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Abstract. Differential equations are a very important tool for mathematical modeling to capture and describe

dynamic processes in various disciplines. The most difficult challenge in differential equation-based modeling is

determining the stability of the equilibrium point, especially for equilibria that cannot be found explicitly, which is

usually the case in complex models with high dimensions. This paper presents an alternative method for analyzing

the stability of an equilibrium point. The method presented is a numerical approach using Monte Carlo simulation.

This stability analysis uses two different approaches, namely the stability ratio approach and the eigenvalue based

analysis. Both approaches are tested on the SIR model whose stability has been tested. The model selected is

one that can explicitly represent equilibrium. The aim is to validate the constructed method. The SIR model

usually has a level of complexity in checking the stability of the internal equilibrium with the stability condition

R0 > 1. For parameters that allow human intervention in it, the influence of these parameters on the stability is

studied. Therefore, in this numerical approach, it is necessary to build a stability domain of the interior equilibrium

before implementing the Monte Carlo simulation. Simulation results show that both approaches are successful in

approximating the interior equilibrium stability of epidemiological models.
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1. INTRODUCTION

In mathematical modeling, real-world phenomena are commonly expressed and analyzed in

the form of a differential equations system. It is an abstract and simplified representation of a

complex system. The differential equations system describes relationship between all variables

in the system and their rate of change. In dynamic model, the system states change substantially

in time. The study of differential equations in dynamic model enable us to simulate, analyze,

and predict the behavior of the system. In recent years, dynamic modeling using differential

equations has been applied in a wide range of disciplines, such as in biology, physics, finance,

and engineering where accurate simulations and predictions are necessary to describe and solve

the challenges of real-world phenomena. For instance, in population dynamics, [1] discussed

analytical solutions of logistic growth model with two differential equations representing cou-

pled processes of growth and development. In 2022, [2] proposed a procedure for obtaining

analytical solutions of a population model with variable carrying capacity consisting of a cou-

pled system of nonlinear ordinary differential equations. In addition, [3] studied systems of

Stieltjes differential equations and presented an application to the predator-prey model describ-

ing the dynamics of a fish population subjected to predation and seasonal fishing strategy. The

qualitative analysis of the interaction between aphids and their predators, such as ladybugs,

was explored in [4]. The principal findings indicated that the proliferation of insectivorous

species, such as ladybirds, could serve as an alternative strategy for the management of aphid

populations, thereby reducing the reliance on chemical insecticides. The differential equation

method can be utilized to examine insecticide resistance in Anopheles mosquito populations.

This approach has been demonstrated in [5], which focuses on resistance at a single locus, and

further expanded in [6] to address resistance at two loci. A central finding of both studies is

that elevated insecticide usage correlates with augmented resistance levels. In epidemiology,

[7] extended SIR compartmental model to deterministic and stochastic time-delayed models in

order to predict the epidemiological trend of COVID-19. Furthermore, [8] presented two non-

linear mathematical models to gain insight into the optimal vaccination strategy under different

situations.
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One of significant concepts in dynamical system is equilibrium problem. Equilibrium can be

defined as the point in state-space where the system’s states remain unchanged. This condition

is also known as the steady-state. The stability of equilibrium in dynamical systems is contin-

gent upon the trajectories that originate in proximity to the equilibrium point and subsequently

diverge from it. The stability of solutions to differential and difference equations describing dy-

namical systems has been the subject of extensive discussion. For instance, Lyapunov stability

theory has been studied in [9], [10], and [11] to investigate the stability of equilibria in non-

linear systems. Other methodologies such as Integral Quadratic Constraint (IQC) formulations

and Linear Parameter Varying (LPV) techniques have been discussed by [12], [13] and [14].

However, in relatively complex models, equilibrium conditions cannot be determined explic-

itly, making it challenging to assess the stability of the equilibrium point. In epidemiological

systems arising from compartmental deterministic modeling, [15] proposed an algorithm to ob-

tain an analytical threshold condition for the local stability of the disease-free equilibrium. [16]

then analyzed the global asymptotic stability at the disease-free equilibrium of a metapopula-

tion model for the dynamics of malaria’s spread. [17] and [18] studied the direction of Hopf

bifurcations and the stability of bifurcated periodic solutions by applying the center manifold

theorem and bifurcation theory. [19] analyzed the stability of disease-free equilibrium in the

network-based Susceptible–Exposed–Infected–Recovered (SEIR) epidemic model. In addition,

they consider several control strategies and the effects on epidemic inhibition. In this paper, we

present a numerical approach to analyze equilibrium stability using Monte Carlo method for

complex dynamical models.

Monte Carlo method is a probabilistic approach to the behavior of uncertain system. It has

been implemented to analyze the stability of dynamical systems in various field. For instance,

[20] applied the technique to find small signal stability in electric power systems with uncer-

tain generation and demand. [21] and [22] implemented the method to determine the basin

of attraction for nonlinear systems and transient stability in power systems. The Monte Carlo

simulations provide a comprehensive description of system stability, nevertheless the computa-

tional resources are often considerably expensive. In this condition, some researchers proposed

combining the Monte Carlo with other techniques, such as Lyapunov exponents [21] and hybrid



4 DANI SUANDI, MARIA ARTANTA GINTING

transient stability approaches [22] to reduce the computational time. Furthermore, [23] com-

bined the non-intrusive generalized polynomial chaos with the indirect Lyapunov method as

an efficient alternative to Monte Carlo simulation. They estimated the stability and instability

regions with high accuracy and confidence levels at lower computational costs. [24] proposed

a numerical scheme to investigate stability in perturbed dynamical systems which computes

transient probability densities effectively. He applied the scheme in a three-dimensional system

under stochastic perturbations, and presents the analysis of stability under various conditions.

[25] present a numerical approach to analyze high-dimensional complex systems with asymp-

totic states. Incorporating machine learning, based on random sampling and clustering methods,

they characterize different asymptotic states or classes and their basins of attraction. This ap-

proach provides new insights into the bifurcation structure of complex dynamical systems.

This paper is organized as follows. In Section 2, the mathematical foundation is presented.

The concept of Monte Carlo simulation and the stability of dynamical systems are discussed

in this section. The algorithm of Monte Carlo simulation is described in Section 3. Here, we

introduce a Monte Carlo simulation method utilizing ratio stability and eigenvalue analysis. In

Section 4, the application of Monte Carlo Simulation to the Susceptible-Infected-Recovered

(SIR) model is discussed. Finally, the conclusion of this paper is presented in Section 5.

2. MATHEMATICAL FOUNDATION

The Monte Carlo method is a statistical technique that utilizes random sampling to obtain

numerical results. It is often used in situations where it is challenging or impossible to obtain

an analytical solution. The method is widely applied in various fields, such as physics, finance,

engineering, and computational biology [26]. Here we will discuss the Monte Carlo method in

dynamic systems, especially in epidemiological models to determine endemic stability, which

is usually difficult to do analytically. However, prior to an in-depth examination of this method-

ology within the subsequent epidemiological model, a comprehensive overview of the Monte

Carlo method and the stability of dynamical systems is provided.

2.1. Monte Carlo Simulations. Monte Carlo simulation is fundamentally rooted in the con-

cept of random variables and their expectations. A random variable X , defined on a probability
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space (Ω,F ,P), can be thought of as a function that maps outcomes of a random process to real

numbers. In [26], the expectation of a random variable, denoted by E[X ], is a crucial measure

that provides the average value one would expect over many repetitions of the random process,

mathematically given by:

E[X ] =
∫

Ω

X(ω)dP(ω).

Monte Carlo estimation leverages this concept by approximating the expectation through re-

peated sampling. Specifically, by generating a large number of independent and identically

distributed (i.i.d.) samples X1,X2, . . . ,XN of the random variable X , the Monte Carlo estimator

µ̂N approximates the true expectation µ = E[X ] as :

µ̂N =
1
N

N

∑
i=1

Xi,

converging towards µ as the number of samples N increases, a phenomenon supported by the

Law of Large Numbers:

µ̂N
a.s.−−→ µ as N→ ∞.

The generation of random numbers is a crucial step in Monte Carlo simulations, as it enables

the creation of independent and identically distributed (i.i.d.) samples. It is frequently under-

taken with the objective of ensuring that they adhere to a specific probability distribution. Two

distributions that are typically chosen as the constraints for generating data in the Monte Carlo

simulation are uniform and normal (Gaussian) distribution. The uniform distribution is one of

the simplest probability distributions which defines equal probability over a given range for a

continuous distribution. The probability density function of uniform distribution on interval

[a,b] is described as follows

fU(u) =
1

b−a
, for u ∈ [a,b].

In addition, another type of distribution with its convenient in mathematical properties is nor-

mal (Gaussian) distribution. It is commonly used in modeling a wide range of phenomena, as

many real-world processes can be thought of as the sum of several small, independent effects.
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Probability density function of normal random variable X ∼ N(µ,σ2) is presented as follows:

fX(x) =
1√

2πσ2
exp

(
−(x−µ)2

2σ2

)
, x ∈ R,

where µ is the mean and σ2 is the variance.

2.2. Stability of dynamical systems. Dynamical systems play an important role in mathe-

matical modeling, which is used to describe the dynamics of a population or the evolution of

a particular state. Typically, the system is expressed mathematically using ordinary differential

equations (ODEs). In [27], these systems can be represented in the form

dy
dt

= f(y,θθθ),

where y ∈ Rn is the state vector, f : Rn×Rm→ Rn is a vector-valued function representing the

dynamics of the system and, θθθ ∈ Rm is a vector of system parameters.

Identifying the stability of an equilibrium point is important in the study of mathematical

models based on differential equations. Equilibrium is achieved when f(ye) = 0, where ye is the

equilibrium point. The stability of equilibrium points is analyzed by linearized the system, and

calculating the Jacobian matrix around the equilibrium, J(ye), which is defined as :

J(ye) =
∂ f
∂y

∣∣∣∣
y=ye

=


∂ f1
∂y1

· · · ∂ f1
∂yn

... . . . ...
∂ fn
∂y1

· · · ∂ fn
∂yn


y=ye

.

The system can be approximated linearly around ye by:

dz
dt

= J(ye)z,

where z = y− ye represents a small perturbation from the equilibrium [27]. After lineariz-

ing the system, the eigenvalues of the Jacobian matrix will be investigated. The eigenvalues

λ1,λ2, . . . ,λn of the Jacobian can be used to describe the behavior system around the equi-

librium. An equilibrium is asymptotically stable if all eigenvalues have negative real parts

(ℜ(λi) < 0 for all i). Asymptotically stable means that any small perturbation will decay over

time, returning the system to equilibrium. Conversely, the equilibrium is unstable if at least one

eigenvalue has positive real part (ℜ(λi) > 0). In unstable condition, small perturbations will
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grow, leading the system away from equilibrium. However, if eigenvalues have non-positive

real parts (ℜ(λi)≤ 0) with at least one zero, further analysis is required [27].

3. MONTE CARLO SIMULATION ALGORITHM

3.1. Ratio Stability Approach. In this section, an algorithm is constructed to obtain the sta-

bility ratio value to evaluate the stability of the equilibrium of a dynamic system using Monte

Carlo simulation. We aim to analyze the stability of the equilibrium point ye, where f(ye,θθθ)= 0.

However, the equilibrium point may not be explicitly known. Thus, we use the Monte Carlo

method for a probabilistic stability analysis. The following are the steps in the stability analysis

of a dynamical system through the Ratio Stability Approach.

Step 1: Perturbation of Initial Conditions and Parameters. In the first step, it is possible

to commence the process by introducing a degree of variation into the initial values y0 and pa-

rameters θθθ that are deemed suitable for analysis. In some epidemiological cases, however, the

necessity for random initial values is minimal, as the initial conditions in the field are typically

already known, rendering random initial values optional. In the meantime, with regard to pa-

rameter values, the uncertainty of parameter values in the field, particularly in epidemiological

models, provides a rationale for introducing a degree of disturbance to the parameters. The

perturbed initial condition y′0 and perturbed parameter θθθ
′ are given by:

(3.1) y′0 = y0 +δy,

(3.2) θθθ
′ = θθθ +δθθθ ,

where δy and δθθθ are small perturbations, typically sampled from a distribution such as the nor-

mal or uniform distribution. For epidemic models, it is crucial to confirm that the generation of

parameter data is focused on the region of stability being analyzed. Typically, R0 < 1 indicates

the stability of the disease-free equilibrium, while R0 > 1 corresponds to the stability of the

endemic equilibrium (interior equilibrium).

Step 2: Numerical Simulation. For each set of perturbed initial conditions and parameters, we

simulate the system over a time interval [0,T ] using a suitable numerical integration method,

such as the Runge-Kutta method. The state vector at time T is denoted as y(T ).
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Step 3: Distance from Equilibrium. We evaluate the distance between the state vector at time

T and the equilibrium point ye. The distance d is given by:

(3.3) d = ‖y(T )−ye‖,

where ‖ · ‖ is typically the Euclidean norm. Since ye may not be explicitly known, it can be

approximated by the final state of the simulation if the system is stable.

Step 4: Stability Condition. The system is considered stable if the distance d is below a certain

threshold δ . Mathematically, this is expressed as:

(3.4) Stability =


1 if d < δ ,

0 if d ≥ δ .

Step 5: Stability Ratio. We repeat the above steps for N simulations, each with different

random perturbations. The stability ratio Rs is then computed as:

(3.5) Rs =
1
N

N

∑
i=1

Si,

where Si is the stability indicator for the i-th simulation. The stability ratio Rs provides a

probabilistic measure of the system’s stability. A high Rs value (close to 1) indicates that the

system is likely stable under the given perturbations, while a low Rs value suggests potential

instability. The pseudo code for performing a stability analysis using the stability ratio is shown

in Algorithm 1.
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Algorithm 1 Monte Carlo Ratio Stability Analysis

Require: Model function f (y,θθθ)

Require: Initial condition y0

Require: Parameter set θθθ = {θ1,θ2, . . . ,θm}

Require: Number of simulations N

Require: Perturbation scale ε

Require: Time range T

Require: Stability threshold δ

Ensure: Stability Ratio Rs

1: Initialize stability counter = 0

2: for i = 1 to N do

3: Step 1: Perturb the initial condition (optional)

4: perturbed y0 = y0 +RandomPerturbation(ε)

5: Step 2: Perturb the parameters

6: perturbed θθθ = θθθ +RandomPerturbation(ε)

7: Step 3: Run simulation

8: y(t) = Simulate( f ,perturbed y0,perturbed θθθ ,T )

9: Step 4: Evaluate distance from equilibrium

10: equilibrium y = EstimateEquilibrium(y(t))

11: distance = ‖y(T )− equilibrium y‖

12: Step 5: Check stability condition

13: if distance < δ then

14: stability counter = stability counter+1

15: end if

16: end for

17: Step 6: Compute Stability Ratio

18: Rs =
stability counter

N

19: return Rs
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3.2. Eigenvalue Approach. The second approach involves eigenvalue analysis of the Jaco-

bian matrix, which is computed either at the equilibrium point or at the end of a simulation.

The Jacobian matrix is obtained by linearizing the system around the equilibrium point, and its

eigenvalues provide information about the local stability properties of that equilibrium. When

dealing with complex or non-linear systems, the equilibrium point ye might not be explicitly

known, or the system’s behavior might be highly sensitive to initial conditions or parameters.

In such cases, the Monte Carlo method can be applied to assess stability probabilistically. In

this Monte Carlo framework, initial conditions and parameters will be perturbed randomly for

each simulation, and at the end of the simulation, the Jacobian matrix will be computed based

on the final state. The eigenvalues of this matrix will then be analyzed to assess whether the

system tends to be stable or unstable. The eigenvalues obtained from all Monte Carlo simula-

tions are constructed into a histogram, which allows for the analysis and determination of the

distribution of eigenvalues and the overall system stability tendency based on stability criteria.

The steps in determining stability through the eigenvalue approach are as follows:

Step 1: Perturbation of Initial Conditions and Parameters. As with the preceding approach,

the factors that have the potential to be disturbed are the initial conditions y0 and parameter

values θθθ . It should be noted, however, that the initial conditions are optional. In the event

that additional random deviations are introduced for the initial conditions and parameters, the

resulting equation can be expressed as follows:

y′0 = y0 +δy, θθθ
′ = θθθ +δθθθ ,

where δy and δθθθ are random perturbations, In most cases, the data is obtained from a normal

or uniform distribution. As before, it is important to focus on the stability region being analyzed

to ensure that the generated parameters fall within that region.

Step 2: Simulation of the System. The subsequent phase is to execute a dynamic simulation of

the system at a specified time interval, denoted by the interval T , utilising the initial conditions

and parameters that have been subjected to disturbances. However, prior to conducting the

simulation, it is essential to identify the parameter values that satisfy the stability or existence



MONTE CARLO FOR STABILITY OF EPIDEMIOLOGICAL MODELS 11

conditions for the equilibrium to be verified.

y(t) = Simulate(f,y′0,θθθ
′,T ).

This generates a trajectory of the system states over time.

Step 3: Jacobian Matrix and Eigenvalue Computation. In order to ascertain the stability of

the equilibrium through the eigenvalues, it is necessary to approximate it by taking the final

value of the simulation at t = T . The Jacobian matrix evaluated at this point is denoted by

J(y(T )). This value is dependent upon the previously selected parameters. Then, the eigenval-

ues of the Jacobian matrix must be calculated in order to obtain:

λ1,λ2, . . . ,λn = Eigenvalues(J(y(T ))).

Step 4: Repeated Simulations and Eigenvalue Collection. The previous procedures should

be repeated for a large number of Monte Carlo simulations, denoted as N. Further, all eigen-

values obtained from each simulation will be collated to create a comprehensive dataset of

eigenvalues.

Step 5: Histogram of Eigenvalues. The last step is creating a histogram of the eigenvalues

obtained from the simulations. A histogram is a chart that plots the distribution of possible

eigenvalues under random perturbations. It visualizes the likelihood of different stability sce-

narios based on the distribution of the eigenvalues. Algorithm 2 presents a comprehensive

breakdown of each phase of the procedure.
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Algorithm 2 Monte Carlo Eigenvalue Analysis

Require: Model function f (y,θθθ)

Require: Initial condition y0

Require: Parameter set θθθ = {θ1,θ2, . . . ,θm}

Require: Number of simulations N

Require: Perturbation scale ε

Require: Time range T

Ensure: Histogram of all eigenvalues

1: Initialize eigenvalue list = []

2: for i = 1 to N do

3: Step 1: Perturb the initial condition (optional)

4: perturbed y0 = y0 +RandomPerturbation(ε)

5: Step 2: Perturb the parameters

6: perturbed θθθ = θθθ +RandomPerturbation(ε)

7: Step 3: Run simulation

8: y(t) = Simulate( f ,perturbed y0,perturbed θθθ ,T )

9: Step 4: Compute Jacobian at the end of the simulation

10: J = ComputeJacobian( f ,y(T ),perturbed θθθ)

11: Step 5: Calculate eigenvalues of the Jacobian

12: eigenvalues = ComputeEigenvalues(J)

13: Step 6: Store all eigenvalues in eigenvalue list

14: Append eigenvalues to eigenvalue list

15: end for

16: Step 7: Plot histogram of eigenvalue list

17: PlotHistogram(eigenvalue list)

4. EXAMPLE OF APPLICATION

A basic mathematical model for epidemic spread is popularly known as the Susceptible-

Infected-Recovered (SIR) model. It describes the dissemination of infectious diseases within
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a population. To understand the long-term behaviour of the system, we need to analyze the

stability of the SIR model. Thus, we can determine whether small perturbations in initial con-

ditions or parameters will cause the system to deviate significantly from its equilibrium state.

In this study, a stability of the SIR model is analyzed using Monte Carlo simulation with two

approaches: the stability ratio and the histogram of eigenvalues.

In this study, the selected model for evaluating the efficacy of the Monte Carlo method is

one whose stability can be explicitly determined, rendering it an optimal choice for validation

purposes. In particular, we employ the SIR (Susceptible-Infected-Recovered) model, which

has been previously utilized in a case study within the research on mathematical modeling of

measles outbreaks [28]. The explicit determination of stability ensures that the Monte Carlo

simulations can be compared against well-established analytical results, thereby providing a

robust benchmark for evaluating the method’s accuracy and reliability. The objective of this

study is to confirm the effectiveness of the Monte Carlo approach in capturing key dynamics,

such as disease transmission and recovery rates, within a mathematically structured framework.

The model divides the population into three compartments: Susceptible (S̃), Infected (Ĩ), and

Recovered (R̃), with the following set of ordinary differential equations governing the dynamics

(4.1).

dS̃
dt

= Λ−β (1−u)
Ĩ
N
− (µ +u)S̃

dĨ
dt

= β (1−u)
Ĩ
N
− (γ +µ)Ĩ

dR̃
dt

= uS̃+ γ Ĩ−µR̃(4.1)

N(t) = S̃(t)+ Ĩ(t)+ R̃(t)

Here, Λ represents the recruitment rate, µ denotes the mortality rate, β stands for the transmis-

sion rate of the infection, γ refers to the recovery rate, and u signifies the vaccination control

rate.

In [28], the model was simplified and reduced to a two-dimensional form, as represented by

equation (4.2). The objective of this reduction was to simplify the system while maintaining

its essential dynamics, thus enabling more efficient analysis and computation. By focusing on
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two key variables, the simplified model captures the core behavior of the original system, fa-

cilitating the study of stability, parameter sensitivities, and other important properties without

compromising the overall accuracy of the results. Furthermore, this transformation facilitates

the application of numerical methods, such as Monte Carlo simulations, by reducing the com-

putational burden.

dS
dt

= µ−β (1−u)SI− (µ +u)S(4.2)

dI
dt

= β (1−u)SI− (γ +µ)I

It is established that the interior equilibrium derived from equation (4.2) is as follows:

EE :=
{

S =
γ +µ

β (1−u)
, I =

(R0−1)(µ +µ)

β (1−u)

}
.

The stability of the interior equilibrium, as calculated in the study [28], is determined by the

Basic Reproduction Number R0. According to the findings, the interior equilibrium remains

stable if the condition R0 > 1 is satisfied. Mathematically, the expression for R0 is given by

R0 =
β µ(1−u)

(u+µ)(γ +µ)
.

This threshold value,R0, serves as a critical parameter for understanding disease dynamics:

if R0 > 1 the disease can spread and maintain an endemic equilibrium, while if R0 < 1, the

infection will die out over time.

The Monte Carlo Simulation approach will be employed to examine the region established

under conditions that ensure the stability of the interior equilibrium. This will permit an inves-

tigation of the stability’s behavior across a range of parameters. Subsequently, we will apply

the stability ratio algorithm and/or utilize the eigenvalue histogram method, as previously de-

scribed, to assess the model’s stability in a more comprehensive manner. These approaches will

facilitate the quantification of stability characteristics through the analysis of the distribution of

eigenvalues, thereby offering further insight into the influence of perturbations on equilibrium

and the stability of the system under varying conditions. The objective is to achieve a deeper

understanding of the stability landscape and verify the robustness of the equilibrium across

different scenarios by combining these techniques.
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1. Stability Ratio Approach Results. The first approach entails the calculation of the stability

ratio through the utilization of Monte Carlo simulations. In this approach, the parameters of the

SI model, β and u, are subjected to random perturbation, and the system is then simulated to

ascertain whether the equilibrium remains stable or becomes disrupted. The parameter values

from [28] serve as the basis for this simulation, with µ = γ = 0.01. Meanwhile, the values of

β and u are generated using a uniform distribution, with 1000 samples each. The range for β

is set between 0.4 and 1, while for u, the range is between 0.01 and 0.4. The stability of the

system is contingent upon the population’s ability to return to an equilibrium state following

minor disturbances. The stability ratio is defined as the proportion of simulations wherein the

system maintains stability relative to the total number of simulations conducted. The results of

the simulation conducted using this approach are presented in Figure 4.1.
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FIGURE 4.1. Simulation Result of Monte Carlo Simulation through stability

ratio Approach

Figure 4.1 presents three different graphs: a stability region plot, an infection dynamics plot

over time, and a stability ratio plot. The results obtained from randomly generated parameters

for β and u are filtered based on the condition R0 > 1, which satisfies the stability criterion for
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the interior equilibrium, and these are shown in the first graph. The second graph, illustrating the

infection dynamics over time, is based on one of the parameter samples i.e β = 0.4 and u= 0.05.

This helps to depict the final state of the simulation, where the solution path converges towards

the interior equilibrium. The 1000 iterations with various parameter values indicate that the

stability ratio is consistently one, confirming that the condition R0 > 1 guarantees the stability

of the interior equilibrium.

2. Eigenvalue Approach Results. The second method involves analyzing the eigenvalues of

the Jacobian matrix. In this approach, the same set of parameters as previously used are gen-

erated and filtered according to the stability conditions of the equilibrium under consideration,

specifically the interior equilibrium. Once the randomly generated parameters are filtered, a

simulation is conducted, which includes examining the eigenvalues of the Jacobian matrix at

the final state of the simulation. The real parts of these eigenvalues are subsequently presented

in the form of a histogram. The results of this simulation approach are displayed in Figure 4.2.
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Figure 4.2 illustrates the stability region, the system dynamics over time, and the histogram

of all possible eigenvalues. The first two graphs are consistent with the previous approach,

displaying the stability region of the interior equilibrium and the system’s solution trajectory.

The third result, presented as a histogram of the real parts of all eigenvalues, indicates that

all eigenvalues possess negative real parts. Meanwhile, the solution trajectory demonstrates

convergence towards the interior equilibrium. This suggests that the region where R0 > 1

serves as a stability region for the interior equilibrium.

5. CONCLUSION

High-dimensional dynamical systems, where equilibrium points are not explicitly known,

present significant challenges for analytical stability determination. In such cases, numeri-

cal methods can be invaluable for confirming the stability of equilibrium points, particularly

those that are not explicitly identifiable. Two distinct approaches to Monte Carlo simulations

have been employed for the assessment of stability in endemic models. The results of these

simulations illustrate the efficacy of numerical techniques in elucidating the intricate stability

characteristics of these systems. The stability ratio approach provides a probabilistic measure

of stability across a multitude of perturbations, whereas the eigenvalue analysis offers a more

profound insight into the local stability properties in the vicinity of equilibrium points. The

combination of these two approaches—stability ratio and eigenvalue analysis—offers a robust

method for evaluating the stability of the epidemic model in the presence of random perturba-

tions. By analyzing both the stability ratio and the distribution of eigenvalues, a comprehensive

understanding of how this epidemiological system behaves under various conditions can be ob-

tained, as well as an estimation of the likelihood that the system will remain stable or become

unstable when faced with uncertainties. This implementation will furnish researchers with in-

valuable instruments for forecasting and administering disease outbreaks within the context of

population dynamics.

DATA AVAILABILITY

The Python source code utilized in this study is publicly accessible. The code is accessible via

GitHub at https://github.com/DaniSuandi174/MonteCarloSimulationForEpidemicModel.git,



18 DANI SUANDI, MARIA ARTANTA GINTING
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[8] G. González-Parra, M.R. Cogollo, A.J. Arenas, Mathematical modeling to study optimal allocation of vac-

cines against COVID-19 using an age-structured population, Axioms 11 (2022), 109. https://doi.org/10.339

0/axioms11030109.

[9] C. Pukdeboon, A review of fundamentals of lyapunov theory, J. Appl. Sci. 10 (2011), 55–61.

[10] S. Sastry, Lyapunov stability theory, in: Nonlinear Systems, Springer, New York, 1999: pp. 182–234. https:

//doi.org/10.1007/978-1-4757-3108-8 5.

[11] A. Papachristodoulou, S. Prajna, On the construction of Lyapunov functions using the sum of squares de-

composition, in: Proceedings of the 41st IEEE Conference on Decision and Control, 2002., IEEE, Las Vegas,

NV, USA, 2002: pp. 3482–3487. https://doi.org/10.1109/CDC.2002.1184414.

[12] A. Megretski, A. Rantzer, System analysis via integral quadratic constraints, IEEE Trans. Autom. Control 42

(1997), 819–830. https://doi.org/10.1109/9.587335.

[13] A.N. Vargas, C.M. Agulhari, R.C.L.F. Oliveira, V.M. Preciado, Robust stability analysis of linear parameter-

varying systems with markov jumps, IEEE Trans. Autom. Control 67 (2022), 6234–6239. https://doi.org/10

.1109/TAC.2021.3132231.

[14] P.J.W. Koelewijn, Analysis and control of nonlinear systems with stability and performance guarantees: A

linear parameter-varying approach, Phd Thesis, Eindhoven University of Technology, (2023).

[15] J.C. Kamgang, G. Sallet, Computation of threshold conditions for epidemiological models and global stability

of the disease-free equilibrium (DFE), Math. Biosci. 213 (2008), 1–12. https://doi.org/10.1016/j.mbs.2008.0

2.005.

[16] J.-H. Noubissi, J.C. Kamgang, Stability analysis of a metapopulation model for the dynamics of malaria’s

spread including climatic factors, Heliyon 10 (2024), e31666. https://doi.org/10.1016/j.heliyon.2024.e31666.

[17] J.-F. Zhang, W.-T. Li, X.-P. Yan, Hopf bifurcation and stability of periodic solutions in a delayed eco-

epidemiological system, Appl. Math. Comput. 198 (2008), 865–876. https://doi.org/10.1016/j.amc.2007

.09.045.

[18] Z. Hu, Z. Teng, L. Zhang, Stability and bifurcation analysis in a discrete sir epidemic model, Math. Comput.

Simul. 97 (2014), 80–93. https://doi.org/10.1016/j.matcom.2013.08.008.

https://doi.org/10.1016/j.amc.2019.03.031
https://doi.org/10.1016/j.amc.2019.03.031
https://doi.org/10.1016/j.apm.2022.01.025
https://doi.org/10.3390/axioms10010018
https://doi.org/10.3390/axioms11030109
https://doi.org/10.3390/axioms11030109
https://doi.org/10.1007/978-1-4757-3108-8_5
https://doi.org/10.1007/978-1-4757-3108-8_5
https://doi.org/10.1109/CDC.2002.1184414
https://doi.org/10.1109/9.587335
https://doi.org/10.1109/TAC.2021.3132231
https://doi.org/10.1109/TAC.2021.3132231
https://doi.org/10.1016/j.mbs.2008.02.005
https://doi.org/10.1016/j.mbs.2008.02.005
https://doi.org/10.1016/j.heliyon.2024.e31666
https://doi.org/10.1016/j.amc.2007.09.045
https://doi.org/10.1016/j.amc.2007.09.045
https://doi.org/10.1016/j.matcom.2013.08.008


20 DANI SUANDI, MARIA ARTANTA GINTING

[19] J. Zhou, Y. Zhao, Y. Ye, Complex dynamics and control strategies of SEIR heterogeneous network model

with saturated treatment, Physica A 608 (2022), 128287. https://doi.org/10.1016/j.physa.2022.128287.

[20] Z. Xu, Z.Y. Dong, P. Zhang, Probabilistic small signal analysis using Monte Carlo simulation, in: IEEE

Power Engineering Society General Meeting, 2005, IEEE, San Francisco, CA, USA, 2005: pp. 1707–1713.

https://doi.org/10.1109/PES.2005.1489425.

[21] A.R. Armiyoon, C.Q. Wu, An innovative approach for identifying boundaries of a basin of attraction for

a dynamical system using monte carlo techniques and lyapunov exponents, in: 53rd IEEE Conference on

Decision and Control, IEEE, Los Angeles, CA, USA, 2014: pp. 6299–6304. https://doi.org/10.1109/CDC.20

14.7040376.

[22] C.M.M. Ferreira, J.A. Dias Pinto, F.P.M. Barbosa, Dynamic security analysis of an electric power system us-

ing a combined monte carlo-hybrid transient stability approach, in: 2001 IEEE Porto Power Tech Proceedings

(Cat. No.01EX502), IEEE, Porto, Portugal, 2001: p. 6. https://doi.org/10.1109/PTC.2001.964742.

[23] L. Nechak, S. Berger, E. Aubry, Non-intrusive generalized polynomial chaos approach to the stability analysis

of uncertain nonlinear dynamic systems, in: Eighth International Multi-Conference on Systems, Signals &

Devices, IEEE, Sousse, 2011: pp. 1–6. https://doi.org/10.1109/SSD.2011.5767403.

[24] M. Labou, Numerical schemes for stability in probability of perturbed dynamical systems, Int. Appl. Mech.

48 (2012), 465–483. https://doi.org/10.1007/s10778-012-0534-x.

[25] M. Gelbrecht, J. Kurths, F. Hellmann, Monte carlo basin bifurcation analysis, New J. Phys. 22 (2020),

033032. https://doi.org/10.1088/1367-2630/ab7a05.

[26] D. Landau, K. Binder, A guide to Monte Carlo simulations in statistical physics, Cambridge University Press,

2021.

[27] S. Lynch, Dynamical systems with applications using MAPLE, Springer, 2010.

[28] D. Suandi, Optimal control problem of vacination for the spread of measles diseases model, J. Ris. Apl. Mat.

2 (2018), 76–83. https://doi.org/10.26740/jram.v2n2.p76-83.

https://doi.org/10.1016/j.physa.2022.128287
https://doi.org/10.1109/PES.2005.1489425
https://doi.org/10.1109/CDC.2014.7040376
https://doi.org/10.1109/CDC.2014.7040376
https://doi.org/10.1109/PTC.2001.964742
https://doi.org/10.1109/SSD.2011.5767403
https://doi.org/10.1007/s10778-012-0534-x
https://doi.org/10.1088/1367-2630/ab7a05
https://doi.org/10.26740/jram.v2n2.p76-83

	1. Introduction
	2. Mathematical Foundation
	2.1. Monte Carlo Simulations
	2.2. Stability of dynamical systems

	3. Monte Carlo Simulation Algorithm
	3.1. Ratio Stability Approach
	Step 1: Perturbation of Initial Conditions and Parameters
	Step 2: Numerical Simulation
	Step 3: Distance from Equilibrium
	Step 4: Stability Condition
	Step 5: Stability Ratio
	3.2. Eigenvalue Approach
	Step 1: Perturbation of Initial Conditions and Parameters
	Step 2: Simulation of the System
	Step 3: Jacobian Matrix and Eigenvalue Computation
	Step 4: Repeated Simulations and Eigenvalue Collection
	Step 5: Histogram of Eigenvalues

	4. Example of Application
	1. Stability Ratio Approach Results 
	2. Eigenvalue Approach Results

	5. Conclusion
	Data Availability
	Authorship
	Acknowledgments
	Conflict of Interests
	References

