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Abstract. We study the local dynamics and existence of bifurcation sets at equilibrium states, bifurcation analysis

and chaos of the epidemic model with vital dynamics and vaccination in R2
+ = {(I,S) : I, S≥ 0}. More specif-

ically, it is proved that discrete epidemic model has disease-free and endemic equilibrium states under model’s

parameters restriction(s), and we have studied local dynamical properties at equilibrium states by the theory of

linear stability. Furthermore, first we have pointed out the bifurcations sets at equilibrium states, and then proved

that at disease-free equilibrium state discrete epidemic model does not undergo flip bifurcation but it undergoes

only flip bifurcation at endemic equilibrium state by center manifold theorem and bifurcation theory. Additional,

hybrid control strategy is utilized to control chaos in the epidemic model due to the occurrence of flip bifurcations.

Finally, numerical simulations are given to verify theoretical results.
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1. INTRODUCTION

Recently, epidemiology of contagious diseases and control has been greatly increased due

to the use of mathematical modeling. The infections diseases transmission is different from
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non-infections diseases, so for their effective control emergency planning, control programme

evolution and policy making is required which based on study design, analysis and interpreta-

tion of data. Mathematical modeling play a key role in this regard. The rapid spread of disease

at a highest rate in a given population is considered as epidemic. The damages which can be

caused by epidemic are health loss, life loss, financial and economic loss. The extend of con-

tagious diseases is so crucial that it changes the population’s demographics. In order to control

and eradicate the disease, anticipation and mediation measures are therefore essential. Mathe-

matical models are useful for examining how a disease behaves when it infects a population and

for determining the conditions under which it will be eradicated. The writing around epidemic

models that have been established and investigated for different sorts of illnesses is exception-

ally wealthy. In recent years, discrete mathematical models have acquired more concern since

epidemic information are gathered in discrete intervals, and moreover numerical schemes uti-

lize discretization for tackling differential equations. In addition, discrete mathematical models

show more complex dynamics, for instance, Balamuralitharan & Radha [1] have investigated

the Hopf and transcritical bifurcations of the following epidemic model:


İ = π−β IS−µI,

Ṡ = β IS− (µ + γ +µt + r)S,

V̇ = (γ + r)S−µV,

(1)

where π , β , γ , µ , µt and r are respectively denote individuals S recruitment rate, infection I

rate, removal rate of individuals I, removal rate, natural death rate and treatment rate. Pérez,

Avila-Vales & Garcı́a-Almeida [2] have explored bifurcation of following epidemic model:


İ = rI

(
1− I

K

)
− β IS

1+µS ,

Ṡ = β IS
1+µS −ΘS− λS

1+εS ,

(2)

where S, I denotes susceptible and infected individuals; K and r, respectively denote carrying

capacity and growth rate of class S. Li & Li [3] have investigated Bogdanov-Takens bifurcation

of the model:
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İ = A−dI− β IS3

b+aS+S2 ,

Ṡ = β IS3

b+aS+S2 − (d + γ + ε)S,

V̇ = γS−dV,

(3)

where susceptible is S, I is infected and V is vaccinated individuals; A, d, γ and ε are birth rate

of S, death rate, removal rate and per capita infection related to the death rate of the individuals.

Parsamanesh & Erfanian [4] have investigated global dynamics of the epidemic model:
İ = I(β (V−I−S)

V − (µ + γ +α)),

Ṡ = qA+ p(V − I)− (µ + p+ ε)S,

V̇ = A−µV −αI,

(4)

with all positive parameters and initial conditions. Cao et al. [5] have explored bifurcations of

the model: 
It+1 = It +

∧
−β ItSt−dIt ,

St+1 = St +β ItSt− (d + γ)St−m,

(5)

where
∧

, β , d and γ are the recruitment rate, transmission rate, natural death rate and sponta-

neous recovery rate of individuals I. For further study in this direction, we suggest the interested

reader to the works of eminent researchers [6–12].

Inspired by the aforementioned research, hereafter we will give mathematical formulation of

a desired discrete epidemic model by considering population are divided into three categories

such as infected individuals I, susceptible individuals S and vaccinated individuals V . Now if

∆t is considered to appropriate time increment then changes in model occurs at t = 0,∆t, · · ·

where at t = n∆t, Nt denotes total number of individuals. Furthermore, at t = n∆t the numbers

of individuals in other groups are designated as It , St and Vt . So, whole conceivable changes in

the model and transmissions between its sub-populations along with their rates of transmissions

are represented in Figure 1. Here the models’s parameters µ3, µ1, µ4 and µ6 are respectively

denote natural death rate, contact rate, cure rate and rate of immunity loss while µ7 and µ5 are
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rates of vaccination in individuals St and newcomers. So, based on Figure 1 and preassumptions

the model’s equations takes the form:
It+1 =

µ1St It
Nt

+(1− (µ3 +µ4))It ,

St+1 = (1−µ5)µ3Nt− µ1St It
Nt

+(1− (µ3 +µ7))St +(µ4)It +µ6Vt ,

Vt+1 = µ5µ3Nt +µ7St +(1− (µ3 +µ6))Vt .

(6)

It is noted here that individuals S becomes infected at standard incidence rate µ1St It
Nt . Hereafter, in

order to summing model’s equations, which are depicted in (6), one can observe that Nt+1 = Nt ,

and so size of population N will continue constant. So, model (6) takes the following required

form [13]:
It+1 = µ1St It

µ2
+(1− (µ3 +µ4))It ,

St+1 = ((1−µ5)µ3 +µ6)µ2− µ1St It
µ2

+(1− (µ3 +µ7 +µ6))St +(µ4−µ6)It ,
(7)

by letting Vt = N− St − It where N = µ2. So, in this study our aim is to explore dynamical

characteristics of the epidemic model, which is depicted in (7). Our investigations for the model

(7) include:

• Existence of equilibrium states of discrete epidemic model (7).

• Local dynamical behavior and bifurcation sets at equilibrium states.

• Flip bifurcation analysis at equilibrium states.

• Examine of chaos by hybrid control strategy.

• Numerical verification of theoretical results.

The organization of rest of the paper are as follows: local dynamics and bifurcation sets at

equilibrium states are studied in Section 2 whereas Section 3 is about the study of flip bifurcation

at equilibrium states. The chaos control by Hybrid control strategy is examined in Section 4.

In order to confirm theoretical results, some simulations are presented in Section 5 whereas

conclusion is given in Section 6.
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FIGURE 1. Flow chart of a epidemic model (6) along with the rates of transmis-

sions

2. ANALYSIS OF STABILITY AT EQUILIBRIUM STATES AND BIFURCATION SETS

In this section, first we examine the equilibrium states and then we will study local behavior

at equilibrium states for the discrete epidemic model (DEM) (7). Furthermore, at obtained non-

hyperbolic condition(s), we will also identified the bifurcation sets in order to explore drastically

change in the behavior of solution of DEM (7) by the variation of single involved model’s

parameters. Now in the following, we will find equilibrium states, in allowed parametric region

R2
+ = {(I,S) : I,S≥ 0}. So, if equilibrium state (ES) of DEM (7) is (I,S) then

I = µ1SI
µ2

+(1− (µ3 +µ4))I,

S = ((1−µ5)µ3 +µ6)µ2− µ1SI
µ2

+(1− (µ3 +µ7 +µ6))S+(µ4−µ6)I.
(8)

It is noted here that system (8) satisfied obviously if (I,S) =
(

0, ((1−µ5)µ3+µ6)µ2
µ3+µ7+µ6

)
. Therefore,

DEM (7) has disease-free equilibrium state (DFES)
(

0, ((1−µ5)µ3+µ6)µ2
µ3+µ7+µ6

)
if µ6 > µ3 (µ5−1).

On the other hand, the solution of following system, which is simplified form of (8), give the

endemic equilibrium state (EES):
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µ1S
µ2
− (µ3 +µ4) = 0,

((1−µ5)µ3 +µ6)µ2− µ1SI
µ2
− (µ3 +µ7 +µ6)S+(µ4−µ6)I = 0.

(9)

From (9), one gets

(10) S =
(µ3 +µ4)µ2

µ1
,

and

(11) I =
((1−µ5)µ3 +µ6)µ2− (µ3 +µ7 +µ6)S

(µ3 +µ6)
.

Utilizing (10) into (11), one gets

(12) I =
((1−µ5)µ3 +µ6)µ1µ2− (µ3 +µ7 +µ6)(µ3 +µ4)µ2

µ1(µ3 +µ6)
.

From (10) and (12) one can obtains that if µ6 >
(µ3+µ7)(µ3+µ4)−(1−µ5)µ3µ1

µ1−(µ3+µ4)
then DEM (7) has EES(

((1−µ5)µ3+µ6)µ1µ2−(µ3+µ7+µ6)(µ3+µ4)µ2
µ1(µ3+µ6)

, (µ3+µ4)µ2
µ1

)
. Alternatively, the derived parametric con-

dition µ6 > (µ3+µ7)(µ3+µ4)−(1−µ5)µ3µ1
µ1−(µ3+µ4)

corresponds to R0 := ((1−µ5)µ3+µ6)µ1
(µ3+µ6+µ7)(µ3+µ4)

> 1, where R0

denotes the basic reproduction number. So, one can concludes that if R0 := ((1−µ5)µ3+µ6)µ1
(µ3+µ6+µ7)(µ3+µ4)

>

1 then DEM (7) has EES
(
((1−µ5)µ3+µ6)µ1µ2−(µ3+µ7+µ6)(µ3+µ4)µ2

µ1(µ3+µ6)
, (µ3+µ4)µ2

µ1

)
.

Now variation matrix V |ES of the linearized system of DEM (7) under ( f1, f2) 7→ (It+1,St+1)

is

(13) V |ES :=

 µ1S
µ2

+1− (µ3 +µ4)
µ1I
µ2

(µ4−µ6)− µ1S
µ2

1− µ1I
µ2
− (µ3 +µ7 +µ6)

 ,

where 
f1 := µ1St It

µ2
+(1− (µ3 +µ4)) It ,

f2 := ((1−µ5)µ3 +µ6)µ2− µ1St It
µ2

+(1− (µ3 +µ7 +µ6))St +(µ4−µ6) It .
(14)

Now at equilibrium sates local dynamics of DEM (7) is explored by stability theory [14–16].

For DFES, (13) gives

(15) V |DFES :=

 1+ ((1−µ5)µ3+µ6)µ1
µ3+µ7+µ6

− (µ3 +µ4) 0

(µ4−µ6)− ((1−µ5)µ3+µ6)µ1
µ3+µ7+µ6

1− (µ3 +µ7 +µ6)

 ,
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with

(16) λ1 = 1+
((1−µ5)µ3 +µ6)µ1

µ3 +µ7 +µ6
− (µ3 +µ4) , λ2 = 1− (µ3 +µ7 +µ6) .

Theorem 2.1. DFES of DEM (7) is

(i) a sink if

((1−µ5)µ3 +µ6)µ1

µ3 +µ4
−µ3−µ6 < µ7 <

{
((1−µ5)µ3 +µ6)µ1− (µ3 +µ4)×

(µ3 +µ6)+2(µ3 +µ6)

}
−2+µ3 +µ4

,
(17)

and

0 < µ7 < 2−µ3−µ6;(18)

(ii) a source if

µ7 > max


{
((1−µ5)µ3 +µ6)µ1− (µ3 +µ4)×

(µ3 +µ6)+2(µ3 +µ6)

}
−2+µ3 +µ4

,2−µ3−µ6

 ;(19)

(iii) a saddle if

2−µ3−µ6 < µ7 <
((1−µ5)µ3 +µ6)µ1− (µ3 +µ4)(µ3 +µ6)+2(µ3 +µ6)

−2+µ3 +µ4
,(20)

or

((1−µ5)µ3 +µ6)µ1− (µ3 +µ4)(µ3 +µ6)+2(µ3 +µ6)

−2+µ3 +µ4
< µ7 < 2−µ3−µ6;(21)

(iv) non-hyperbolic if

µ7 = 2−µ3−µ6,(22)

or

µ7 =
((1−µ5)µ3 +µ6)µ1− (µ3 +µ4)(µ3 +µ6)+2(µ3 +µ6)

−2+µ3 +µ4
.(23)

Proof. By linear stability theory, DFES is a sink if |λ1|=
∣∣∣1+ ((1−µ5)µ3+µ6)µ1

µ3+µ7+µ6
− (µ3 +µ4)

∣∣∣< 1

and |λ2|= |1− (µ3 +µ7 +µ6)|< 1. This implies that DFES is a sink if ((1−µ5)µ3+µ6)µ1
µ3+µ4

−µ3−

µ6 < µ7 <
((1−µ5)µ3+µ6)µ1−(µ3+µ4)(µ3+µ6)+2(µ3+µ6)

−2+µ3+µ4
. Furthermore, similar calculation shows that

DFES of DEM (7) is an unstable, saddle and non-hyperbolic if corresponding parametric con-

dition(s) hold(s). �
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Hereafter, for DFES of DEM (7) we will give two theorem regarding flip bifurcation sets

based on conditions (22) and (23), as follows.

Theorem 2.2. If (22) holds then flip bifurcation set at DFES of DEM (7) is

F1|DFES := {(µ1,µ2,µ3,µ4,µ5,µ6,µ7) : 2−µ3−µ6} .(24)

Proof. Recall that DFES of DEM (7) is non-hyperbolic if (22) holds and from (16) one has

λ1|(22) = 1+ ((1−µ5)µ3+µ6)µ1
2 − (µ3 +µ4) 6= 1 or − 1 but λ2|(22) = −1. This implies that at

DFES criterion of eigenvalues for the occurrence of flip bifurcation holds and thus one has the

required conclusion. �

Theorem 2.3. If (23) holds then flip bifurcation set at DFES of DEM (7) is

F2|DFES :={(µ1,µ2,µ3,µ4,µ5,µ6,µ7) :

µ7 =

{
((1−µ5)µ3 +µ6)µ1− (µ3 +µ4)×

(µ3 +µ6)+2(µ3 +µ6)

}
−2+µ3 +µ4

 .
(25)

Proof. It is same as the proof of Theorem 2.2. �

Hereafter, we examined the local dynamics at EES of DEM (7). So, for EES, (13) gives

(26) V |EES :=

 1 ((1−µ5)µ3+µ6)µ1−(µ3+µ7+µ6)(µ3+µ4)
µ3+µ6

−µ3−µ6 1+ (µ3+µ7+µ6)(µ3+µ4)−((1−µ5)µ3+µ6)µ1
µ3+µ6

− (µ3 +µ7 +µ6)

 ,

with

(27) λ
2−Λ1λ +Λ2 = 0,

where

Λ1 =2+
(µ3 +µ7 +µ6)(µ3 +µ4)− ((1−µ5)µ3 +µ6)µ1

µ3 +µ6
− (µ3 +µ7 +µ6) ,

Λ2 =1+
(µ3 +µ7 +µ6)(µ3 +µ4)− ((1−µ5)µ3 +µ6)µ1

µ3 +µ6
− (µ3 +µ7 +µ6)−

(µ3 +µ6)

(
(µ3 +µ7 +µ6)(µ3 +µ4)− ((1−µ5)µ3 +µ6)µ1

µ3 +µ6

)
.

(28)
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From (27), one has

λ1,2 = Λ1±
√

∆

2 ,(29)

where

∆ =Λ
2
1−4Λ2,

=

(
2+

(µ3 +µ7 +µ6)(µ3 +µ4)− ((1−µ5)µ3 +µ6)µ1

µ3 +µ6
− (µ3 +µ7 +µ6)

)2

−4(1

− (µ3 +µ7 +µ6)+
(µ3 +µ7 +µ6)(µ3 +µ4)− ((1−µ5)µ3 +µ6)µ1

µ3 +µ6
− (µ3 +µ6)

(µ3 +µ7 +µ6)(µ3 +µ4)− ((1−µ5)µ3 +µ6)µ1

µ3 +µ6

)
,

=

(
(µ3 +µ6)−

((1−µ5)µ3 +µ6)µ1− (µ3 +µ7 +µ6)(µ3 +µ4)

µ3 +µ6

)2

+µ7 (µ7

+2(µ3 +µ6)+2
(
((1−µ5)µ3 +µ6)µ1− (µ3 +µ7 +µ6)(µ3 +µ4)

µ3 +µ6

))
> 0.

(30)

So, real characteristics roots of (29) are

λ1,2 =
1
2

(
2+

(µ3 +µ7 +µ6)(µ3 +µ4)− ((1−µ5)µ3 +µ6)µ1

µ3 +µ6
− (µ3 +µ7 +µ6)

)

± 1
2

√√√√√
(
(µ3 +µ6)− ((1−µ5)µ3+µ6)µ1−(µ3+µ7+µ6)(µ3+µ4)

µ3+µ6

)2

+µ7

(
µ7 +2(µ3 +µ6)+2

(
((1−µ5)µ3+µ6)µ1−(µ3+µ7+µ6)(µ3+µ4)

µ3+µ6

)) .(31)

In next Theorem, we give local behavior at EES of DEM (7).

Theorem 2.4. EES of DEM (7) is a

(i) sink if

0 < µ7 < min
{
((1−µ5)µ3 +µ6)µ1

µ3 +µ4
−µ3−µ6,

((1−µ5)µ3 +µ6)µ1(−2+µ3 +µ6)+4(µ3 +µ6)

−2µ4 +2µ6 +(µ3 +µ4)(µ3 +µ6)
−µ3−µ6

}
;

(32)

(ii) source if

µ7 >
((1−µ5)µ3 +µ6)µ1(−2+µ3 +µ6)+4(µ3 +µ6)

−2µ4 +2µ6 +(µ3 +µ4)(µ3 +µ6)
−µ3−µ6;(33)
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(iii) non-hyperbolic if

µ7 =
((1−µ5)µ3 +µ6)µ1(−2+µ3 +µ6)+4(µ3 +µ6)

−2µ4 +2µ6 +(µ3 +µ4)(µ3 +µ6)
−µ3−µ6.(34)

Proof. It is same as the proof of Theorem 2.1. �

Hereafter, for EES of DEM (7), one has the following theorem regarding flip bifurcation set

based on condition (34), as follows.

Theorem 2.5. If (34) holds then flip bifurcation set at EES of DEM (7) is

F3|EES :={(µ1,µ2,µ3,µ4,µ5,µ6,µ7) :

µ7 =
((1−µ5)µ3 +µ6)µ1(−2+µ3 +µ6)+4(µ3 +µ6)

−2µ4 +2µ6 +(µ3 +µ4)(µ3 +µ6)
−µ3−µ6

}
.

(35)

Proof. Recall that if (34) holds then EES of DEM (7) is a non-hyperbolic. Therefore, from (31)

one has λ1|(34) =
2(µ6−µ4)−((1−µ5)µ3+µ6)µ1(µ3+µ6)+3(µ3+µ4)(µ3+µ6)

−2µ4+2µ6+(µ3+µ4)(µ3+µ6)
6= 1 or −1 but λ2|(34) =−1,

and finally, we can conclude that at EES criterion of eigenvalues for the occurrence of flip

bifurcation holds when model’s parameters (µ1,µ2,µ3,µ4,µ5,µ6,µ7) passes (35). �

3. BIFURCATION

By bifurcation theory [17–26], we will explore flip bifurcation analysis at DFES and EES of

DEM (7) in this section.

3.1. Flip bifurcation analysis at DFES.

Theorem 3.1. If (24) holds then at DFES, DEM (7) does not undergo flip bifurcation.

Proof. I is noted that DEM (7) is invariant under I = 0, and so it takes the form:

(36) St+1 = ((1−µ5)µ3 +µ6)µ2 +(1− (µ3 +µ7 +µ6))St .

From (36), we have

(37) f (µ7,S) := ((1−µ5)µ3 +µ6)µ2 +(1− (µ3 +µ7 +µ6))St .

Finally, if S = S∗ = ((1−µ5)µ3+µ6)µ2
µ3+µ7+µ6

and µ7 = µ∗7 = 2−µ3−µ6 then from (37), we get

(38)
∂ f
∂S

∣∣∣∣
µ7=µ∗7=2−µ3−µ6, S=S∗= ((1−µ5)µ3+µ6)µ2

µ3+µ7+µ6

:=−1,
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(39)
∂ 2 f
∂S2

∣∣∣∣
µ7=µ∗7=2−µ3−µ6, S=S∗= ((1−µ5)µ3+µ6)µ2

µ3+µ7+µ6

:= 0,

and

(40)
∂ f
∂ µ7

∣∣∣∣
µ∗7=2−µ3−µ6, S∗= ((1−µ5)µ3+µ6)µ2

µ3+µ7+µ6

:=−((1−µ5)µ3 +µ6)µ2

2
6= 0.

The obtained condition (39) implies that no flip bifurcation occurs at DFES if (24) holds. �

Theorem 3.2. If (25) holds then at DFES, DEM (7) does not undergo flip bifurcation.

Proof. It is same as the proof of Theorem 3.1. �

3.2. Flip bifurcation analysis at EES.

Theorem 3.3. DEM (7) undergoes flip bifurcation at EES if (35) holds.

Proof. Recall that, if µ7 is a bifurcation parameter then DEM (7) becomes
It+1 = µ1SI

µ2
+(1− (µ3 +µ4)) I,

St+1 = ((1−µ5)µ3 +µ6)µ2− µ1SI
µ2

+(1− (µ3 +µ∗7 + ε +µ6))S+(µ4−µ6) I,
(41)

where µ7 = µ∗7 + ε and ε << 1. It is further noted that (41) takes the form:

ut+1 =Ω
1
11ut +Ω

1
12vt +

µ1

µ2
utvt ,

vt+1 =Ω
2
11ut +Ω

2
12vt−

µ1

µ2
utvt− vtε,

(42)

where 

Ω1
11 =

µ1
µ2

S+1− (µ3 +µ4),

Ω1
12 =

µ1
µ2

I,

Ω2
11 = µ4−µ6− µ1

µ2
S,

Ω2
12 = 1− µ1

µ2
I− (µ3 +µ∗7 +µ6),

(43)

by

(44) ut = It− I, vt = St−S.
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Now system (42) becomes It+1

St+1

 :=

 −1 0

0 λ2

 It

St

+

 P̂(ut ,vt ,ε)

Q̂(ut ,vt ,ε)

 ,(45)

where

P̂ =



(2µ4−2µ6− (µ3 +µ4)(µ3 +µ6))(µ3 +µ6)

(µ3 +µ6)(((1−µ5)µ3 +µ6)µ1−4(µ3 +µ4))−4(−µ4 +µ6)
×(

µ1

µ2
utvt

)
− 2(−2µ4 +2µ6 +(µ3 +µ4)(µ3 +µ6))

(µ3 +µ6)(4(µ3 +µ4)− ((1−µ5)µ3 +µ6)µ1)+4(−µ4 +µ6)
×(

µ1

µ2
utvt + εvt

)


,

Q̂ =



(2µ6−2µ4 +(µ3 +µ4)(µ3 +µ6))(µ3 +µ6)

(µ3 +µ6)(((1−µ5)µ3 +µ6)µ1−4(µ3 +µ4))−4(−µ4 +µ6)
×(

µ1

µ2
utvt

)
− ((1−µ5)µ3 +µ6)µ1 (µ3 +µ6)−2(µ3 +µ4)(µ3 +µ6)

(µ3 +µ6)(((1−µ5)µ3 +µ6)µ1−4(µ3 +µ4))−4(−µ4 +µ6)
×(

µ1

µ2
utvt + εvt

)


,

ut =
((1−µ5)µ3+µ6)µ1−2(µ3+µ4)
2µ4−2µ6−(µ3+µ4)(µ3+µ6)

It − 2
µ3+µ6

St ,vt = It +St ,

utvt =
((1−µ5)µ3+µ6)µ1−2(µ3+µ4)
2µ4−2µ6−(µ3+µ4)(µ3+µ6)

(
I2
t + ItSt

)
− 2

µ3+µ6

(
StIt +S2

t
)
,vtε = Itε +Stε,

(46)

by

(47)

 ut

vt

 :=

 ((1−µ5)µ3+µ6)µ1−2(µ3+µ4)
(2µ4−2µ6−(µ3+µ4)(µ3+µ6))

−2
µ3+µ6

1 1

 It

St

 .

Now in a small neighborhood of ε = 0, the center manifold FCO at O is

(48) FCO =
{
(It ,St) : St = v0ε + v1I2

t + v2εIt + v3ε
3 +O

(
(|It |+ |ε|)3

)}
,

with 

v0 = 0 = v3,

v1 =


1

1−λ2

( ((1−µ5)µ3 +µ6)µ1 (µ3 +µ6)
−2(µ3 +µ4)(µ3 +µ6)

((1−µ5)µ3 +µ6)µ1 (µ3 +µ6)
−4(µ3 +µ4)(µ3 +µ6)−4(−µ4 +µ6)

×

(
−µ1

µ2
+

((1−µ5)µ3 +µ6)µ1−2(µ3 +µ4)

−2µ4 +2µ6 +(µ3 +µ4)(µ3 +µ6)

µ1

µ2

))


,

v2 =

 1
λ2−1

 ((1−µ5)µ3 +µ6)µ1 (µ3 +µ6)
−2(µ3 +µ4)(µ3 +µ6)

((1−µ5)µ3 +µ6)µ1 (µ3 +µ6)
−4(µ3 +µ4)(µ3 +µ6)−4(−µ4 +µ6)


 .

(49)
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So, we write (45) restrict to FCO as

(50) f1(It) =−It +m1I2
t +m2Itε +m3I2

t ε +m4Itε2 +m5I3
t +O

(
(|It |+ |ε|)4

)
,

where 

m1 =



((1−µ5)µ3 +µ6)µ1 (µ3 +µ6)
−2(µ3 +µ4)(µ3 +µ6)

((1−µ5)µ3 +µ6)µ1 (µ3 +µ6)
−4(µ3 +µ4)(µ3 +µ6)−4(−µ4 +µ6)

×
(

µ1

µ2

)

+

2((1−µ5)µ3 +µ6)µ1
−4(µ3 +µ4)

4(µ3 +µ4)(µ3 +µ6)− ((1−µ5)µ3 +µ6)
µ1 (µ3 +µ6)+4(−µ4 +µ6)

(
µ1

µ2

)


,

m2 =


2(2µ4−2µ6)
−2(µ3 +µ4)(µ3 +µ6)

4(µ3 +µ4)(µ3 +µ6)
− ((1−µ5)µ3 +µ6)µ1 (µ3 +µ6)+4(−µ4 +µ6)

 ,

m3 =



((1−µ5)µ3 +µ6)µ1 (µ3 +µ6)
+4(−µ4 +µ6)

((1−µ5)µ3 +µ6)µ1 (µ3 +µ6)
−4(µ3 +µ4)(µ3 +µ6)−4(−µ4 +µ6)

× v2

(
µ1

µ2

)

+

2((1−µ5)µ3 +µ6)µ1 (µ3 +µ6)
+8(−µ4 +µ6)

(µ3 +µ6)(4(µ3 +µ4)(µ3 +µ6)
− ((1−µ5)µ3 +µ6)µ1 (µ3 +µ6)+4(−µ4 +µ6))

×

(
v2

µ1

µ2

)


,

m4 = 0,

m5 =



((1−µ5)µ3 +µ6)µ1 (µ3 +µ6)
+4(−µ4 +µ6)

((1−µ5)µ3 +µ6)µ1 (µ3 +µ6)
−4(µ3 +µ4)(µ3 +µ6)−4(−µ4 +µ6)

× v1

(
µ1

µ2

)

+

2((1−µ5)µ3 +µ6)µ1 (µ3 +µ6)
+8(−µ4 +µ6)

4(µ3 +µ4)(µ3 +µ6)
2− ((1−µ5)µ3 +µ6)µ1

(µ3 +µ6)
2 +4(−µ4 +µ6)(µ3 +µ6)

×

(
v1

µ1

µ2

)


.

(51)

Finally, for the occurrence of flip bifurcation at EES, it is require that following discriminatory

quantities are non-zero [17, 18]:

`1 :=
(

∂ 2 f1

∂ It∂ε
+

1
2

∂ f1

∂ε

∂ 2 f1

∂ I2
t

)
|(0,0) = m2 6= 0,(52)

and
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`2 :=

(
1
6

∂ 3 f1

∂ I3
t
+

(
1
2

∂ 2 f1

∂ I2
t

)2
)
|(0,0) = m2

1 +m5.(53)

From (53), if `2 6= 0 then at EES DEM (7) undergoes flip bifurcation and additionally, period-2

points bifurcate from EES are stable (unstable) if `2 > 0 (`2 < 0). �

4. CONTROL OF CHAOS

In this section, hybrid control feedback method is utilized in order to control the chaos due

to the emergence of flip bifurcation in DEM (7) by existing theory [27]. If DEM (7) undergoes

flip bifurcation at EES then controlled DEM can be written as
It+1 = µ

(
µ1St It

µ2
+(1− (µ3 +µ4)) It

)
+(1−µ) It ,

St+1 = µ

(
((1−µ5)µ3 +µ6)µ2− µ1St It

µ2
+

(1− (µ3 +µ7 +µ6))St +(µ4−µ6) It)+(1−µ)St ,

(54)

where 0 < µ < 1. The V |EES evaluated at EES is

(55)

V |EES =

 1 µ

(
((1−µ5)µ3+µ6)µ1−(µ3+µ7+µ6)(µ3+µ4)

µ3+µ6

)
−µ (µ3 +µ6) µ

(
(µ3+µ7+µ6)(µ3+µ4)−((1−µ5)µ3+µ6)µ1

µ3+µ6
− (µ3 +µ7 +µ6)

)
+1

 .

The characteristics equation of V |EES is

λ
2−Λ1λ +Λ2 = 0,(56)

where 
Λ1 = 2+µ

(
(µ3+µ7+µ6)(µ3+µ4)−((1−µ5)µ3+µ6)µ1

µ3+µ6
− (µ3 +µ7 +µ6)

)
,

Λ2 = µ

(
(µ3+µ7+µ6)(µ3+µ4)−((1−µ5)µ3+µ6)µ1

µ3+µ6
− (µ3 +µ7 +µ6)

)
+1+

µ2 (((1−µ5)µ3 +µ6)µ1− (µ3 +µ7 +µ6)(µ3 +µ4)) .

(57)

So, based on linear stability theory, we have

Lemma 4.1. EES is a sink iff∣∣∣∣∣∣∣2+µ

 (µ3 +µ7 +µ6)(µ3 +µ4)
− ((1−µ5)µ3 +µ6)µ1

µ3 +µ6
− (µ3 +µ7 +µ6)


∣∣∣∣∣∣∣



DYNAMICAL ANALYSIS OF A DISCRETE EPIDEMIC MODEL 15

< 2+µ

(
(µ3 +µ7 +µ6)(µ3 +µ4)− ((1−µ5)µ3 +µ6)µ1

µ3 +µ6
− (µ3 +µ7 +µ6)

)
+µ

2
(
((1−µ5)µ3 +µ6)µ1−

(µ3 +µ7 +µ6)(µ3 +µ4)

)
< 2.

5. NUMERICAL SIMULATIONS

Example 5.1. If µ1 = 3.5, µ2 = 1.5, µ3 = 0.001, µ4 = 0.8, µ5 = 0.005, µ6 = 0.055,

µ7 ∈ [0.0025,0.1] with (I0,S0) = (0.83,0.34) then at µ7 = 0.05263275908836767 DEM

(7) undergoes the flip bifurcation. The Maximum Lyapunov exponent with flip bi-

furcation diagrams are drawn in Figure 2. Further, at (µ1,µ2,µ3,µ4,µ5,µ6,µ7) =

(3.5,1.5,0.001,0.8,0.005,0.055,0.0

5263275908836767) DEM (7) has EES = (0.8339361732414605,0.34328571428571425) and

moreover, from (26) one gets:

V |EES =

 0.9999999999999998 1.9458510708967411

−0.05599999999999983 −1.054483829985109

 ,(58)

with λ1 = −1 and λ2 = 0.9455161700148913, and therefore, based

on these simulations one can obtain that (µ1,µ2,µ3,µ4,µ5,µ6,µ7) =

(3.5,1.5,0.001,0.8,0.005,0.055,0.0526327590883

6767) ∈ F3|EES=(0.8339361732414605,0.34328571428571425). Moreover, in this parametric domain,

from (43), (49) and (51), one gets:

Ω1
11 = 0.9999999999999998,

Ω1
12 = 1.9458510708967411,

Ω2
11 =−0.05599999999999983,

Ω2
12 =−1.054483829985109,

(59)



v0 = 0,

v1 = 0.0008845847547751073,

v2 = 0.01400240995804515,

v3 = 0,

(60)
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and 

m1 = 2.2683904132033144,

m2 =−1.0280048199160903,

m3 = 1.1977210716228013,

m4 = 0,

m5 = 0.07566453229157898.

(61)

Using (61) in (52) and (53) one gets: `1 =−1.0280048199160903 6= 0 and `2 = 5.22125959900

4282> 0. Since `2 = 5.221259599004282> 0 which imply that stable period-2 points bifurcate

from EES = (0.8339361732414605,0.34328571428571425). So, our simulation in Example

5.1 agrees with theoretical results obtained in Theorems 2.4, 2.5 and 3.3.

Example 5.2. Finally, if µ1 = 3.5, µ2 = 1.5, µ3 = 0.001, µ4 = 0.8, µ5 = 0.005, µ6 =

0.055, µ7 = 5.221259599004282 with (I0,S0) = (0.83,0.34) then model (7) undergoes

flip bifurcation. For this, by applying hybrid strategy to get stable orbit at EES =

(0.8339361732414605,0.34328571

428571425). For this, model (54) takes the form

It+1 = µ

(
(3.5)St It

1.5 +(1− (0.001+0.8))It
)
+(1−µ)It ,

St+1 = µ

(
((1−0.005)0.001+0.055)1.5− 3.5St It

1.5 +

(1− (0.001+0.05263275908836767

+0.055))St +(0.8−0.055)It
)
+(1−µ)St ,

(62)

where

VEES =

 1−0.000000000000000222045µ 1.94585µ

−0.056µ 1−2.05448µ

 ,(63)

with

λ
2− (2−2.05448µ)λ +1−2.054483829985109µ+

0.1089676599702175µ
2 = 0.

(64)
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Furthermore, roots of (64) satisfying |λ1,2| < 1 if 0 < µ < 1. So, for the allowed interval of

control parameter µ the flip bifurcation is completely eliminated. If µ = 0.9 then for controlled

model (62), plots of t vs It and St are drawn in Figure 3.

(A) (B) (C)

(D) (E) (F)

(G) (H)

FIGURE 2. Flip B.Ds with MLE of DEM (7). 2a B.D for It . 2b B.D for St . 2c

B.D for It and St . 2d B.D for µ1 and It . 2e B.D for µ1 and St .2f B.D for µ4 and

It .2g B.D for µ5 and St . 2h MLEs
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(A)

(B)

FIGURE 3. Plot of t vs It and St for controlled system (54)

6. CONCLUSION

The work is about local dynamics at equilibrium states, bifurcations and

chaos in a discrete epidemic model (7) in the region: R2
+ = {(I,S) : I, S≥ 0}.

We have studied local dynamics at DFES and EES of DEM (7), and ex-

plored that DFES of DEM (7) is a sink if ((1−µ5)µ3+µ6)µ1
µ3+µ4

− µ3 − µ6 < µ7 <

((1−µ5)µ3+µ6)µ1−(µ3+µ4)(µ3+µ6)+2(µ3+µ6)
−2+µ3+µ4

and 0 < µ7 < 2 − µ3 − µ6, a source if µ7 >

max
{

((1−µ5)µ3+µ6)µ1−(µ3+µ4)(µ3+µ6)+2(µ3+µ6)
−2+µ3+µ4

,2−µ3−µ6

}
, a saddle if 2− µ3 − µ6 < µ7 <

((1−µ5)µ3+µ6)µ1−(µ3+µ4)(µ3+µ6)+2(µ3+µ6)
−2+µ3+µ4

or


((1−µ5)µ3 +µ6)µ1
−(µ3 +µ4)(µ3 +µ6)

+2(µ3 +µ6)


−2+µ3+µ4

< µ7 < 2−µ3−µ6,

non-hyperbolic if µ7 =
((1−µ5)µ3+µ6)µ1−(µ3+µ4)(µ3+µ6)+2(µ3+µ6)

−2+µ3+µ4
or µ7 = 2− µ3− µ6; EES is a
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sink if µ7 < min


((1−µ5)µ3+µ6)µ1

µ3+µ4
−µ3−µ6,


((1−µ5)µ3 +µ6)µ1

(−2+µ3 +µ6)+
4(µ3 +µ6)

{−2µ4 +2µ6 +(µ3 +µ4)
(µ3 +µ6)

}−

µ3−µ6}, source if µ7 > ((1−µ5)µ3+µ6)µ1(−2+µ3+µ6)+4(µ3+µ6)
−2µ4+2µ6+(µ3+µ4)(µ3+µ6)

− µ3 − µ6 and finally,

non-hyperbolic if µ7 = ((1−µ5)µ3+µ6)µ1(−2+µ3+µ6)+4(µ3+µ6)
−2µ4+2µ6+(µ3+µ4)(µ3+µ6)

− µ3 − µ6. Next in or-

der to study bifurcation analysis, we first examined the bifurcation sets at equilib-

rium states (i) flip bifurcation set F1|DFES := {(µ1,µ2,µ3,µ4,µ5,µ6,µ7) : 2−µ3−µ6}

at DFES, (ii) at DFES of DEM (7), the flip bifurcation set is F2|DFES :={
(µ1,µ2,µ3,µ4,µ5,µ6,µ7) : µ7 =

((1−µ5)µ3+µ6)µ1−(µ3+µ4)(µ3+µ6)+2(µ3+µ6)
−2+µ3+µ4

}
(iii) at

EES of two-dimensional discrete epidemic model (7), the flip bifurcation set is

F3|EES :=
{
(µ1,µ2,µ3,µ4,µ5,µ6, µ7) : µ7 =

((1−µ5)µ3+µ6)µ1(−2+µ3+µ6)+4(µ3+µ6)
−2µ4+2µ6+(µ3+µ4)(µ3+µ6)

−µ3−µ6

}
,

and then we have proved that at DFES flip bifurcation do not take place if

(µ1,µ2,µ3,µ4,µ5,µ6,µ7) ∈ F1|DFES and F2|DFES but at EES model undergoes flip bi-

furcation if (µ1,µ2,µ3,µ4,µ5,µ6,µ7) ∈ F3|EES. Furthermore, Hybrid control strategy is

utilized to control chaos in the under study DEM (7) due to occurrence of flip bifurcation.

Finally, numerical simulations are given to verify theoretical findings.
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