, numerical methods or approximation techniques (e.g.,

Laplace approximation, Gauss-Hermite quadrature) are typically used to maximize the likeli-

hood and estimate the parameters β and σ2
u .
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3.3. Bayesian Hierarchical Model. The Bayesian Hierarchical Model is similar to GLMM

but uses a fully Bayesian approach to estimate parameters, incorporating prior distributions on

both the fixed and random effects.

3.3.1. Model Specification. Let Yi j be the count of monkeypox cases for observation i in group

j. The model is:

Yi j ∼ Poisson(λi j)

With:

log(λi j) = β0 +β1Xi j1 + · · ·+βpXi jp +u j

u j follows a normal distribution:

u j ∼N (0,σ2
u )

But now, we assign prior distributions to the parameters:

β0,β1, . . . ,βp ∼ Normal(0,σ2
β
)

σ
2
u ∼ Inverse-Gamma(a,b)

Where σ2
β

is the variance of the prior for the fixed effects, and a,b are hyperparameters for

the inverse-gamma prior on the variance of the random effects.

3.3.2. Posterior Distribution. The goal is to compute the posterior distribution of the param-

eters given the data:

p(β ,u,σ2
u | Y ) ∝ p(Y | β ,u) · p(β ) · p(u | σ2

u ) · p(σ2
u )

This posterior distribution is typically computed using Markov Chain Monte Carlo (MCMC)

methods like Gibbs sampling or Hamiltonian Monte Carlo (as implemented in MCMCglmm).

3.3.3. Inference. The posterior samples obtained from MCMC can be used to estimate the

posterior means, credible intervals, and make probabilistic statements about the parameters

(e.g., the probability that a parameter is positive).

3.4. Parameter Estimation and Model Diagnostics.

3.4.1. Parameter Estimation. In the context of the models described, parameter estimation

differs between the Poisson Regression, GLMM, and Bayesian Hierarchical Model.



SPREAD OF MPOX VIRAL DISEASE IN AFRICAN COUNTRIES 7

3.4.2. Poisson Regression. For the Poisson regression model, parameters β0,β1, . . . ,βp are

estimated using Maximum Likelihood Estimation (MLE). The MLE estimates are obtained by

maximizing the log-likelihood function:

β̂ = argmax
β

logL(β ;Y )

where

logL(β ;Y ) =
n

∑
i=1

(
Yi

(
β0 +

p

∑
j=1

β jXi j

)
− eβ0+∑

p
j=1 β jXi j − log(Yi!)

)

3.4.3. Generalized Linear Mixed Model (GLMM). In GLMM, parameter estimation involves

both fixed effects (β ) and random effects (u j). The estimation typically uses Restricted Maxi-

mum Likelihood (REML) or Maximum Likelihood (ML) methods, which maximize the likeli-

hood function by integrating out the random effects:

L(β ,σ2
u ;Y ) =

m

∏
j=1

∫  n j

∏
i=1

e−λi jλ
Yi j
i j

Yi j!

 1√
2πσ2

u
e
−

u2
j

2σ2u du j

Numerical techniques such as Laplace approximation or Gauss-Hermite quadrature are used

to approximate this integral.

3.4.4. Bayesian Hierarchical Model. In the Bayesian Hierarchical Model[30], parameter es-

timation involves deriving the posterior distribution of parameters given the observed data and

prior distributions:

p(β ,u,σ2
u | Y ) ∝ p(Y | β ,u) · p(β ) · p(u | σ2

u ) · p(σ2
u )

Markov Chain Monte Carlo (MCMC) methods such as Gibbs sampling or Hamiltonian

Monte Carlo are used to draw samples from the posterior distribution. The posterior means,

credible intervals, and other summary statistics are then computed from these samples.

3.5. Model Diagnostics. Model diagnostics are crucial for assessing the fit and validity of the

models. Different diagnostics apply depending on whether the model is a Poisson regression,

GLMM, or Bayesian Hierarchical Model.
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4. RESULTS

Parameter Estimate Std. Error z value Pr(> |z|) 2.5% 97.5%

(Intercept) 3.7015 0.1154 32.0664 1.295E-225 3.4758 3.9286

population density -0.0221 0.0007 -32.6921 2.023E-234 -0.0234 -0.0208

healthcare capacity -3.8782 0.0689 -56.3130 0.0000 -4.0187 -3.7484

mobility index 3.9620 0.0614 64.5319 0.0000 3.8416 4.0824
TABLE 2. Summary of Poisson regression model parameter estimates

4.1. Poisson Regreesion Model Summary. Table 2 presents the results from the Poisson re-

gression model, indicating the effects of covariates like population density, healthcare capacity,

and mobility index on the number of confirmed monkeypox cases. The intercept and mobil-

ity index have positive effects, indicating that as mobility increases, the number of cases also

increases. Population density has a negative effect, implying that higher population density

might be associated with fewer cases. Healthcare capacity also has a significant negative effect,

suggesting that better healthcare capacity might reduce the number of cases.

4.2. GLM Fixed Effects and Random Effects.

Effect Covariate post.mean l-95% CI u-95% CI eff.samp

Fixed Effects Intercept 3.573324 0.436228 7.012442 844.4457

Population Density -0.003545 -0.011929 0.003465 1000

Healthcare Capacity -2.770876 -5.181056 -0.729619 1000

Mobility Index 2.379011 0.012969 4.717297 897.2286

Random Effects Countries 0.019574 7.01E-17 1.29E-06 134.5301
TABLE 3. Summary of GLM MCMC results for Fixed and Random Effects

Table 3 provides estimates from the GLMM, showing both fixed effects (similar covariates as

in the Poisson model) and random effects (variance attributed to different countries). The fixed

effects indicate similar trends to the Poisson model, with significant effects from mobility index

and healthcare capacity. The random effects demonstrate variability among different countries,

which is captured by the model.
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4.3. Bayesian Hierachical.

Effect Covariate post.mean l-95% CI u-95% CI eff.samp pMCMC

Fixed Effects Intercept 3.561961 0.279791 6.98385 1000 0.036

Population Density -0.003736 -0.011177 0.004282 1000 0.302

Healthcare Capacity -2.718427 -5.141706 -0.687872 1000 0.022

Mobility Index 2.362036 -0.032897 4.566143 1000 0.052

Random Effects Countries (Mean) 2.183151

Countries (SD) 3.145294

Countries (2.5% CI) 0.001415

Countries (97.5% CI) 10.19093

Variance Components Units (Mean) 2.486032

Units (SD) 3.145251

Units (2.5% CI) 0.00154

Units (97.5% CI) 9.357558
TABLE 4. Summary of Bayaesian Hierarchical MCMC results for Fixed Effects,

Random Effects, and Variance Components

Table 4 presents the Bayesian Hierarchical Model results, highlighting the mean, credible

intervals, and effective sample size for fixed effects, random effects, and variance components.

The BHM results align with the GLMM, capturing the variability between countries while also

providing a probabilistic interpretation of the parameter estimates.
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FIGURE 1. Effects of covariates on Predicted MonkeyPox cases.

4.4. Graphical Representation. Figure 1 visualizes the relationship between the covariates

(population density, healthcare capacity, and mobility index) and the predicted number of mon-

keypox cases. The figure shows how each covariate individually influences the predicted num-

ber of cases, with the mobility index having a positive association, while population density and

healthcare capacity have mixed effects.

FIGURE 2. Trace and density plot for the covariates on MonkeyPox cases prediction
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Figure 2 presents the trace and density plots from the MCMC sampling for the covariates,

showing the stability and distribution of the estimates. It provides a diagnostic check on the

MCMC convergence, ensuring that the sampling is sufficient to represent the posterior distribu-

tion.

FIGURE 3. Posterior Distribution of Model parameters

Figure 3 shows the posterior distributions of the model parameters, emphasizing the un-

certainty in the parameter estimates. It highlights the variability in the parameter estimates,

especially for the random effects, and helps to assess the credibility of the model predictions,

[31, 30].

5. DISCUSSION

The study utilized a combination of Poisson regression, GLMM, and Bayesian Hierarchical

Modeling to analyze the spread of monkeypox across different regions. The Poisson regression

provided initial insights into the relationship between key covariates and the number of con-

firmed cases. The GLMM added an additional layer by incorporating random effects, allowing

for variability between countries to be considered. Finally, the Bayesian Hierarchical Model

provided a comprehensive probabilistic framework, capturing both fixed and random effects

while accounting for the uncertainty in the estimates.
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The results indicate significant variability in monkeypox transmission across regions, influ-

enced by factors such as mobility, healthcare capacity, and population density. The findings

underscore the need for region-specific public health interventions, as different areas may re-

spond differently to the same covariates. For instance, while increased mobility generally leads

to more cases, the effect of population density and healthcare capacity is more complex and

varies across regions.

The Bayesian Hierarchical Model proved particularly useful in this analysis, offering a nu-

anced understanding of the transmission dynamics and enabling more robust forecasts. The

MCMC diagnostics confirmed the reliability of the model, with trace plots indicating good

convergence and the effective sample size ensuring sufficient representation of the posterior

distribution.

6. CONCLUSION

This study demonstrates the utility of advanced statistical modeling techniques in under-

standing the spread of infectious diseases like monkeypox. By combining Poisson regression,

GLMM, and Bayesian Hierarchical Modeling, the analysis was able to capture both the fixed

effects of key covariates and the random effects associated with different regions. The find-

ings highlight the significant heterogeneity in monkeypox transmission, which has important

implications for public health strategies.

The Bayesian Hierarchical Model, in particular, provided a robust framework for dealing

with the complexity of disease transmission, offering insights that would not be apparent from

simpler models. The study underscores the importance of tailoring public health interventions

to specific regional contexts to effectively control and prevent monkeypox outbreaks.
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APPENDIX

APPENDIX A. STATISTICAL ANALYSIS

The appendix includes the full R code used for the statistical analysis, covering data prepa-

ration, model fitting, and visualization. The code provides a detailed roadmap for reproducing

the results and can be adapted for similar studies in other contexts. This transparency ensures

that the findings are reproducible and that the methodology can be further refined by other

researchers.

1 Install necessary packages

2 install.packages("ggplot2")

3 install.packages("dplyr")

4 install.packages("lme4")

5 install.packages("MCMCglmm")

6 install.packages("brms")

7 install.packages("Matrix", dependencies = TRUE)

8 install.packages("lme4", dependencies = TRUE)

9 install.packages("devtools")

10 install_github("Matrix", repo = "cran/Matrix")

11

12 # Load necessary libraries

13 library(ggplot2)

14 library(dplyr)

15 library(lme4)

16 library(MCMCglmm)

17 library(brms)

18 library(Matrix)

19 library(devtools)

20

21 # Load the data

22 # Load necessary libraries

23 library(readr) # For reading CSV files

24

25 # Load the data from a CSV file
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26 data <- read_csv("monkeypox_data.csv")

27

28 # View the first few rows of the data to verify

29 head(data)

30

31 # Fit a Poisson regression model

32 model <- glm(confirmed_cases ˜ population_density + healthcare_capacity +

mobility_index,

33 data = data, family = poisson())

34

35 # Summary of the model

36 summary(model)

37

38 # Predicting new cases based on the model

39 data$predicted_cases <- predict(model, type = "response")

40

41 # Extract coefficients

42 coefficients <- coef(model)

43 coefficients

44

45 # Confidence intervals for coefficients

46 confint(model)

47

48 # Plot the actual vs predicted cases

49 ggplot(data, aes(x = confirmed_cases, y = predicted_cases)) +

50 geom_point(color = "blue") +

51 geom_abline(slope = 1, intercept = 0, color = "red") +

52 labs(title = "Actual vs Predicted Monkeypox Cases",

53 x = "Actual Cases", y = "Predicted Cases")

54

55 # Plot effect of population density

56 ggplot(data, aes(x = population_density, y = predicted_cases)) +

57 geom_point() +

58 geom_smooth(method = "glm", method.args = list(family = "poisson"), se =

FALSE) +
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59 labs(title = "Effect of Population Density on Predicted Monkeypox Cases",

60 x = "Population Density", y = "Predicted Cases")

61

62

63 #Plot effect of Healthcare Capacity on Predicted Cases

64 ggplot(data, aes(x = healthcare_capacity, y = predicted_cases)) +

65 geom_point(color = "blue") +

66 geom_smooth(method = "glm", method.args = list(family = "poisson"), se =

FALSE, color = "red") +

67 labs(title = "Effect of Healthcare Capacity on Predicted Monkeypox

Cases",

68 x = "Healthcare Capacity (Beds per 1000)", y = "Predicted Cases")

69

70 # Plot effect of mobility on predicted cases

71 ggplot(data, aes(x = mobility_index, y = predicted_cases)) +

72 geom_point(color = "green") +

73 geom_smooth(method = "glm", method.args = list(family = "poisson"), se =

FALSE, color = "purple") +

74 labs(title = "Effect of Mobility Index on Predicted Monkeypox Cases",

75 x = "Mobility Index", y = "Predicted Cases")

76

77 # Arrange the plots into a 2x2 grid layout

78 grid.arrange(p1, p2, p3, p4, nrow = 2, ncol = 2)

79

80 # Fit a GLMM model

81 glmm_model <- MCMCglmm(confirmed_cases ˜ population_density +

healthcare_capacity + mobility_index,

82 random = ˜ countries, family = "poisson", data =

data)

83

84 # Summary of the model

85 summary(glmm_model)
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