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Abstract. Diphtheria is a highly infectious and life-threatening disease caused by Corynebacterium diphtheriae,

continues to be a significant public health threat, particularly in regions with insufficient vaccination coverage.

Despite the progress made in vaccination programs globally, recent outbreaks, such as those in Thailand in 2019

and Guinea in 2023, have highlighted the resurgence of the disease, especially among populations with waning

immunity. In this study, we extend the classic Susceptible-Infectious-Recovered (SIR) model to incorporate both

deterministic and stochastic time-delayed models, aiming to predict the epidemiological trend of diphtheria and

evaluate the impact of multiple control strategies, including vaccination and public awareness campaigns. The
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main contributions of this work include establishing the well-posedness of the proposed models and identifying

conditions under which diphtheria may either persist or be eradicated within a population. Parameters for the mod-

els were estimated using real-world outbreak data, and numerical simulations were conducted to both forecast the

future spread of diphtheria and verify the theoretical findings. Our results emphasize the critical role of maintain-

ing high vaccination coverage and the need for timely public health interventions to effectively control the spread

of diphtheria.

Keywords: Diphtheria; mathematical modeling; delayed stochastic differential equations (DSDEs).
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1. INTRODUCTION

Diphtheria is a severe, life-threatening infectious disease caused by the bacterium Corynebac-

terium diphtheriae. Despite significant advances in vaccination programs globally, the disease

remains a major public health concern, particularly in countries with lower immunization cov-

erage [1]. Diphtheria is an acute bacterial illness that affects the mucous membranes of the

throat and nose, often leading to the production of a thick, gray membrane covering the throat,

which can cause difficulty in breathing, heart failure, paralysis, or even death if untreated [2].

Historically, diphtheria outbreaks in the 19th and early 20th centuries had devastating impacts,

causing high mortality rates before the development of the diphtheria toxoid vaccine [3, 4]. The

disease was largely controlled with widespread vaccination during the mid-20th century, yet

in recent years, there has been a resurgence, particularly in developing countries, attributed to

decreasing vaccination rates and waning immunity among adults [5, 6].

According to the World Health Organization (WHO), several countries have recently expe-

rienced outbreaks of diphtheria, particularly in regions with limited healthcare infrastructure.

For instance, a recent outbreak in Thailand in 2019 saw a worrying rise in diphtheria fatalities,

with mortality rates increasing from 0.12 to 0.26 per 100,000 individuals [7]. This resurgence

has been linked to insufficient vaccination coverage, especially in regions where healthcare re-

sources are scarce, and large portions of the population remain unvaccinated [8]. The situation

was further compounded by the rise in infections among otherwise healthy adolescents, whose

antibody protection from previous vaccination campaigns had diminished over time [9]. Similar
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outbreaks have been observed globally, including the Kankan region of Guinea, where in 2023,

the WHO reported 538 infections and 58 fatalities, with a case fatality rate of 11% [10].

FIGURE 1. Suspected diphtheria cases by epidemiological week in Guinea, as

of 13 October 2023 (Source: WHO)

Given the renewed threat posed by diphtheria, understanding its transmission dynamics has

become crucial for developing effective control strategies. Diphtheria spreads through respi-

ratory droplets and, in some cases, direct contact with infected individuals or contaminated

objects [11]. Asymptomatic carriers, who harbor the bacteria without showing symptoms, also

play a significant role in the transmission chain, complicating efforts to curb the disease’s spread

[12]. The bacterium releases a potent toxin, which leads to cellular damage and can cause se-

vere systemic complications [13]. While vaccination remains the cornerstone of prevention, the

growing number of unvaccinated individuals due to vaccine hesitancy, logistical challenges, and

gaps in immunization programs threaten to undo decades of progress in disease control [14, 15].

Mathematical modeling has emerged as a vital tool in understanding the dynamics of diphthe-

ria transmission and in forecasting potential outbreaks [16]. These models are instrumental in

providing insights into the spread of infectious diseases, allowing researchers and public health

officials to simulate various scenarios and evaluate the impact of interventions [17, 18]. For in-

stance, several mathematical models have been developed to assess the effectiveness of different

vaccination strategies and the role of asymptomatic carriers in disease transmission [19]. These

models, often based on compartmental frameworks such as Susceptible-Infectious-Recovered
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(SIR) or Susceptible-Exposed-Infectious-Recovered (SEIR) models, help quantify the basic re-

production number (R0) of diphtheria in various contexts and predict the trajectory of future

outbreaks [20, 21]. For example, one study applied an SEIR model to estimate the impact of

waning immunity and incomplete vaccination coverage, highlighting the critical importance of

maintaining high vaccination rates to prevent a resurgence of diphtheria [22].

Other studies have integrated stochastic elements into these models to account for environ-

mental fluctuations and the unpredictable nature of human behavior, which can affect vacci-

nation uptake and compliance with public health measures [23]. While deterministic models

offer valuable insights into the average behavior of disease outbreaks, stochastic models pro-

vide a more realistic representation by incorporating random variables that capture the inherent

unpredictability of real-world disease spread [24]. To date, few studies have fully explored the

stochastic aspects of diphtheria transmission, underscoring the need for further research in this

area [25].

In addition to mathematical modeling, public health strategies have focused on increasing

public awareness through education campaigns and improving vaccine coverage in high-risk

areas. These strategies are designed to reduce contact between susceptible individuals and

those who are asymptomatically infected, thereby decreasing the overall transmission rate [26].

Educational efforts emphasize the importance of vaccination, early detection, and the neces-

sity of seeking medical care promptly when symptoms appear [27, 28]. In several countries,

these efforts have led to a resurgence of vaccination campaigns, particularly in regions where

healthcare access is limited, such as rural areas in Southeast Asia and sub-Saharan Africa [29].

In this paper, we propose a comprehensive model for diphtheria transmission that incorpo-

rates both symptomatic and asymptomatic infections. Unlike previous models, our approach

integrates time delays to account for the incubation period and the time required for individuals

to become symptomatic, as well as stochastic elements to reflect the environmental uncertainties

that affect disease transmission [30]. Our model also distinguishes between different classes of

infected individuals, including those who are asymptomatic, symptomatic but untreated, and

individuals under quarantine. By including these additional compartments, we aim to provide a

more accurate representation of the real-world dynamics of diphtheria spread [31, 32].
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Section 2 presents the formulation of the proposed model and its theoretical foundations,

followed by a qualitative analysis of its behavior in Section 3. In Sections 4 and 5, we apply the

model to data from recent diphtheria outbreaks in Thailand and Guinea, providing parameter

estimates and forecasting the potential spread of the disease under various scenarios. Finally,

we discuss the implications of our findings for public health policy and offer recommendations

for improving vaccination coverage and implementing effective control measures in Section 6.

2. FORMULATION AND WELL-POSEDNESS OF THE MODELS

Building upon the epidemiological characteristics of diphtheria and the range of strategies

implemented by the government to address this pandemic, we adapt the traditional SIR model

to describe the spread of diphtheria within Guinea. Specifically, we divide the population into

eight categories, represented by S, Is, Ia,Fb,Fg,Fc,R,M infected individuals showing symptoms;

Ia is for those infected without symptoms who have yet to receive treatment; Fb,Fg,Fc denote

diagnosed patients who are under the care of the Guinean healthcare system and quarantined,

split into three categories: mild, severe, and critical cases. Lastly, R stands for recovered indi-

viduals and M represents the fatalities.

The model operates under the following assumptions:

(1) All parameters within the model are constant and positive;

(2) The model disregards natural birth and death rates;

(3) Truly asymptomatic cases will remain asymptomatic until they recover, without con-

tributing to the disease spread;

(4) Patients who are temporarily asymptomatic are classified as symptomatic;

(5) Reinfections are not included in the model;

(6) The Guinea healthcare system is assumed to not be overwhelmed.

The visual representation of the proposed model is shown in Figure (2).
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FIGURE 2. Model description.

Following these assumptions and the strategies imposed by Guinean authorities, the spread

of diphtheria within the population is governed by the following system of delayed differential

equations (DDEs):

(1)



dS
dt

=−α(1− v)
S(t)Is(t)

N
,

dIs

dt
= αξ (1− v)

S(t− τ1)Is(t− τ1)

N
−λ Is(t)− (1−λ )(ds +σs)Is(t),

dIa

dt
= α(1−ξ )(1− v)

S(t− τ1)Is(t− τ1)

N
−σaIa(t),

dFb

dt
= λπbIs(t− τ2)− (db + rb)Fb(t),

dFg

dt
= λπgIs(t− τ2)− (dg + rg)Fg(t),

dFc

dt
= λπcIs(t− τ2)− (dc + rc)Fc(t),

dR
dt

= σs(1−λ )Is(t− τ3)+σaIa(t− τ3)+ rbFb(t− τ4)+ rgFg(t− τ4)+ rcFc(t− τ4),

dM
dt

= ds(1−λ )Is(t− τ3)+dbFb(t− τ4)+dgFg(t− τ4)+dcFc(t− τ4).

Let t ∈R+ represent time, and N the total population size, while v∈ [0,1] indicates the extent of

preventive measures applied to the susceptible population. The parameter λ refers to the disease

transmission rate, and ξ ∈ [0,1] represents the fraction of individuals showing symptoms. The

parameter α also defines the portion of symptomatic infected individuals that transitions to the

three categories: Fb, Fg, and Fc, with respective rates πb, πg, and πc. The average recovery time

for these forms is given by
1
rb

,
1
rg

, and
1
rc

. These forms also exhibit mortality rates of db, dg, and

dc, respectively. For asymptomatic infected individuals who are not diagnosed, they recover at
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rate σa, while symptomatic infected individuals either recover or die at rates σb and ds. The

time delays τ1, τ2, τ3, and τ4 represent the incubation period, the time before the health system

intervenes, and the time elapsed before death for individuals in compartments Is, Fb, Fg, and Fc.

At any given time,

(2) D(t) =: ds(1−λ )Is(t− τ3)+dbFb(t− τ4)+dgFg(t− τ4)+dcFc(t− τ4) =
dM(t)

dt

provides the count of recent deaths caused by the disease

Remark 1.

In the system described by equation (1), the delays occur at the onset, when the infection be-

gins to affect individuals or when healthcare interventions are initiated, rather than at the points

where individuals exit the system (recovery or death). For instance, when a susceptible person

comes into contact with an infected individual at time t, they become infected at time t + τ1.

At this moment, the compartment representing infected individuals is updated to include this

newly infected person. This kind of process is repeated in all other interactions between the

compartments in the model, ensuring that all relevant transitions are captured accurately.

Remark 2.

It is assumed that the compartment of symptomatic infected individuals, denoted by Is, never

becomes completely empty at any given time t. In other words, there is always some level of

symptomatic infection present in the population. This assumption is reflected in the inequality

ds +σs < 1, which ensures that symptomatic individuals do not fully recover or die within the

timeframe. Moreover, the diagnosed symptomatic individuals are categorized into one of three

possible stages: Fb, Fg, and Fc, with respective transition rates πb, πg, and πc. These rates reflect

the distribution of individuals across the different stages, and they satisfy the condition that their

sum is equal to 1, i.e., πb +πg +πc = 1, ensuring that the entire population is accounted for.

Remark 3.

From a biological perspective, the delays τ3 = 21 days and τ4 = 13.5 days represent the re-

spective time intervals before death for individuals in the Is compartment and those in the three

disease forms Fb, Fg, and Fc. These time delays capture the period it takes for an individual

to progress from symptomatic infection to death, and thus are critical for accurately modeling

the progression of the disease. These delays are therefore included in the final equation of the
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system (1) to ensure that the timing of disease progression is properly accounted for.

Remark 4.

In this study, the time period under consideration is relatively short in comparison to typical

demographic timescales. This allows us to make the assumption that there are no new births

or immigration (entry into the population), and similarly, no natural deaths or emigration (exit

from the population). As such, factors such as recruitment and natural mortality rates can be

neglected. Additionally, it is important to note that in this model, individuals who die from the

disease remain counted within the population total, meaning that the overall population size,

denoted by N(t), is assumed to remain constant over the study period. This assumption is fur-

ther justified by the fact that Moroccan authorities have closed the country’s borders, thereby

preventing any significant population movement during the timeframe considered.

The system’s initial conditions, denoted as system (1), are given as follows:

(3)

ψ1(ς) = S(ς)≥ 0, ψ2(ς) =)Is(ς)≥ 0, ψ3(ς) = Ia(ς)≥ 0,

ψ4(ς) = Fb(ς)≥ 0, ψ5(ς) = Fg(ς)≥ 0, ψ6(ς) = Fc(ς)≥ 0,

ψ7(ς) = R(ς)≥ 0, ψ8(ς) = M(ς)≥ 0, ς ∈ [−τ,0],

where τ = max{τ1,τ2,τ3,τ4} represents the longest delay among all the different time delays

present in the system. Let C = C([−τ,0],R8) represent the Banach space of all continuous

functions mapping from the interval [−τ,0] into R8, equipped with the uniform topology. Ac-

cording to the fundamental principles of functional differential equations [33], the system (1),

initialized with conditions

(ς1,ς2,ς3,ς4,ς5,ς6,ς7,ς8) ∈C,

guarantees a unique solution.However, in practical applications, due to ongoing and inevitable

fluctuations in the environment, the system’s parameters are rarely constant. Instead, they ex-

hibit random variations around some expected average values. Thus, by utilizing delayed sto-

chastic differential equations (DSDEs), we can introduce an enhanced level of realism when

compared to purely deterministic models. Parameters such as α and β , which play a critical

role in controlling and managing the spread of Diphtheria to various environmental factors.

To capture this variability, we incorporate stochastic elements into system (1) by using a tech-

nique known as parameter perturbation, which has been employed extensively by numerous



MODELING AND PREDICTING THE SPREAD OF DIPHTHERIA IN GUINEA 9

researchers (see, e.g., [34, 35, 36]). In particular, we modify the parameters α and β to intro-

duce random fluctuations as follows: α → α +χ1Ḃ1(t) and λ → λ +χ2Ḃ2(t), where B1(t) and

B2(t) are independent standard Brownian motions. These Brownian motions are defined on a

complete probability space (Ω,F ,P), which is equipped with a filtration {Ft}t≥0 that satisfies

the usual assumptions (i.e., it is non-decreasing and F0 contains all P-null sets). The intensities

of the random fluctuations are governed by the constants χ1 and χ2, which represent the strength

of the noise in the parameters B1(t) and B2(t), respectively.

By introducing this stochastic framework, we ensure that the model reflects the inherent un-

certainty and randomness in real-world epidemic dynamics. Therefore, the resulting system of

delayed stochastic differential equations more accurately represents the unpredictable nature of

disease spread in varying environments. Consequently, the modified model can provide more

realistic predictions and insights into the behavior of epidemics under fluctuating environmen-

tal and social conditions, as compared to deterministic models that assume constant parameters.

The new model governed by these delayed stochastic differential equations is as follows:

(4)

dS(t) =
(
−α(1− v)

S(t)Is(t)
N

)
dt−χ1(1− v)

S(t)Is(t)
N

dB1(t),

dIs(t) =
(

αξ (1− v)
S(t− τ1)Is(t− τ1)

N
−λ Is(t)− (1−λ )(ds +σs)Is(t)

)
dt

+χ1

(
ξ (1− v)

S(t− τ1)Is(t− τ1)

N

)
dB1(t)+χ2(ds +σs−1)Is(t)dB2(t),

dIa(t) =
(

α(1−ξ )(1− v)S(t−τ1)Is(t−τ1)
N −σaIa(t)

)
dt

+χ1(1−ξ )(1− v)
S(t− τ1)Is(t− τ1)

N
dB1(t),

dFb(t) = (λπbIs(t− τ2)− (db + rb)Fb(t))dt +χ2πbIs(t− τ2)dB2(t),

dFg(t) = (λπgIs(t− τ2)− (dg + rg)Fg(t))dt +χ2πgIs(t− τ2)dB2(t),

dFc(t) = (λπcIs(t− τ2)− (dc + rc)Fc(t))dt +χ2πcIs(t− τ2)dB2(t),

dR(t) = (σs(1−λ )Is(t− τ3)+σaIa(t− τ3)+ rbFb(t− τ4)+ rgFg(t− τ4)+ rcFc(t− τ4))dt

−χ2σsIs(t− τ3)dB2(t),

dM(t) = (ds(1−λ )Is(t− τ3)+dbFb(t− τ4)+dgFg(t− τ4)+dcFc(t− τ4))dt

−χ2dsIs(t− τ3)dB2(t).
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The coefficients in the model are assumed to be locally Lipschitz continuous with respect to all

variables, for every t ∈ R+.

Let us define R8
+ as:R8

+ = {(y1,y2,y3,y4,y5,y6,y7,y8) | yi > 0, i = 1,2, . . . ,8}. We can now

state the following result:

Theorem 1.

For any initial condition that satisfies assumption (3), there exists a unique solution

y(t) = (S(t), Is(t), Ia(t),Fb(t),Fg(t),Fc(t),R(t),M(t))

to the stochastic Diphtheria model (4), which remains within R8
+ with probability one.

Proof.

Since the coefficients in the stochastic differential equations with multiple delays (4) are locally

Lipschitz continuous, it follows from [37] that for any square integrable initial condition y(0) ∈

R8
+, independent of the given Brownian motion B, there exists a unique local solution y(t) for

t ∈ [0,τe), where τe represents the explosion time. To show that this solution is global, it is

necessary to demonstrate that τe = ∞, meaning the solution remains valid for all time. To prove

this, we need to establish that x(t) does not reach infinity within a finite time. Let k0 > 0 be

sufficiently large so that
1
k0

< y(0) < k0. For each integer k ≥ k0, define the stopping time

τk = inf
{

t ∈ [0,τe) : yi(t) /∈
(

1
k
,k
)

for some i = 1,2,3
}

, where the infimum is set to infinity

if the condition is never met. It is evident that τk ≤ τe. Now, let T > 0 be arbitrary. We define

the following function Z, which is twice differentiable, on R3
+→ R+:

Z(y) = (y1 + y2 + y3)
2 +

1
y1

+
1
y2

+
1
y3
.

By applying Itô’s lemma, for any 0≤ t ≤ τk∧T and for all k ≥ 1, we can write

dZ(y(t)) = LZ(y(t))dt +θ(y(t))dB(t),

where θ is a continuous functional, defined on [0,+∞)×C([−τ,0],R3×2), given by

θ(y(t)) =


−δ1(1−u)

S(t)Is(t)
N

0

χ1ξ (1− v)
S(t− τ1)Is(t− τ1)

N
χ2(ds +σs−1)Is(t)

χ1(1−ξ )(1− v)
S(t− τ1)Is(t− τ1)

N
0

 ,
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and B(t) =
(

B1(t),B2(t)
)T

, where the superscript ”T ” denotes the transpose. The operator L

represents the differential operator of the function Z, defined by:

LZ(y(t)) =
(

2(S(t)+ Is(t)+ Ia(t))−
1

S2(t)

)(
−α(1− v)

S(t)Is(t)
N

)
+
(

1+ 1
S3(t)

)(
−χ1(1− v)

S(t)Is(t)
N

)2

+

(
2(S(t)+ Is(t)+ Ia(t))−

1
I2
s (t)

)(
αξ (1− v)

S(t− τ1)Is(t− τ1)

N
−λ Is(t)− (1−λ )(ds +σs)Is(t)

)
+

(
1+

1
I3
a (t)

)[(
χ1ξ (1− v)

S(t− τ1)Is(t− τ1)

N

)2

+(χ2(ds +σs−1)Is(t))
2

]
+

(
2(S(t)+ Is(t)+ Ia(t))−

1
I2
a (t)

)(
α(1−ξ )(1− v)

S(t− τ1)Is(t− τ1)

N
−σaIa(t)

)
+

(
1+

1
I3
a (t)

)(
χ1(1−ξ )(1− v)

S(t− τ1)Is(t− τ1)

N

)2

.

Thus, we can conclude:

(5)

LZ(y(t))≤ α(1− v)S(t)Is(t)
NS2(t)

+

(
1+

1
S3(t)

)(
χ1(1− v)

S(t)Is(t)
N

)2

+2αξ (1− v)(S(t)+ Is(t)+ Ia(t))
S(t− τ1)Is(t− τ1)

N
+

λ +(1−λ )(dS +σS)

Is(t)

+

(
1+

1
I3
s (t)

)[(
χ1ξ (1− v)

S(t− τ1)Is(t− τ1)

N

)2

+(χ2(ds +σs−1)Is(t))
2

]
+2α(1−ξ )(1− v)(S(t)+ Is(t)+ Ia(t))

S(t− τ1)Is(t− τ1)

N

+
σa

Ia(t)
+

(
1+

1
I3
a (t)

)(
χ1(1−ξ )(1− v)

S(t− τ1)Is(t− τ1)

N

)2

.

We now apply the basic inequality 2xz ≤ x2 + z2, which is valid for any x,z ∈ R. First, we

take x = αξ (1− v) and z = S(t) + Is(t) + Ia(t), and then we take x = α(1− ξ )(1− v) and

z = S(t)+ Is(t)+ Ia(t). By doing so, we can simplify the right-hand side of inequality (5) to

obtain:

LZ(y(t))≤ a1 +ψ(S(t)+ Is(t)+ Ia(t))2 +
a2

S(t)
+

a3

Is(t)
+

a4

Ia(t)
,

≤M(1+Z(y(t))),

where ψ , a1, a2, a3, a4 are positive constants, and M = max(ψ,a1,a2,a3,a4). By integrating

both sides of the inequality, we get the desired result.

dZ(y(t)) = LW (y(t))dt +θ(y(t))dB(t)
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over the interval from t0 to t ∧τk. Since the expectation removes the martingale component, we

have:

E(Z(y(t ∧ τk))) = E(W (y0))+E
∫ t∧τk

t0
LZ(y(s))ds

≤ E(Z(y0))+E
∫ t∧τk

t0
M(1+Z(y(s)))ds

≤ E(Z(y0))+MT +
∫ t∧τk

t0
E(Z(y(s)))ds.

By Gronwall’s inequality, it follows that:

E(Z(y(t ∧ τk)))≤ (E(Z(y0))+MT )exp(CT ).

Now, for ω ∈ {τk ≤ T}, the value of yi(τk) is either k or
1
k

for some i = 1,2,3. Hence,

Z(yi(τk))≥
(

k2 +
1
k

)
∧
(

1
k2 + k

)
.

Therefore, we have:

(EZ(y0)+MT )exp(CT )≥ E
(
X{τk≤T}(ω)Z(xτk)

)
≥
(

k2 +
1
k

)
∧
(

1
k2 + k

)
P(τk ≤ T ).

By letting k→ ∞, it follows that P(τe ≤ T ) = 0. Since T is arbitrary, we conclude that P(τe =

∞) = 1.

Next, we define the stopping time τ̃k as

τ̃k = inf
{

t ∈ [0,τe) : xi(t) /∈
(

1
k
,k
)

for some i = 4, . . . ,8
}
,

and consider the twice-differentiable function Z̃ on R5
+→ R+, defined as:

Z̃(y) =

(
8

∑
i=4

yi

)2

+
8

∑
i=4

1
y′i
,

and, following the same procedure, we conclude that all variables of the system are positive

over the interval [0,∞). �
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3. QUALITATIVE ANALYSIS OF THE MODELS

The basic reproduction number, often used to quantify the transmission potential of a disease

within a population, is a critical measure in determining the trajectory of an outbreak [38]. It

represents the average number of secondary infections generated by a single infectious individ-

ual in a completely susceptible population. It’s important to note that the basic reproduction

number, denoted as R0, is determined by the parameters of the model and is independent of the

state variables of the system. Additionally, the calculation of R0 in this model does not depend

on the time delays. To calculate R0, we employ the next-generation matrix approach described

in [39]. Specifically, for the system in equation (1), the basic reproduction number is given by:

(6) R0 = ρ(FV−1) =
αξ (1− v)

(1−λ )(σs +ds)+λ ′
.

Here, ρ represents the spectral radius of the next-generation matrix FV−1, where the matrices

F and V are defined as follows:

F =

 αξ (1− v) 0

0 0

 , V =

 (1−λ )(σs +ds)+λ 0

0 σa

 .

Observing that the compartments which directly contribute to the disease transmission are Is,

Ia, Fb, Fg, and Fc, we can reduce the analysis of the local stability of system (1) to the local

stability of the following system:

(7)



dIs(t)
dt

= αξ (1− v)
S(t− τ1)Is(t− τ1)

N
−λ Is(t)− (1−λ )(ds +σs)Is(t),

dIa(t)
dt

= α(1−ξ )(1− v)
S(t− τ1)Is(t− τ1)

N
−σaIa(t),

dFb(t)
dt

= λπbIs(t− τ2)− (db + rb)Fb(t),
dFg(t)

dt
= λπgIs(t− τ2)− (dg + rg)Fg(t),

dFc(t)
dt

= λπcIs(t− τ2)− (dc + rc)Fc(t).

The remaining compartments are decoupled from the system, and since the total population size

N is constant, we can derive the following analytical expressions:
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(8)
dS(t) = N− (Is(t)+ Ia(t)+Fb(t)+Fg(t)+Fc(t)+R(t)+M(t)),

R(t) =
∫ t

0 [σs(1−λ )Is(υ− τ3)+σaIa(υ− τ3)+ rbFb(υ− τ4)+ rgFg(υ− τ4)+ rcFc(υ− τ4)]dυ ,

M(t) =
∫ t

0 [ds(1−λ )Is(υ− τ3)+daIa(υ− τ3)+dbFb(υ− τ4)+dgFg(υ− τ4)+dcFc(υ− τ4)]dυ .

Let Ē = (ĪS, Īa, F̄b, F̄g, F̄c) represent an arbitrary equilibrium, and consider the system (7). In-

troducing the following change of variables:

N1(t) = Is(t)− Ir
s , N2(t) = Ia(t)− Ir

a, N3(t) = Fb(t)−Fr
b , N4(t) = Fg(t)−Fr

g , N5(t) = Fc(t)−Fr
c .

By substituting Ni(t), i = 1,2, . . . ,5 into system (7) and linearizing around the equilibrium, we

obtain a new system equivalent to:

(9)
dH(t)

dt
= AH(t)+BH(t− τ1)+CH(t− τ2),

where H(t) = (N1(t),N2(t),N3(t),N4(t),N5(t))T and A, B, C are the Jacobian matrices of sys-

tem (7). The Jacobian matrix A for system (7) is given as:

A =



−λ − (1−λ )(dS +σS) 0 0 0 0

0 −σa 0 0 0

0 0 −(db + rb) 0 0

0 0 0 −(dg + rg) 0

0 0 0 0 −(dc + rc)


,

The matrix B corresponding to the delayed terms in system (9) is represented as:

B =



αξ (1− v) 0 0 0 0 0

α(1−ξ )(1− v) 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

And the matrix C, which corresponds to the second delay τ2, is expressed as:
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C =



0 0 0 0 0

0 0 0 0 0

λ rb 0 0 0 0

λ rg 0 0 0 0

λ rc 0 0 0 0


.

The characteristic equation for system (7) can be expressed as:

(10) P(ε) = (ε−b1(R0e−ετ1−1))(ε +σa)(ε +(db + rb))(ε +(dg + rg))(ε +(dc + rc)),

where

b1 = λ +(1−λ )(dS +σS).

The characteristic equation (10) clearly has the following roots: ε1 = −σa , ε2 = −(db +

rb) , ε3 =−(dg + rg) , ε4 =−(dc + rc) and the root of the equation:

(11) ε−b1(R0e−ετ1−1) = 0.

Now, suppose Re(ε)≥ 0. From (11), we obtain:

Re(ε) = b1(R0e−ετ1 cos(Imετ1)−1)< 0,

if R0 < 1, which contradicts Re(ε) ≥ 0. On the other hand, we show that equation (11) has a

positive real root when R0 > 1. Indeed, let us define:

Φ(ε) = ε−b1(R0e−ετ1−1).

We know that Φ(0) = −b1(R0− 1) < 0, and as ε → +∞, Φ(λ )→ +∞. Furthermore, Φ is

continuous on the interval (0,+∞). Therefore, Φ has a positive root, and the following result

holds.

Theorem 2.

The disease-free equilibrium of system (1), i.e., (N,0,0,0,0,0,0), is locally asymptotically sta-

ble if R0 < 1 and unstable if R0 > 1.

Knowing the deterministic threshold R0 is crucial in determining the dynamic behavior of

system (1), as it predicts whether the disease will persist or eventually die out. Similarly, we can



16 SAHIB, BETTIOUI, BAROUDI, KHAJJI, FAOUZI, ALIA, HERRADI, BELAM

characterize the behavior of system (4) by imposing a sufficient condition for the eradication of

the disease.

Theorem 3.

Let y(t) = (S(t), Is(t), Ia(t),Fb(t),Fg(t),Fc(t),R(t),M(t)) represent the solution to the Diphteria

stochastic model (4), starting from initial condition y(0). Assume that:

χ
2
1 >

α2

2(λ +(1−λ )(dS +σS))
.

Then,

(12) lim sup
t→+∞

ln Is(t)
t

< 0.

Thus, Is(t) tends to zero exponentially almost surely, which means the disease dies out with

probability one.

Proof.

Let us define:

d ln Is(t)
dt

=
1

Is(t)

[
αξ (1− v)

S(t− τ1)Is(t− τ1)

N
−λ Is(t)− (1−λ )(ds +σs)Is(t)

]
+

1
2I2

s (t)

(
(χ1ξ (1− v)

S(t− τ1)Is(t− τ1)

N
)

2

+(χ2(ds +σs−1)Is(t))
2

)
+χ1αξ (1− v)

S(t− τ1)Is(t− τ1)

NIs(t)
dB1(t)+χ2(ds +σs−1)Is(t)dB2(t).

To simplify the expression, let us define:

K(t) = ξ (1− v)
S(t− τ1)Is(t− τ1)

N
, K1(t) = χ1

G(t)
Is(t)

,

K3 = χ2(ds +σs−1), K2 =−λ − (1−λ )(ds +σs).

With these definitions, we obtain:

d ln Is(t) =

[
αK(t)
Is(t)

+K2 +
1
2

((
χ1K(t)

Is(t)

)2

+K2
3

)]
dt +K1(t)dB1(t)+K3dB2(t),

=

[
−

χ2
2

2

[
K2(t)
I2
s (t)
− 2α2

χ2
1

K(t)
Is(t)

]
+K2−

K2
3

2

]
dt +K1(t)dB1(t)+K3dB2(t),

=

[
−

χ2
2

2

[(
K(t)
Is(t)

− α

χ2
1

)2

− α2

χ4
1

]
+K2−

K2
3

2

]
dt +K1(t)dB1(t)+K3dB2(t),

≤
[

α2

2χ2
1
+K2

]
dt +K1(t)dB1(t)+K3dB2(t).
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By integrating both sides of the above inequality over the interval [0, t], we get:

ln Is(t)
t
≤ ln Is(0)

t
+

α2

2χ2
1 t

+K2 +
T1(t)

t
+

T3(t)
t

,

where

T1(t) =
∫ t

0
RK1(s)dB1(s), T3(t) =

∫ t

0
K3dB2(s).

We now compute the upper bounds for T1(t) and T3(t). First, consider:

〈T1,T1〉t =
∫ t

0 χ2
1 ξ 2(1− v)2 S(t− τ1)

2Is(t− τ1)
2

N4I2
s (t)

ds

≤
∫ t

0 χ2
1 ξ 2(1− v)2 N4

I2
s (t)

ds

≤
∫ t

0 χ2
1 ξ 2(1− v)2ds.

Thus,

lim sup
t→+∞

〈T1,T1〉t
t

≤ χ
2
1 ξ

2(1− v)2 <+∞.

From the martingale convergence theorem [40], we conclude that:

lim
t→+∞

T1(t)
t

= 0.

Similarly, for T3(t), we have:

〈T3,T3〉t =
∫ t

0
χ

2
3 (dS +σS)

2ds = χ
2
3 (dS +σS)

2t.

Thus,

lim sup
t→+∞

〈T3,T3〉t
t

≤ χ
2
3 (dS +σS)<+∞,

and we conclude that:

lim
t→+∞

T3(t)
t

= 0.

Subsequently,

limsup
t→+∞

ln Is(t)
t
≤ α2

2χ2
1
−λ − (1−λ )(dS +σS).

Thus, if
α2

2χ2
1
−λ − (1−λ )(dS +σS)< 0,

then

lim
t→+∞

Is(t) = 0.

This concludes the proof. � �
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4. PARAMETER ESTIMATION

Determining the parameters for the model presents a significant challenge due to the rapidly

changing nature of the Diphteria pandemic and the variation in government policies across

different regions. Parameters evolve over time as new policies are implemented on a daily

basis. To account for this variability and simulate the Diphteria models (1) and (4), we select

some parameters from the literature while others are estimated or fitted.

Since the transmission rate α is unknown, we apply the least-squares method to estimate it based

on real-time confirmed cases reported in Morocco from 2 March to 13 October 2023 [41]. Using

this approach, we estimate α to be 0.4258 (85% CI, 0.3373–0.546). The average infectious

period for symptomatic individuals is approximately 21 days, with a crude mortality rate of 3%

to 4% [42]. Accordingly, we set dS = 0.01/21 per day, and σS = 0.8/21 per day. Additionally,

given that hospitals are not yet overwhelmed, we assume a mortality rate of 43% for critically

ill patients, with an average stay of 12.5 days [42]. Therefore, we choose dc = 0.4/13.5 per

day and rc = 0.6/13.5 per day. According to the study in [42], the proportion of asymptomatic

individuals ranges from 20.6% to 39.9%, while symptomatic cases account for 60.1% to 79.4%

of the infected population. The progression rates rb, rg, and rc, from mild to more severe forms

of the disease, are assumed to be 70% for mild cases, 20% for severe cases, and 10% for critical

cases [42]. The incubation period is assumed to be 5.5 days [43], while the average time before

hospitalization is estimated to be 7.5 days [44]. Based on clinical observations in Guinea,

we estimate that the evolution of asymptomatic individuals leads to recovery or death after 21

days if there are no other underlying clinical issues. When clinical intervention is applied, the

critical cases either recover or result in death after 13.3 days. The remaining parameter values

are provided in Table (1).
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Parameter Value Source Parameter Value Source

α 0.4517 Estimated v [0–1] Varied

ξ 0.794 [42] πb 0.8 [42]

πg 0.15 [42] πc 0.05 [42]

λ 0.06 Assumed σa 1/21 Calculated

σs 0.8/21 Calculated ds 0.01/21 Calculated

db 0 Assumed dg 0 Assumed

dc 0.4/13.5 Calculated rb 1/13.5 Calculated

rg 1/13.5 Calculated rc 0.6/13.5 Calculated

τ1 5.5 [43] τ2 7.5 [44]

τ3 21 Assumed τ4 13.5 Assumed

χ1 1.03 Calculated χ2 0.1 Assumed
TABLE 1. Parameter values of models (1) and (4).

5. NUMERICAL SIMULATION OF GUINEAN DIPHTERIA EVOLUTION

In this section, we present the simulations of Diphteria spread in Guinea under different

strategies implemented by the Guinean authorities. Considering the four stages of preventive

measures implemented to limit the spread of the virus, we estimate the effectiveness of these

Guinean interventions as follows:

v =



0.2, on (2 March, 10 March);

0.3, on (10 March, 20 March);

0.4, on (20 March, 6 April);

0.8, after 6 April.

In Figure (3), it is clear that the graphical representations and clinical data demonstrate a global

consistency.
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FIGURE 3. Comparison of the deterministic and the stochastic dynamical be-

havior with the daily reported cases of Diphteria in Guinea.

Additionally, the most recent daily case reports in Guinea [41] align with the biological trend

predicted by our model. Therefore, our models are effective in capturing the spread of Diphteria

in Guinea. However, it is important to note that some clinical data deviate from the model’s

predictions, likely due to specific outbreaks occurring in larger regions or in certain industrial

zones.

Furthermore, we observe that the stochastic dynamics of Diphteria display particular char-

acteristics when compared to the deterministic model. Specifically, the peak of the stochastic

model is more pronounced, and the time to eradication is shorter. At the same time, the con-

ditions outlined in Theorems (2) and (3) are met. To be more precise, the basic reproduction

number R0 = 0.5230 is less than one as of 12 October 2023, and χ2
1 = 1.0583 > 1.0497 =

α2

2λ (1−λ )(dS +σS)
, ensuring that the disease will eventually be eradicated.

To illustrate the biological relevance of the delay parameters, we present Figure (4), which

displays the evolution of diagnosed positive cases, comparing the scenarios with and without

delay effects.
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FIGURE 4. Effect of delays on the diagnosed confirmed cases.

In Figure (4), we observe that delays significantly affect the number of diagnosed positive

cases. When we compare the plot of model (4) without delays (τ = 0, i = 1,2,3,4) to the

clinical data, we notice that the two differ substantially. This suggests that delays play a critical

role in understanding the dynamics of Diphteria, particularly in Guinea. By considering these

delays, we gain a clearer picture of the disease’s behavior and can better comprehend its global

impact.

In Figure (5), we provide predictions for the number of susceptible individuals, as well as the

forecast for deaths, severe cases, and critical forms. From these figures, it can be deduced that

Diphteria will not infect the entire population.

Furthermore, the number of required hospital beds or ventilators can be estimated based on

the predicted numbers for each clinical form. It is also noteworthy that the number of deaths

predicted by our model is lower than that reported in other countries [45], which indicates that

Guinea has successfully avoided a severe epidemic by enforcing the recommended strategies.

Lastly, in Figure (6), we present the cumulative diagnosed cases, severe cases, critical cases,

and deaths over 240 days from the start of the Diphteria pandemic in Guinea. Table (2) summa-

rizes key numbers, providing insights into the future trajectory of the epidemic in Guinea.
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FIGURE 5. The evolution of susceptible individuals, deaths, severe cases, and

critical cases from 13 October 2023.

FIGURE 6. Cumulative diagnosed cases, severe forms, critical forms, and deaths

over a 240-day period starting from the beginning of the pandemic in Guinea.
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TABLE 2. Estimated peaks and cumulative of diagnosed cases, severe forms,

critical forms and deaths.

6. CONCLUSION

In this paper, we developed a comprehensive model to describe the transmission dynamics

of diphtheria, incorporating both symptomatic and asymptomatic infections, as well as sto-

chastic elements to account for environmental uncertainties. We proved that our model is both

mathematically and biologically well-posed by demonstrating the existence and uniqueness of

positive solutions. Additionally, we analyzed the stability of the disease-free equilibrium and

established conditions under which the disease would become extinct when the basic reproduc-

tion number R0 is less than one.

By utilizing parameter values obtained from literature and recent outbreak data from Thailand

and Guinea, we provided numerical simulations that allowed us to predict the trajectory of

diphtheria outbreaks under various scenarios. These simulations highlighted the critical role of

maintaining high vaccination rates and addressing gaps in immunization programs to prevent

future resurgences of the disease.

Our findings emphasize the importance of integrating both deterministic and stochastic ap-

proaches in disease modeling to provide a more accurate depiction of real-world dynamics.

Furthermore, the results underline the necessity of proactive public health interventions, includ-

ing vaccination campaigns and public awareness programs, to mitigate the spread of diphtheria,

particularly in regions with limited healthcare infrastructure.

As future work, we intend to explore the spatial spread of diphtheria in affected regions and

assess the effectiveness of regional control strategies. This extension will provide additional

insights into the impact of geographical factors on disease transmission and help optimize public

health responses.
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