
Available online at http://scik.org

Commun. Math. Biol. Neurosci. 2024, 2024:123

https://doi.org/10.28919/cmbn/8905

ISSN: 2052-2541

CONTAGION IN THE BANKING ECOSYSTEM: FRACTIONAL ORDER
MODELLING

HAMZA AIT TAMERZ1,∗, KARAM ALLALI2, ADIL MESKAF1,3

1Experimental Laboratory of Innovation in Technology and Simulations, Faculty of Sciences, Chouaib Doukkali

University, El Jadida, 299-24000, Morocco

2Laboratory of Mathematics, Computer Science and Applications, Faculty of Sciences and Technologies, Hassan

II University of Casablanca, PO Box 146, 20650 Mohammedia, Morocco

3Department of SEG, Faculty of Economic and Social Legal Sciences, Chouaib Doukkali University, El Jadida,

Morocco

Copyright © 2024 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. This paper examines the dynamics of systemic risk within banking networks through the analysis of

equilibrium points and associated stability conditions, using a fractional model to highlight the interactions be-

tween distressed and non-distressed banks. Equilibrium points are derived by solving a reduced system of frac-

tional differential equations, accounting for both homogeneous and heterogeneous banking environments. Local

and global stability analyses rigorously identify the conditions under which these equilibrium points exhibit stabil-

ity or instability. Numerical simulations are employed to illustrate the systemic risk dynamics, complementing the

theoretical insights. The results contribute to a deeper understanding of systemic financial risk and offer valuable

implications for risk management and policy formulation in the banking sector.
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1. INTRODUCTION

The global banking crisis that have been observed during the summer of 2007 brought at-

tention to the vulnerabilities within the financial system [1, 2], particularly highlighting the

importance of liquidity risk, which had previously been overshadowed by other types of risks

like credit and market risk. It also called into question the existing risk management strate-

gies employed by financial institutions. Interestingly, the international regulatory frameworks,

such as Basel Committee on Banking Supervision (BCBS) [3, 5], did not sufficiently address

liquidity risk, despite their focus on creating standardized regulations for global banking. Liq-

uidity, defined as the ability to meet obligations as they come due, proved to be a critical yet

underappreciated element of financial stability.

This historical context underlines the importance of enhancing models that can effectively

capture the spread of financial shocks, such as liquidity crises, through the banking ecosys-

tem, motivating the need for advanced tools like fractional order modelling to better understand

and manage systemic risk. Traditional models for analyzing banking contagion often rely on

integer-order systems, which may oversimplify the dynamics of contagion propagation. These

models typically assume uniform diffusion of shocks across institutions, neglecting the het-

erogeneous nature of the banking network and the time-varying intensity of contagion events.

As a result, there is a need for more sophisticated models that can capture the complexities of

contagion with greater accuracy.

This paper aims to address the limitations of traditional contagion models by applying frac-

tional order modelling to the banking ecosystem. Fractional order models offer a more flexible

framework for understanding the dynamic behavior of contagion processes, allowing for a more

accurate representation of the propagation of financial fluctuations over time and across inter-

connected institutions. Fractional order modelling has gained significant traction in analyzing

complex dynamic systems across diverse fields, including finance and biomedical sciences. In

the financial ecosystem, the Susceptible-Infected-Recovered (SIR) model, originally developed

for epidemiology, have been adapted to study contagion in banking networks [4]. The SIR

model, used to simulate the spread of financial distress among banks, categorizes institutions as
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susceptible to, infected by, or recovered from financial point of view. In the domain of finan-

cial applications, the use of the SIR model to study the spread of liquidity risk contagion has

been addressed in [6, 7, 8]. However, traditional SIR models often fail to capture the intricacies

of contagion dynamics in a highly interconnected and heterogeneous banking system. This is

where fractional order models provide a more robust alternative, offering a refined understand-

ing by accounting for memory effects and long-range dependencies in the spread of financial

risks. These advanced models allow for a more accurate representation of how shocks propa-

gate over time, giving deeper insights into systemic risk factors. Similar techniques have been

applied in biomathematics, where fractional order models are used to study the progression of

diseases such as Hepatitis B and C. For example, fractional models provide enhanced precision

in modeling the interactions between the virus and the immune system compared to traditional

methods [9, 10, 11]. Likewise, in cancer research, fractional models are used to simulate tumor

growth and treatment responses, offering a more nuanced approach to understanding disease

progression and therapeutic outcomes [12].

By introducing fractional order modelling, this research contributes to a deeper understanding

of contagion dynamics in the banking ecosystem. The model provides insights into the temporal

and spatial diffusion of financial distress, enabling policymakers and regulators to develop more

effective tools for monitoring systemic risk and preventing the spread of financial crises.

Recently, [13] studied the contagious banking ecosystem using the following system of dif-

ferential equations:

(1)



dU
dt

=−βUD+µE +θR,

dE
dt

= βUD− (µ + γ)E,

dD
dt

= γE− (δ1 +δ2)D,

dR
dt

= δ1D−θR,

dL
dt

= δ2D.

Where U(t) represents the risk-free banks. This category includes undistressed banks that are

currently healthy but potentially vulnerable, even though they have not yet experienced distress
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at time t. E(t) stands for the exposed banks. These are banks that have been interacting with

risky banks and have begun to show signs of weakened performance. However, at time t, their

expected losses have not become significant. D(t) is the risk-contagious banks. This means

that banks in this group are currently distressed due to credit risk at time t and are experiencing

potential losses. R(t) represents the recovered Banks. This category consists of banks that have

recovered from credit risk and are no longer in distress at time t. Finally, L(t) symbolizes the

liquidated banks, which means that banks that have been distressed and subsequently liquidated

at time t fall into this category. The parameters of the problem is as follows: β is the rate at

which contagion risk spreads due to interactions between undistressed (or risk-free) banks and

distressed banks. µ is the rate at which risk-exposed banks transition back to the undistressed

state. γ is the rate at which risk-exposed banks move to the distressed class. δ1 is the rate at

which distressed banks recover and transition to the recovered class. δ2 is the rate at which

distressed banks are liquidated. θ is the rate at which recovered banks lose their immunity and

revert to the vulnerable class. Figure 1 illustrates the schematic representation of risk contagion

within the banking network.

FIGURE 1. Diagram of risk contagion in the banking network.

Most natural phenomena including epidemiological dynamics involve time memory effect

and are valuable to demonstrate the facts about nature related processes having non-local dy-

namics. Models with fractional derivatives handle these issues in better way because non-

integral order derivatives contain time-dependent kernels. Many fractional derivatives can be
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found in the literature but the most common is Caputo fractional derivative. The key advantage

of using Caputo fractional derivative is it takes the same form of initial conditions as in the

case of classical derivatives, which means it does not require the fractional initial values. Moti-

vated by these useful facts we reformulate the model (1) in fractional form by adopting Caputo

fractional time derivative.

In this paper, we continue the investigation in the contagious banking ecosystem by consid-

ering the following UEDRL fractional order differential equations:

(2)



DαU =−βUD+µE +θR,

DαE = βUD− (µ + γ)E,

DαD = γE− (δ1 +δ2)D,

DαR = δ1D−θR,

DαL = δ2D.

Where α is the fractional order derivative. Figure 1 illustrates the schematic representation of

risk contagion within the banking network that we will study in this paper.

The paper is organized as follows. The well-posedness of the model is established in Section

2. The model equilibria is given in Section 3. Section 4 is dedeicated to the stability analysis

of the equilibria. Numerical simulations are given in Section 5. The last section concludes the

work.

2. POSITIVITY AND BOUNDEDNESS OF THE SOLUTION

Before study the well-posedness of the model, we assume that:

(1) All banks in the system are assumed to be susceptible to credit risk.

(2) Each bank has an equal probability of being affected by contagious banks upon interac-

tion with a risky bank, leading to potential exposure.

(3) Banks that are exposed to risk may either recover without becoming distressed or

progress to a distressed state and move into category D(t).

(4) When a bank is affected by risk, it either recovers through effective banking manage-

ment or is liquidated. Recovered banks are then categorized as R(t).
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(5) Recovered banks can potentially lose their immunity and return to the undistressed state.

Theorem 2.1. Consider the system of equations given by (2) with initial conditions U(0) ≥ 0,

E(0) ≥ 0, D(0) ≥ 0, L(0) ≥ 0, and R(0) ≥ 0. Then, the solutions U(t), E(t), D(t), L(t), and

R(t) remain positive and bounded for all t ≥ 0.

Proof. The UEDRL model is employed to represent systemic financial risk within a banking

population. It is reasonable to assume that all parameters and variables in the model are non-

negative, i.e., t ≥ 0. We demonstrate that all variables in the model remain nonnegative given

nonnegative initial conditions.

From system (2), we have the following:

(3)

DαU |U=0 = µE +θR≥ 0, since µ ≥ 0,θ ≥ 0,E ≥ 0,R≥ 0

DαE|E=0 = βUD≥ 0, since β ≥ 0,U ≥ 0,D≥ 0

DαD|D=0 = γE ≥ 0, since γ ≥ 0,E ≥ 0

DαR|R=0 = δ1D≥ 0, since δ1 ≥ 0,D≥ 0

DαL|L=0 = δ2D≥ 0, since δ2 ≥ 0,D≥ 0

These results confirm that the solution to system (2) remains nonnegative for all t ≥ 0.

To address boundedness, consider the total number of banks defined as:

(4) N(t) =U(t)+E(t)+D(t)+R(t)+L(t).

In our model, the total number of banks, is denoted as N.

Taking the derivative of both sides yields:

(5) DαN(t) = DαU(t)+DαE(t)+DαD(t)+DαR(t)+DαL(t)

From system (2), DαN(t) = 0, which implies that N(t) = N. Thus, each component of the

solution U(t), E(t), D(t), R(t), and L(t) is bounded between zero and the total initial number

of banks N.

�
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2.1. Feasible Solution. All solutions to the model in system (2) are bounded. The feasible

region for the banking population is given by

Ω =
{
(U(t),E(t),D(t),R(t),L(t)) ∈ R5 |U(t)+E(t)+D(t)+R(t)+L(t)≤ N

}
.

The region Ω is positively invariant with respect to the model in system (1). Hence, the model

is mathematically well-posed and systemically valid within Ω.

3. THE MODEL EQUILIBRIA

3.1. Risk-Free Equilibrium (RFE) Point for Systemic Risk. In order to obtain the equilib-

rium points of the system, we equate the system of equations to zeros, i.e., DαU = DαE =

DαD = DαR = DαL = 0. Since the last equation of system (2) is independent of the others, we

have the following reduced system:

−βUD+µE +θ(N−U−E−D) = 0,(6)

βUD− (µ + γ)E = 0,(7)

γE− (δ1 +δ2)D = 0,(8)

δ1D−θR = 0.(9)

Equilibrium points for risk-free are conditions where there is no systemic risk, that is E =D= 0.

From equation (6), we have θ(N−U) = 0⇒U = N, and then,

the equilibrium point of the risk-free for credit risk is P0 = (N,0,0,0).

3.2. The Basic Reproduction Number of the UEDR Model for Systemic Risk. First, define

the basic reproduction number R0 as the average number of secondary distressed banks that

occur when one distressed bank is interacting with a completely undistressed sample.

lemma 3.1. The basic reproduction number of system (2) is given by

(10) R0 =
γβU0

(µ + γ)(δ1 +δ2)

where U0 is the number of undistressed bank at the risk-free equilibrium point.
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Proof. The basic reproduction number is determined using the matrix generation method, based

on equation (1). Let F and V represent the transitional inflows and the transitional outflows,

respectively,

(11) F =

 0 βU

0 0



V =

 (µ + γ) 0

−γ δ1 +δ2


This implies

(12) V−1 =
1

(µ + γ)(δ1 +δ2)

 (δ1 +δ2) 0

γ (µ + γ)


Then

(13)

FV−1 =

 0 βU

0 0




1
(µ + γ)

0

γ

(µ + γ)(δ1 +δ2)

1
(δ1 +δ2)



=

 γβU
(µ + γ)(δ1 +δ2)

βU
δ1 +δ2

0 0


Then by the matrix generation method, we find that

(14) R0 =
γβU0

(µ + γ)(δ1 +δ2)

�

3.3. Risk Persistence Equilibrium (RPE) Point. In order to indicate the possibility of credit

risk spreading, we determine the risk persistence equilibrium point. Since in persistence condi-

tions the risk spreads, the number of banks is U 6= 0, E 6= 0,D 6= 0, and R 6= 0. From equations

(6)-(9), we obtain the risk persistence equilibrium point for systemic risk as

(15)
U∗ =

U0

R0

E∗ =
θ (δ1 +δ2)U0 (R0−1)
(γ +θ)(δ1 +δ2)+ γθ
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D∗ =
θγU0 (R0−1)

(γ +θ)(δ1 +δ2)+ γθ

R∗ =
δ1γU0 (R0−1)

(γ +θ)(δ1 +δ2)+ γθ

4. STABILITY ANALYSIS OF THE MODEL

4.1. Global Stability of the Risk-Free Equilibrium Point.

Theorem 4.1. The RFE of system (1) is globally asymptotically stable if the basic reproduction

number R0 < 1.

Proof. Let the Lyapunov function L f : Ω−→ R be defined as follows:

L f (t) = aE +bD.

Then,

(16)

DαL f (t)≤ aDαE +bDαD

≤ a(βUD− (µ + γ)E)+b(γE− (δ1 +δ2)D)

≤ aβU0D−a(µ + γ)E +bγE−b(δ1 +δ2)D

Let the coefficient of E correspond to zero, and the values of a and b are given by

(17) b =
a(µ + γ)

γ
, ∀a ∈ R+

Then, combining equations (16) and (17), DαL f (t) can be written as

(18)

DαL f (t)≤ βU0D− (µ + γ)(δ1 +δ2)D
γ

≤ γβU0D− (µ + γ)(δ1 +δ2)D
γ

≤ (µ + γ)(δ1 +δ2)(R0−1)D
γ

Then, this implies that DαL f (t) ≤ 0 if R0 ≤ 1. Hence, it follows from Lasalle’s invariance

principle that the system is globally asymptotically stable at P0.

�
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4.2. Global Stability of the Risk Persistence Equilibrium Point.

Theorem 4.2. The RPE of system (2) is globally asymptotically stable.

Proof. Let a Lyapunov function be defined as

(19) L1(t) =
(

U−U∗−U∗ ln
U

U∗

)
+

(
E−E∗−E∗ ln

E
E∗

)
+

(
D−D∗−D∗ ln

D
D∗

)
Then,

(20)

DαL1(t)≤
(

1−U∗

U

)
DαU +

(
1− E∗

E

)
DαE +

(
1− D∗

D

)
DαD

DαL1(t)≤
(

1−U∗

U

)
(−βUD+µE +θR)+

(
1− E∗

E

)
(βUD− (µ + γ)E)

+

(
1− D∗

D

)
(γE− (δ1 +δ2)D)

≤(−βUD+µE +θR)−U∗

U
(−βUD+µE +θR)+βUD− (µ + γ)E

− E∗

E
(βUD− (µ + γ)E)+(γE− (δ1 +δ2)D)− D∗

D
(γE− (δ1 +δ2)D) .

Summing the term with D but without D∗ or E∗, we have

(21) βU∗D− (δ1 +δ2)D = 0⇒ βU∗ = (δ1 +δ2)

Inserting (20) in (21) yields

(22)

DαL1(t)≤ θR−U∗

U
(µE +θR)− E∗

E
(βUD− (µ + γ)E)− D∗

D
(γE− (δ1 +δ2)D)

≤ θR−U∗

U

((
βU∗D∗−θR∗

E∗

)
E +θR

)
−βUD

E∗

E
+(µ + γ)E∗− γD∗E

D

+(δ1 +δ2)D∗

≤ θR− βU∗2D∗E
UE∗

+θ
U∗R∗E

UE∗
−θ

U∗R
U
− βUDE∗

E
+βU∗D∗− γD∗E

D
+βU∗D∗

≤ βU∗D∗
(

2−U∗E
UE∗

−UDE∗

UD∗E

)
+θR+θ

U∗R∗E
UE∗

− θU∗R
U
− γD∗E

D

≤ γE∗βU∗D∗
(

2−U∗E
UE∗

− UDE∗

U∗D∗E

)
+θR

(
U−U∗

U

)
+ γE

(
U∗D−UD∗

UD

)
Let us denote x1 =

U∗E
UE∗

and x2 =
UDE∗

U∗D∗E
. If D = D∗⇒ x1x2 = 1, using the relation
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(23)
x1 + x2

2
≥
√

x1x2, x1x2 ≥ 0

where this implies that x1 + x2 ≥ 2 with the equality attained

if x1 = x2 = 1. Hence, we obtain DαL1(t) ≤ 0 for U = U∗, with DαL1(t) = 0 on the set

{(U,E,D);U =U∗,D = D∗,E = E∗}. Therefore, it follows from Lasalle’s invariance principle

that the system is globally asymptotically stable at the risk persistence equilibrium point. �
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FIGURE 2. Banking risk-free dynamics. Risk-free banks (top left), exposed

banks (top right), risk contagious banks (bottom left) and recovered banks (bot-

tom right) for different values of the fractional derivative order.



12 HAMZA AIT TAMERZ, KARAM ALLALI, ADIL MESKAF

0 5 10 15 20 25 30
0

10

20

30

40

0 20 40 60 80 100
0

20

40

60

0 20 40 60 80 100
0

5

10

15

20

0 20 40 60 80 100
0

10

20

30

40

FIGURE 3. Banking risk persistence dynamics. Risk-free banks (top left), ex-

posed banks (top right), risk contagious banks (bottom left) and recovered banks

(bottom right) for different values of the fractional derivative order.

5. NUMERICAL SIMULATIONS

This section is devoted to numerical simulation of our suggested mathematical model. To

this end we will choose the following initial conditions:

U(1) = 40,E(1) = 30,D(1) = 20 and R(1) = 10.

Figure 2 shows the temporal evolution of the number of the risk-free banks, the exposed

banks, the risk contagious banks and the recovered banks for the following parameters: β =

0.01, µ = 0.2, θ = 0.05, γ = 0.1, δ1 = 0.2 and δ2 = 0.1. This figure illustrate the banking risk-

free dynamics. Indeed, the number of risk-free banks reaches their maximal level. However,

the other banks compartments vanish. In addition, by decreasing the fractional order derivative

the convergence towards the equilibrium is more quick.

Figure 3 shows the evolution dynamics of the number of the risk-free banks, the exposed

banks, the risk contagious banks and the recovered banks for the following parameters: β =
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0.04, µ = 0.03, θ = 0.05, γ = 0.1, δ1 = 0.2 and δ2 = 0.1. This figure illustrate the banking

risk persistence dynamics. Indeed, the number of all acting compartments remains at constant

level. Moreover, we conclude that by decreasing the fractional order derivative the convergence

towards the equilibrium is more quick.

6. CONCLUSION

In this paper, we have used a fractional model to represent mainly the interactions between

distressed and non-distressed banks. We have analyzed the equilibrium points and related sta-

bility criteria to investigate the dynamics of systemic risk within banking networks. In order

to account for both homogeneous and heterogeneous banking environments, equilibrium points

are obtained through the solution of a simplified system of fractional differential equations.

These equilibrium points’ stable and unstable conditions are thoroughly determined by local

and global stability results. The systemic risk dynamics are illustrated by numerical simula-

tions, which serve to support the theoretical results. The findings provide important new in-

sights into systemic financial risk and have important ramifications for risk management and

the development of banking sector regulation.
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