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Abstract: Maternal and neonatal mortality rates in South Sulawesi remain higher than the national average across all 

provinces in Indonesia. This study aims to identify significant variables for each district/city in South Sulawesi, 

Indonesia. The data used was overdispersed in the two cases which correlated and distributed Poisson. The Gaussian 

Poisson Inverse Bivariate Regression can be used to solve the problem but cannot solve the problem of spatial 

heterogeneity. Spatial heterogeneity causes bias in the interpretation of results. The method to overcome this problem 

is the Geographycally Weighted Bivariate Poisson Inverse Gaussian method. The Berndt-Hall-Hall-Hausman 

algorithm is used in the parameter estimation of the GWBPIGR model. The Kernel functions used are Adaptive 

Bisquare, Adaptive Tricube, and Fixed Gaussian. Generalized Cross Validation (GCV) is used to select the optimal 

bandwidth. The results of this study show that  the Akaike Information Criterion (AIC) value in the GWBPIGR 

model with the Berndt-Hall-Hall-Hausman algorithm is better than that of BPIGR with the same algorithm.   

Keywords: GWBPIGR; overdispersion; heterogeneity; Berndt-Hall-Hall-Hausman algorithm; maternal death; 

neonatal death. 
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1. INTRODUCTION 

One technique for examining the connection between response variables is poisson regression and 

predictor variables distributed by Poisson. Poisson regression requires the assumption that the 

mean and variance of the response variables must be the same (equidispersion). However, in reality, 

there is often a violation of assumptions, namely variance greater than the mean (overdispersion) 

[1-2].  

Combining the poisson distribution with multiple discrete and continuous distributions (mixed 

Poisson distribution) is one way to get around the overdispersion issue. The Poisson Inverse 

Gaussian (PIG) distribution is one of the mixed Poisson distributions that is frequently employed 

in studies to address overdispersion situations. Poisson and inverse Gaussian distributions are 

combined to create PIG. PIG is used because it is more sensitive to overcome overdispersion than 

the Binomial Negative method [3-5].   

In the PIG method, there is a stage of parameter stimulation using  the Maximum Likelihood 

Estimation (MLE) technique which functions to maximize the likelihood function. In this process, 

not everything can be solved by analytical means. If implicit and non-linear forms are obtained, it 

can be solved using  the Berndt-Hall-Hall-Hausman (BerndHallMan) algorithm. BerndHallMan's 

algorithm  is a development of Newton Raphson'  s algorithm.Newton Raphson's algorithm has 

a Hessian matrix whose content is second derived so that the iteration is more complex. Therefore, 

it was developed into the BerndHallMan algorithm which requires only the first derivative in a 

simpler Hessian matrix [6]. Therefore, it was developed into a BerndHallMan algorithm that 

requires only the first derivative of its Hessian matrix. One study found BerndHallMan's algorithm 

to be better than Newton Raphson's algorithm [7]. 

In fact, there are response variables that are interrelated with other response variables. The 

application of two regressions to the number of paired co-events results in inconsistent and 

inefficient estimators. So it is better to estimate together compared to separately [8]. One example 

of data fragmentation in the health environment is the case of maternal mortality and neonatal 

death. Maternal mortality and neonatal death are two things that are interconnected because 
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nutritional status and maternal health are closely related to the health of the baby in the womb. The 

2019 Indonesia Health Demographic Survey indicates that the maternal mortality rate was 359 per 

100,000 live births, while the infant mortality rate was 34 per 1,000 live births, showing that these 

figures are still well below the MDGs target. Half of the infant deaths occurred during the neonatal 

period. The age of babies 0-28 days (neonatal period) is the most spanning period to be affected 

by various health problems. 80% occur in the first six days of life [9]. Based on this, the results of 

data exploration show that  the cases are correlated with each other and overdispersed, so the 

analysis used is called Poisson Inverse Gaussian Bivariate Regression (BPIG) [10]. One of the 

researchers found that the BPIGR method for maternal mortality and neonatal mortality cases in 

South Sulawesi produced a model that only represented all districts/cities in South Sulawesi and 

did not explain the influence of predictor variables in each district/city in South Sulawesi [11]. 

Thus, the previous method was developed into a method that can overcome the spatial effects that 

occur on the data, namely the Geographically Weighted Bivarite Poisson Inverse Regression 

(GWBPIGR) method. Based on this background, the author will examine the application  of the 

Geographycally Weighted Bivariate Poisson Inverse Gaussian Regression (GWBPIGR) method 

on data that is overdispersed using the BerndHallMan algorithm in maternal and neonatal mortality 

cases in South Sulawesi in 2021. 

2. MATERIALS AND METHODS 

Spatial Heterogeneity Test 

The spatial heterogeneity test aims to find out whether the observation location has different 

characteristics or not. Spatial heterogeneity can be identified using the Breusch Pagan test with the 

following hypotheses: 

H0 ∶ σ2(ui, vi) = σ2 (No spatial heterogeneity occurs)  

H1 ∶ σ2(ui, vi) ≠ σ2 (Spatial heterogeneity occurs) 

Test statistics  

BP =
1

2
𝐟𝐓𝐙(𝐙𝐓𝐙)−𝟏𝐙𝐓  

With vector 𝐟 Sized n × 1  
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𝐟 = [(
e1

2

σ2
) − 1, … , (

en
2

σ2
) − 1]

T

 

To 

𝐙 ∶  Dimensional matrix n x (p + 1) which contains independent variables that have been 

standardized for each observation 

σ2: residual variety (ei) from Poisson's regression model 

With rejection criteria, rejected H0 if the value BP > χ(α;p)
2  or p-value < α [12]. 

Overdispersion Test 

In the Poisson regression model, there are a number of assumptions that must be met. One of them 

is the assumption of the same mean and variance called equidispersion. However, in statistical data 

analysis, data conditions are often found with variances sometimes greater than the mean 

(overdispersion). Overdispersion can lead to inefficient estimation of the parameters obtained. 

Incorrect use of Poisson's regression model (which is overdispersed) can be fatal in model 

interpretation, especially in estimating model parameters because it can estimate too low a standard 

error and can convey incorrect conclusions about the significance or not. Overdispersion can be 

written as Var(Y)>E(Y). In detecting cases of overexpression in the data, it can be seen that the 

statistical value of deviation and Pearson chi-square divided by the degree of freedom. If both 

values are more than 1, there is an overdispersion in the data [13]. 

Poisson Inverse Gaussian Regression 

One solution to model hash data is to use Poisson mixed distributions. One of the distributions of 

mixed Poisson is the distribution  of Poisson Inverse Gaussian (PIG). The PIG distribution is a 

combination of the Poisson and Inverse Gaussian distributions. Suppose Y is a response variable 

distributed  by the Gaussian Poisson Inverse, then the opportunity density function for Y is [14] 

P(Y = y|μ, τ) = ∫ f(y|μ, v)g(v, τ)
∞

0

dv 

with  

 f(y|μ, v) =
e−vμ(μv)y

y!
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g(v, τ)      = (2πv3)−
1

2e−(v−1)2/2τv  

v                = Random effects distributed  in  the Gaussian Inverse 

Based on the parameters, the PIG distribution consists of two parameters, namely the average 

parameter (μ) and dispersion parameters (τ). If Y is a PIG distributed response variable, then the 

PIG distribution can be notated with Y~PIG(μ, τ) . So the opportunity density function can be 

written in the following equation [15]: 

P(y| μ, τ) = e
1
τKs(z) (

2

πτ
)

1
2

(1 + 2τμ)−
(y−

1
2

)

2
μy

y !
 ; y = 0,1,2, … 

With  

z        = √
1

 τ2 +
2μ

τ
  

s        = y −
1

2
  

Ks(z) = K
y−

1

2

√
1

 τ2 +
2μ

τ
 as a third type of modified Bessel function.  

To 

y       = Response variables  

τ        = Dispersion Parameters 

μ       = Average. 

Bivariate Poisson Inverse Gaussian Regression 

If there are two random variables Y1 and Y2  that follow a Poisson distribution but are not 

independent, with means vμ1  and vμ2 , where v is a random variable following an Inverse 

Gaussian distribution, this indicates that Y1 and Y2  follow a mixed Poisson distribution, 

specifically a Bivariate Poisson Inverse Gaussian (BPIG) distribution. The BPIG distribution is 

characterized by the following joint density functions [16]. 

P(yj|j = 1,2) = e
1
τKs(z) (

2

πτ
)

1
2

(1 + 2τ ∑ μj

2

j=1

)

−
(2 ∑ yj−12

j=1 )

4

∏
μj

yj

yj !

2

j=1

 

With 
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𝑧      = √
1

 𝜏2 +
2(𝜇1+𝜇2)

𝜏
  

𝑠      = 𝑦1 + 𝑦2 −
1

2
  

𝐾𝑠(𝑧) = 𝐾
𝑦1+𝑦2−

1

2

(
1

𝜏
√2𝜏(𝜇1 + 𝜇2) + 1) as a third type of modified Bessel function 

Suppose as a response variable for 𝑦𝑖𝑗the i observation and the j response variable with a random 

sample 𝑌1𝑖𝑌2𝑖~𝐵𝑃𝐼𝐺(𝜇𝑖𝑗, 𝜏) where 𝑖 = 1,2, . . , 𝑛 and 𝑗 = 1,2, . The natural log linkage function 

(ln) is required in BPIG modeling. The ln connecting function is used to connect parameters 𝜇𝑖𝑗 

with explanatory variables. So the BPIG regression model in the following equation [16]. 

𝑙𝑛(𝜇𝑖𝑗)= 𝑿𝑖
𝑇𝜷𝑗 + 𝜀𝑖𝑗   

𝜇𝑖𝑗 = 𝑒𝑥𝑝(𝑿𝑖
𝑇𝜷𝑗 + 𝜀𝑖𝑗)                  

with 

𝑿𝑖
𝑇 = [1 𝑋𝑖1 𝑋𝑖2  … 𝑋𝑖𝑝 ]

1×(𝑝+1)
 as a vector variable predictor 𝑘 = 1,2, … , 𝑝 On the observation 

of the 𝑖 = 1,2, … , 𝑛  

𝜷𝑗 = [𝛽𝑗0 𝛽𝑗1 𝛽𝑗2  ⋯ 𝛽𝑗𝑝 ]
1×(𝑝+1)

𝑇
 as a regression coefficient vector  

𝜀𝑖𝑗 = error 

Geographically Weighted Bivariate Poisson Inverse Gaussian Regression 

Geographically Weighted Bivarite Poisson Inverse Regression (GWBPIGR) is a statistical method 

that is a development of the Gaussian Bivariate Poisson Inverse Regression, but the difference is 

that in this method, it pays attention to weights in the form of latitude and longitude of the observed 

observation points. GWBPIG distribution has the following combined density functions 

𝑃(𝑦𝑗|𝑗 = 1,2) = 𝑒
1
𝜏𝐾𝑠(𝑧(𝑢, 𝑣)) (

2

𝜋𝜏
)

1
2

(1 + 2𝜏 ∑ 𝜇𝑗(𝑢, 𝑣)

2

𝑗=1

)

−
(2 ∑ 𝑦𝑗−12

𝑗=1 )

4

∏
𝜇𝑗(𝑢, 𝑣)𝑦𝑗

𝑦𝑗  !

2

𝑗=1

 

with 

𝑧      = √ 1

 𝜏2 +
2 ∑ 𝜇𝑗(𝑢,𝑣)2

𝑗=1

𝜏
  

𝑠      = 𝑦1 + 𝑦2 −
1

2
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𝐾𝑠(𝑧) = 𝐾
𝑦1+𝑦2−

1

2

(
1

𝜏
√2𝜏 ∑ 𝜇𝑗(𝑢, 𝑣)2

𝑗=1 + 1) as a third type of modified Bessel function 

The GWBPIGR equation model can be expressed in the following equation [15]. 

𝑙𝑛 (𝜇𝑖𝑗) = 𝑿𝑖
𝑇𝜷𝑗(𝑢𝑖, 𝑣𝑖)  

𝜇𝑖𝑗 = 𝑒𝑥𝑝(𝑿𝑖
𝑇𝜷𝑗(𝑢𝑖, 𝑣𝑖) )           

With 

𝑿𝑖
𝑇              = [1 𝑋𝑖1 𝑋𝑖2  … 𝑋𝑖𝑝 ]

1×(𝑝+1)
  as a vector variable predictor 𝑘 = 1,2, … , 𝑝  On the 

observation of the 𝑖 = 1,2, … , 𝑛  

𝜷𝑗(𝑢𝑖, 𝑣𝑖) = [𝛽𝑗0(𝑢𝑖, 𝑣𝑖)   𝛽𝑗1(𝑢𝑖, 𝑣𝑖)   ⋯ 𝛽𝑗𝑝(𝑢𝑖, 𝑣𝑖) ]
1×(𝑝+1)

𝑇
  as a regression coefficient vector 

with a spatial weighting matrix 

Berndt-Hall-Hall-Hausman Algorithm 

The Berndt-Hall-Hall-Hausman algorithm (BerndHallMan) is an extension of Newton Raphson's 

algorithm  used in statistics to solve the Maximum Likelihood equation. The only distinction 

between Newton Raphson's algorithm and BerndHallMan's is that the latter does not call for a 

second derivative. The steps to evaluate parameters using the BerndHallMan algorithm  are as 

follows [6]. 

a. Establish the starting approximation value. 

b. Gradient vectors 𝑫(𝜃(𝑡))  are defined. Equation below is created by taking the first 

derivative of the ln likelihood function against the parameter that has to be estimated.: 

𝑫(𝜃(𝑡)) = [
𝜕𝑙(𝜽)

𝜕𝜷1

𝜕𝑙(𝜽)

𝜕𝜷2

𝜕𝑙(𝜽)

𝜕𝜏
] 

c. Determine the Hessian matrix i.e.  

𝑯(𝜃(𝑡)) = − ∑ 𝑫(𝜃(𝑡))𝑫𝑇(�̂�(𝑡))𝑛
𝑖=1 . 

d. Iterating starts at the following equation:𝑡 = 0 

�̂�(𝑡+1) = �̂�(𝑡) − (𝑯(𝜃(𝑡)))
−𝟏

𝑫(𝜃(𝑡)) 

e. The iteration will stop if the value ∥ �̂�(𝑡+1) − �̂�(𝑡) ∥≤ 𝜀, by being 𝜀 = 10−3. 
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3. MAIN RESULTS 

Overdispersion Test 

In the Poisson regression model, there are a number of assumptions that must be met. 

Equidispersion, or the requirement that the variance and mean be equal, is one of them. However, 

in statistical data analysis, data conditions are often found with variances sometimes greater than 

the mean (overdispersion). Overdispersion can be detected by conducting a deviation test. The 

results of the overdispersion test are shown in Table 1: 

Table 1. Overdispersion test 

Variable Test Statistics 

𝑌1 1.298 

𝑌2 8.649 

Based on the test statistic values presented in Table 1, the maternal mortality and neonatal mortality 

variables exhibit overdispersion, with test statistic values greater than 1. 

Spasial Heterogeneity 

The spatial heterogeneity test aims to find out whether the observation location has different 

characteristics or not. The Breusch Pagan test can be used to determine spatial heterogeneity.  

Table 6 displays the findings of the spatial heterogeneity test utilizing the Breusch Pagan test based 

on R-Studio program output. 

Tabel 2. Spatial heterogeneity test 

Variable Test Statistics 

𝑌1 11,69 

𝑌2 11,86 

Based on the test results, test statistical values were obtained for the response variables of maternal 

mortality and neonatal death respectively, namely 11,69  and 11,86  which is greater than the 

value 𝒳(0,05;5)
2 =11,07. This indicates that it is rejected 𝐻0. Therefore, it can be concluded that 

cases of maternal mortality and neonatal mortality experience spatial heterogeneity. 

Best Bandwidth 
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The first step in GWBPIGR modeling is to determine the kernel function to be used for bototoan, 

with the selection criterion being the kernel function with the optimal bandwidth that produces the 

smallest GCV value which is the best kernel function for GWBPIGR modeling. 

Table 3. Bandwith model GWBPIGR 

Kernel Function Bandwith GCV 

Adaptif Bisquare 0.8108 2.3373 

Adaptif Tricube 0.0001 3.7160 

Fixed Gaussian 3.4386 3.7103 

Table 3 shows that  the Adaptive Bisquare Kernel function with a  spatial bandwidth  of  

0.8108 produces the smallest GCV value compared to the GCV of other kernel functions. So  the 

Bisquare Kernel Adaptive  function was chosen for the weighting of the GWBPIGR model. 

Geographycally Weighted Bivariate Poisson Inverse Gaussian Regression 

The next step is to form a GWBPIGR model based on 24 districts/cities in South Sulawesi with 

estimates that have been obtained previously. Table 4 shows some of the GWBPIGR models 

obtained. 

Table 4. GWBPIGR modeling results 

Regency/City GWBPIGR Model 

Kepulauan Selayar �̂�1,1 = 0.577393 + 0.021906𝑋1 − 0.00441𝑋2 

−0.00383𝑋3 + 0.003407𝑋4 − 36.21267𝑋5 

 �̂�1,2 = 2.138123 + 0.032382𝑋1 − 0.00197𝑋2 

−0.00464X3 + 0.00261X4 − 36.93524X5 

Bulukumba ŷ2,1 = 0.577394 + 0.02191X1 − 0.00436X2 

−0.00395X3 + 0.003493X4 − 36.2127X5 

 ŷ2,2 = 2.138113 + 0.032284X1 − 0.00228X2 

−0.00381X3 + 0.00326X5 − 36.9352X5 

Bantaeng ŷ3,1 = 0.577394 + 0.021919X1 − 0.00432X2 

−0.00394X3 + 0.00346X4 − 36.2127X5 

 ŷ3,2 = 2.138127 + 0.032398X1 − 0.00155X2 

−0.00501X3 − 0.00268X5 − 36.9352X5 

⋮ ⋮ 

Palopo ŷ24,1 = 0.577394 + 0.02187X1 − 0.00434X2 

−0.00397X3 + 0.00368X4 − 36.2127X5 

 ŷ24,2 = 2.138135 + 0.032437X1 − 0.00193X2 

−0.00543X3 − 0.00149X5 − 36.9352X5 
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Next, determine the simultaneous model testing to test the significance of all predictor variables. 

The hypothesis used in the GWBPIGR model simultaneously is as follows. 

H0 ∶ βjk(ui, vi) = 0 to j = 1,2 ; k = 1,2, … , p 

H1 ∶ There is at least one βjk(ui, vi) ≠ 0 to j = 1,2; k = 1,2, … , p 

The results of the simultaneous test obtained were 133701.2 greater than the value of 𝒳(0,05;10)
2 =

18.307  so H0  it was rejected. This indicates that, at the very least, some predictor variables 

specifically, the number of maternal and neonatal deaths in South Sulawesi, Indonesia have a 

considerable impact on the number of response variables. As seen in Figures 1 and 2, partial testing 

is therefore required to determine which predictor factors significantly affect each district or city 

in South Sulawesi. 

 

Figure 1. Distribution of the influence of maternal mortality variables on the GWBPIGR model 

Based on Figure 1, it can be seen that there are three groups of districts/cities that have significant 

differences in predictor variables. The first group is the  X1, X3, X4, X5 shows that brown areas 

have maternal mortality cases significantly influenced by the factors of poor population, active 
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family planning participants, neonatal complications, and health centers. The second group is the 

X1, X4, X5 It shows that the orange area has maternal mortality cases significantly influenced by 

the factors of poor population, neonatal complications, and health centers. The third group is the 

X1, X3, X5 shows that the beige area has maternal mortality cases significantly influenced by the 

factors of the poor population, active family planning participants, and health centers.  

 

Figure 2. Distribution of the influence of neonatal mortality variables on the GWBPIGR model 

Based on Figure 2, it can be seen that there are two groups of districts/cities that have significant 

differences in predictor variables. The first group is the  X1, X3, X5 shows that brown areas have 

neonatal death cases significantly influenced by the factors of poor population, active family 

planning participants, and health centers. The second group is the X1, X5 shows that the beige 

area has neonatal death cases significantly influenced by the factors of the poor population and 

health centers. 

Selection of the Best Models 

Comparison of GWBPIGR model with Newton Raphson and BerndtHallMann algorithms and 

BPIGR with BerndtHallMann algorithm. The purpose of this is to determine which model is more 
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appropriate for simulating cases of newborn deaths and maternal mortality in each South Sulawesi 

district and city in 2021. The lowest AIC value was taken into consideration when choosing the 

optimum model for this investigation. The top models are displayed in Table 5 as follows. 

Table 5. Selection of the best models 

Models AIC Values 

BPIGR with BerndtHallMann 

algorithm 

109.74 

GWBPIGR with BerndtHallMann 

algorithm 

102.84 

Based on Table 5, it can be seen that the GWBPIGR model with the BerndtHallMann algorithm  

produces a smaller AIC value than other models. Therefore, it can be concluded that the 

GWBPIGR model with the BerndtHallMann algorithm  is the best model to be used in estimating 

maternal mortality cases and neonatal deaths in each district/city of South Sulawesi, Indonesia in 

2021 that experienced overdispersion and spatial diversity. 
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