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Abstract. In this paper, we establish a mathematical model for Tuberculosis (TB) spread in a human population.

The proposed mathematical model is in the form of a nonlinear fractional order differential equation system which

is an extension of the SEIR epidemic model. The model is constructed based on grouping the population into five

compartments, namely the susceptible sub-population compartment, the exposed sub-population compartment,

the infected sub-population compartment, the quarantine sub-population compartment, and the recovered sub-

population compartment. It was shown that the stability of the equilibrium points of the model depends on the

basic reproduction number, and the addition of the quarantine sub-population compartment decreases the number

of basic reproduction. A numerical simulation is given to demonstrate the validity of the results. The analysis

reveals that the convergence to the equilibrium points becomes faster as the fractional order increases.
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1. INTRODUCTION

Tuberculosis (TB) is one infectious illness that is the root cause of a lot of problems. It is

typically caused by Mycobacterium tuberculosis and affects the lungs. The most typical way
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that someone with irresistible pneumonic TB communicates the disease to others is through

bead cores, which are aerosolized by hacking, sniffling, or talking. Despite several decades of

study, the widespread availability of a vaccine, and a clear WHO drive to support a coordinated

worldwide TB control plan, tuberculosis remains a major cause of infectious disease-related

mortality [1, 2].

The transmission of tuberculosis (TB) disease has been studied by many researchers using

mathematical models in the form of nonlinear differential equations, as seen in [3, 6, 5, 4, 7]. It

has been shown that mathematical modeling is important for better understanding the dynamics

of tuberculosis transmission as well as for evaluating the effectiveness of various control and

prevention strategies.

One of the much-explored models of tuberculosis transmission in the form of non-linear dif-

ferential equations is the SEIR model, see [3, 8, 9]. In their model, the observed human popu-

lation at time t, denoted by N(t), is divided into fourth epidemiological sub-compartments, that

are susceptible S(t), exposed during the latent period E(t), TB active (infected) I(t), recovery

due to the effective treatment R(t). In general, a basic compartment diagram for SEIR model is

given in the Figure 1 [3], where the parameter Λ denotes the net inflow of the susceptible pop-

ulation per unit value of time (comprising new births and new residents), d1 is the natural death

rate, α is the contact rate betwen susceptible and infected, r is the outflow rate from exposed to

infected, and σ2 is the recovery rate due to the effective treatment.

FIGURE 1. Basic compartment diagram of SEIR model

Based on the Figure 1, the transmission model for TB dynamics SEIR is given by the follow-

ing system of non-linear differential equations [8, 9]:
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DS = Λ−αSI−d1S

DE = αSI− (r+d1)E

DI = rE− (d1 +σ2) I

DR = σ2I−d1R,

(1)

where D =
d
dt
, and the initial conditions

S(0) = S0,E(0) = E0, I(0) = I0,R(0) = R0.(2)

In this paper, we modify these existing SEIR models by adding a compartment quarantine,

denoted Q, as an effort to prevent the transmission of TB. Figure 2 below illustrates the addition

of the quarantine compartment from Figure 1 above, where β1 is the outflow rate from E to Q,

β2 is the outflow rate from I to Q, d2 is the TB disease-induced death rate, σ3 is the outflow rate

from E to R, and τ is the outflow rate from R to S.

FIGURE 2. Compartment diagram of SEIQR model
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In addition, in this paper, we use the fractional derivative of Caputo type as a replacement the

usual derivative. It is well known that the use of fractional derivatives in epidemic models is

currently widely explored, because fractional derivatives are trusted as a generalization of inte-

ger order derivatives, so modeling using fractional differential equations is a powerful method

for studying the overall spread of the disease see [10, 11, 12, 13].

All inflows and outflows have been shown in the flowchart in Figure 2, and the five groups

can be converted into the following system of fractional-order non-linear differential equations

D (σ)S = Λ−αSI−d1S+ τR

D (σ)E = αSI− (r+β1 +σ3 +d1)E

D (σ)I = rE− (β2 +σ2 +d1 +d2) I

D (σ)Q = β1E +β2I− (σ1 +d1 +d2)Q

D (σ)R = σ3E +σ2I +σ1Q− (d1 + τ)R

(3)

with the initial conditions

S(0) = S0,E(0) = E0, I(0) = I0,Q(0) = Q0,R(0) = R0,(4)

where D (σ) is the Caputo fractional derivative operator of oder σ with 0 < σ < 1, and the total

population size is N(t), which is defined as

N = S+E + I +Q+R.(5)

The system (3) is called as fractional order of SEIQR model.

In this paper, we study the stability of the endemic and disease-free equilibriums of the model

(3). In addition, we also study the effect of the addition of the quarantine compartment on the

basic reproduction number and the number of infected individuals. As far as the authors know,

there is still no solution to this problem. As a result, the findings of this study represent both a

novel and a fresh advancement in the field of fractional-order epidemic dynamics.

The paper is organized as follows: Section 2 presents some mathematical concepts needed

to analyze the stability of fractional order dynamical systems. The main result of this article is

presented in the section 3. Section 4 concludes the paper.
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2. PRELIMINARIES

This section contains the mathematical results needed for the analysis. For the integrable

vector function f : [0,∞)→ Rn and σ ∈ (i−1, i) , i ∈ N, the Caputo fractional derivative of

order σ of the function f is defined by

(6) D (σ)f(t) =
1

Γ(i−σ)

t∫
0

D (i)f(s)
(t− s)σ−i+1 ds

where Γ(.) is the Euler Gamma function [14], and D (i)f(.) is the usual i th derivative of function

f(.).

Let us consider the fractional-order nonlinear system involving Caputo derivative

(7) D (σ)f(t) = h(t, f(t))

with suitable initial conditions f(0) = f0, where f(t) ∈ Rn is the state vector of the system (7),

h : [0,∞)×Rn→ Rn. Specifically, the system (7) can be written as

(8) D (σ)f(t) = A f(t)),

where A ∈ Rn×n if f is linear. The point f∗ is said the equilibrium point of the system (7) if

h(t, f∗) = 0.

Theorem 2.1. [15] If |arg(λ j)|>
σπ

2
for each eigenvalues λ j, j = 1,2, · · · ,n of the matrix A ,

then the fractional-order linear system (8) with σ ∈ (0,1) is asymptotically stable

Theorem 2.2. [15] Let f∗ is an equilibrium of the the fractional-order system (7) with σ ∈ (0,1).

The equilibrium point f∗ is asymptotically stable if

(9) |arg(λ )|> σπ

2
,

for all roots λ of the equation

(10) |Jf∗−λ I|= 0

where Jf∗ is the Jacobian matrix of system (7) at the equilibrium f∗ and I is the identity matrix.
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3. MATHEMATICAL ANALYSIS OF THE SYSTEM

3.1. Boundedness of Solutions.

Theorem 3.1. The solutions of the system (3) with initial condition (4) is uniformly bounded

for all t ≥ 0 in the following region

Ω = {(S,E, I,Q,R) ∈ R5 : 0 < N ≤ Λ

d1
}.(11)

Proof. Using (5) and (3) we have

D (σ)N = D (σ)S+D (σ)E +D (σ)I +D (σ)Q+D (σ)R

= Λ−d1N−d2(I +Q).(12)

Since d2(I +Q)≥ 0, we have

D (σ)N +d1N ≤ Λ.(13)

Accordance to Lemma 3 in [16], the solution of (13) is given by

N(t) ≤
(

N(0)− Λ

d1

)
Eσ (−d1tσ )+

Λ

d1
,(14)

where Eσ (−d1tσ ) =
∞

∑
k=0

(−d1tσ )k

Γ(σk+1)
is a Mittag-Leffler function. Therefore,

lim
t→∞

sup N(t)≤ Λ

d1
,

that shows that the system (3) is uniformly bounded. �

3.2. Existence of Equilibria and Basic Reproduction Number. There are two equilibria for

the model (3), namely the TB free-equilibrium (denoted by E0), and the TB endemic equilib-

rium (denoted by Ee), both found by setting

(15) D (σ)S = D (σ)E = D (σ)I = D (σ)Q = D (σ)R = 0,

The TB free-equilibrium is E0 =

(
Λ

δ1
, 0, 0, 0, 0

)
found by setting I = 0.

The basic reproduction number is calculated using this TB free-equilibrium. As is commonly

known, the basic reproduction number, denoted as ℜ0, quantifies the likelihood that a disease

would spread throughout a population. . The basic reproduction number is the total number of
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secondary infections that a single primary infection can cause in a fully susceptible population.

The basic reproduction number can be calculated using the Next-Generation Matrix technique

[17]. The matrix F dan V for our model are as follows:

F =


αSI

0

0

 , V =


(r+β1 +σ3 +d1)E

−rE +(β1 +σ1 +d1 +d2)I

−β1E−β2I +(σ1 +d1 +d2)Q

 ,

The aforementioned matrices Jacobian, evaluated at the TB-free equilibrium point, is provided

by

F =


0

αΛ

d1
0

0 0 0

0 0 0

 and V =


ε1 0 0

−r ε2 0

−β1 −β2 ε3

 ,

where ε1 = r+β1 +σ3 +d1, ε2 = β2 +σ2 +d1 +d2,ε3 = σ1 +d1 +d2. The spectral radius of

the matrix FV−1 gives the basic reproduction number ℜ0 and it is given by

ℜ0 =
αΛr

d1ε1ε2
.(16)

Next, by setting Ie > 0, one gets the TB endemic equilibrium Ee = (Se, Ee, Ie, Qe, Re), for

which

Se =
Λ

d1R0
, Ee =

d1ε2η(R0−1)
αr (η−ρ)

, Ie =
d1η(R0−1)
α (η−ρ)

,

Qe =
d1ε1ε2ε4(R0−1)(β1ε2 + rβ2)

αr (η−ρ)
, Re =

d1ε1ε2ρ(R0−1)
αrτ (η−ρ)

,

where

(17) ε4 = d1 + τ, η = ε1ε2ε3ε4, ρ = τσ3ε2ε3 + rτσ2ε3 + τσ1β1ε2 + rτσ1β2.

3.3. Stability Analysis. To conduct the stability analysis, we first obtain the system’s Jaco-

bian (3), as follows:
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J =



−αI−d1 0 −αS 0 τ

αI −(r+β1 +σ3 +d1) αS 0 0

0 r −(β2 +σ2 +d1 +d2) 0 0

0 β1 β2 −(σ1 +d1 +d2) 0

0 σ3 σ2 σ1 −(d1 + τ)


The Jacobian at around the TB free-equilibrium is given by the following matrix:

JE0 =



−d1 0
−αΛ

d1
0 τ

0 −ε1
αΛ

d1
0 0

0 r −ε2 0 0

0 β1 β2 −ε3 0

0 σ3 σ2 σ1 −ε4


,(18)

Based on the Jacobian (18) one gets the following characteristic polynomial:

(−d1−λ )(−ε3−λ )(−ε4−λ )p(λ ) = 0,(19)

where p(λ ) = λ 2 +(ε1 + ε2)λ + ε1ε2 (1−ℜ0). The Jacobian matrix JE0 possesses the five

eigenvalues that given by λ1 = −d1,λ2 = −ε3,λ3 = −ε4 and λ4 and λ5 are the roots of p(λ ).

One can easily get that the roots of p(λ ) are

λ4,5 =
1
2

(
−(ε1 + ε2)±

√
(ε1 + ε2)

2 +4ε1ε2(ℜ0−1)
)
.(20)

It is obvious that eigenvalues λi, for i = 1,2,3 are negative, thus they satisfy |arg(λi)| >
σπ

2
,

whereas |arg(λ4,5)| >
σπ

2
if ℜ0 < 1, and it implies |arg(λ3,4)| <

σπ

2
when ℜ0 > 1. Hence,

based on the Theorem 2.2, E0 is asymptotically stable if ℜ0 < 1 and becomes unstable if ℜ0 > 1.

Furthermore, the Jacobian at around the TB endemic equilibrium Ee is given by

JEe =



−αI∗−d1 0 −αS∗ 0 τ

αI∗ −ε1 αS∗ 0 0

0 r −ε2 0 0

0 β1 β2 −ε3 0

0 σ3 σ2 σ1 −ε4


,(21)
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Based on the Jacobian (21) one gets the following characteristic polynomial:

λ
5 +a1λ

4 +a2λ
3 +a3λ

2 +a4λ +a5 = 0,(22)

where

a1 =αI∗+d1 + ε1 + ε2 + ε3 + ε4,

a2 =ε1ε2−αS∗r+(αI∗+d1 + ε3 + ε4)(ε1 + ε2)+(αI∗+d1)(ε3 + ε4)+ ε3ε4,

a3 =(αI∗+d1 + ε3 + ε4)(ε1ε2−αS∗r)+(ε1 + ε2)((αI∗+d1)(ε3 + ε4)+ ε3ε4)+

(αI∗+d1)ε3ε4 +αI∗(αS∗r− τσ3),

a4 =(ε1ε2−αS∗r)((αI∗+d1)(ε3 + ε4)+ ε3ε4)+(ε1 + ε2)ε3ε4(αI∗+d1)+αI∗

(αS∗r(ε3 + ε4)− τ(rσ2 +β1σ1 +σ3ε2 +σ3ε3)),

a5 =(αI∗+d1)ε3ε4(ε1ε2−αS∗r)+αI∗(αS∗rε3ε4− τ(rβ2σ1 + rσ2ε3 +β1σ1ε2+

σ3ε2ε3)).

Using the Routh-Hurwitz’s criteria, the the real part of eigenvalues λi, i = 1,2,3,4,5 of the

matrix JEe are negative if

(i). a1 > 0,

(ii). a1a2−a3 > 0,

(iii). a1a2a3−a2
1a4−a2

3 +a5a1 > 0,

(iv). a1a2a3a4−a5a1a2
2−a2

1a2
4 +2a5a1a4−a2

3a4 +a5a2a3−a2
5 > 0,

(v). a1a2a3a4a5−a2
5a1a2

2−a5a2
1a2

4 +2a2
5a1a4−a5a2

3a4 +a2
5a2a3−a3

5 > 0.

and this is satisfied if ℜ0 > 1. This implies |arg(λi)| >
σπ

2
for i = 1,2,3,4 when ℜ0 > 1.

Hence, based on the Theorem 2.2, Ee is asymptotically stable if ℜ0 > 1 and becomes unstable

if ℜ0 < 1.

3.4. Numerical Simulation. In order to show the validity of the results, in the following we

present a numerical simulation.

For the model (3), let Λ = 123381,τ = 0.1111,α = 0.00000007,β1 = 0.25,β2 = 0.18,σ1 =

0.1,σ2 = 0.0714,σ3 = 0.2,r = 0.2,d1 = 0.0035,d2 = 0.0825. The initial conditions are S(0) =
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40214389;E(0) = 503911; I(0) = 135388;Q(0) = 59638;R(0) = 81289. Based on these pa-

rameter values, we find that the TB-endemic equilibrium point Ee = (1.5749× 107,2.9338×

105,1.7391× 105,5.6263× 105,1.1113× 106) and ℜ0 = 2.2383. In other case, if we fix

β1 = β2 = σ1 = 0 (without flow toward the quarantine compartment) such that (3) becomes

the SEIR model, we have the TB-endemic equilibrium point Ee = (4.5365× 106,8.8368×

105,1.1228×106,0,2.2418×106) and ℜ0 = 7.7707.

This fact shows that the absence of a quarantine compartment increases the number of basic

reproduction. One can see that the TB-endemic equilibrium Ee is asymptotic stable in both cases

due to ℜ0 > 1. Moreover, the convergence of the TB-endemic equilibrium point becomes faster

as the fractional order increases. Graphs the susceptible subpopulation, exposed subpopulation,

infected subpopulation, quarantine subpopulation and recovery subpopulation of both cases for

several fractional order are given in Figure 3 and Figure 4. In Figure 4, it can be seen that

the number of sub-populations in the quarantine compartment is gradually zero, this is due the

initial sub-population Q(0) 6= 0.

4. CONCLUSION

We have established a fractional order SEIQR mathematical model for Tuberculosis (TB)

spread in a human population. It was shown that the stability of the equilibrium points depends

on the basic reproduction number, and the addition of the quarantine sub-population compart-

ment decreases the number of basic reproduction. It has shown that the TB free-equilibrium

is asymptotically stable if ℜ0 < 1; otherwise, it is unstable. The TB endemic-equilibrium is

asymptotically stable if ℜ0 > 1, otherwise it is unstable.
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FIGURE 3. The curves of susceptible, exposed, infected, quarantine and recovery
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FIGURE 4. The curves of susceptible, exposed, infected, quarantine, and

recovery without flow toward the quarantine compartment
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