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Abstract. In this work, we address Type 1 diabetes (T1D), a chronic autoimmune condition characterized by

elevated glucose levels in patient’s bloodstream. We propose a robust approach for regulating blood glucose (BG)

levels in individuals with T1D by utilizing a proportional-integral-derivative (PID) control method. The minimal

Bergman model is utilized to represent the dynamics of glucose-insulin in the blood plasma. The proposed control

strategy integrates the PID controller as a core element for BG regulation. Through simulations, our findings

demonstrate the efficacy of the proposed controller in maintaining BG levels close to a target value of 80 mg/dL,

starting from a state of hyperglycemia, even amidst various perturbations associated with meal intake.
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1. INTRODUCTION

The pancreas plays a pivotal role in regulating macronutrient digestion and, therefore, metab-

olism and energy homeostasis through the release of various digestive enzymes and pancreatic

hormones [1]. Positioned behind the stomach in the left upper abdominal cavity, it is anatom-

ically divided into the head, body, and tail. Predominantly composed of acinar or exocrine

∗Corresponding author

E-mail address: med.hfdn@gmail.com

Received November 5, 2024
1



2 ECHAJEI, HAFDANE, IDMBAREK, FERJOUCHIA, RACHIK

cells, this secretory organ secretes pancreatic juice laden with digestive enzymes like amylase,

pancreatic lipase, and trypsinogen into the ducts, including the main pancreatic and the acces-

sory pancreatic duct. Conversely, pancreatic hormones are discharged in an endocrine manner,

directly into the bloodstream. These endocrine cells cluster to form the islets of Langerhans,

small, island-like structures within the exocrine pancreatic tissue, representing only 1–2% of

the entire organ (see Figure 1). Within these islets, five distinct cell types release various

hormones: glucagon-producing α-cells, representing 15–20% of the total islet cells; amylin-

, C-peptide-, and insulin-producing β -cells [2], accounting for 65–80%; pancreatic polypep-

tide (PP)-producing γ-cells [3], comprising 3–5% ; somatostatin-producing δ -cells, constitut-

ing 3–10% ; and ghrelin-producing ε-cells [4], which make up less than 1% of the total islet

cells. Each hormone has distinct functions: glucagon elevates blood glucose levels, while in-

sulin lowers them [5]. Somatostatin inhibits both glucagon and insulin release [6], whereas PP

regulates the exocrine and endocrine secretion activities of the pancreas [7]. Together, these

hormones intricately regulate glucose homeostasis in vertebrates. Although the cellular com-

position is similar among species like humans, rats, and mice, their islet cytoarchitecture varies

significantly. Rodent islets are predominantly composed of centrally situated β -cells with other

cell types in the periphery, whereas human islets exhibit interconnected α- and β -cells [8].

The pancreas plays a crucial role in maintaining blood glucose levels within the tightly regu-

lated range of 4−6 mM through the orchestrated actions of various hormones, notably glucagon

and insulin. This process is known as glucose homeostasis. During periods of low blood glu-

cose, such as during sleep or between meals, α-cells release glucagon, which triggers hepatic

glycogenolysis and stimulates hepatic and renal gluconeogenesis, thereby raising endogenous

blood glucose during extended fasting [10]. Conversely, when blood glucose levels rise, partic-

ularly after a meal, β -cells are stimulated to secrete insulin [11]. Upon binding to its receptor

on muscle and adipose tissue, insulin facilitates the uptake of glucose into these tissues, con-

sequently reducing blood glucose levels by clearing exogenous glucose from the bloodstream

(SEE Figure 2) [12]. Additionally, insulin promotes glycogenesis, lipogenesis, and the incorpo-

ration of amino acids into proteins, exhibiting its anabolic properties in contrast to the catabolic

effects of glucagon [13] - [15].
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FIGURE 1. Anatomical organization of the pancreas. The exocrine function of

the pancreas is mediated by acinar cells that secrete digestive enzymes into the

upper small intestine via the pancreatic duct. Its endocrine function involves

the secretion of various hormones from different cell types within the pancreatic

islets of Langerhans. The micrograph shows the pancreatic islets. Adapted from

Human Anatomy and Physiology, an OpenStax College resource [9]

FIGURE 2. Maintenance of blood glucose levels by glucagon and insulin. When

blood glucose levels are low, the pancreas secretes glucagon, which increases

endogenous blood glucose levels through glycogenolysis. After a meal, when

exogenous blood glucose levels are high, insulin is released to trigger glucose

uptake into insulin-dependent muscle and adipose tissues as well as to promote

glycogenesis [12]



4 ECHAJEI, HAFDANE, IDMBAREK, FERJOUCHIA, RACHIK

Diabetes, a growing health concern, occurs when the body either fails to produce enough

insulin or cannot use it effectively. This disrupts how sugar (glucose) is processed for energy,

leading to high blood sugar levels and potential complications. There are two main types: Type

1 and Type 2 [16], [17].

• Type 1 diabetes, formerly known as juvenile diabetes, results from the immune system

attacking insulin-producing cells. It requires daily insulin injections for management,

and its underlying cause remains unclear. By 2021, it was estimated that approximately

1.2 million individuals under the age of 20 were living with type 1 diabetes worldwide.

• Type 2 diabetes, the more common form, develops when the body becomes resistant

to the effects of insulin. Over time, it can damage nerves and blood vessels. In 2021,

537 million adults worldwide were living with diabetes, which represented 10.5% of the

global adult population. Projections indicate that this figure will increase to 643 million

(11.3%) by 2030 and 783 million (12.2%) by 2045.

Additionally, diabetes was responsible for around 6.7 million deaths in 2021, with nearly half

occurring in individuals under the age of 70. Notably, the mortality rate due to diabetes has seen

a significant rise, particularly in countries with lower-middle incomes.

Revolutionary closed-loop systems combine smart insulin pumps with continuous glucose

monitors. These systems function like an artificial pancreas, continuously monitoring blood

sugar and automatically adjusting insulin levels for optimal control. This approach reduces

blood sugar fluctuations, lowers the risk of complications, and improves the quality of life for

people with diabetes. Unlike simpler systems, closed-loop systems adapt in real-time, main-

taining more stable blood sugar levels even in the face of changing conditions.

The use of closed-loop control in blood glucose prediction models plays a critical role in

anticipating and predicting fluctuations in glucose and insulin levels in the body. While devices

can measure the current blood glucose levels, utilizing predictions based on these models of-

fers several significant advantages [18]. Firstly, it helps compensate for the inherent delay in

direct glucose measurement, which is crucial for making appropriate insulin dosing decisions.

Moreover, the ability of these models to anticipate future glucose variations enables a proac-

tive response from the artificial pancreas, preventing significant glucose fluctuations before they
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FIGURE 3. Closed loop control for diabetes

even occur. Additionally, these models facilitate insulin dosing optimization by adjusting more

precisely based on the system dynamics, contributing to better glycemic control and avoiding

both hyperglycemia and hypoglycemia. Finally, these models can be leveraged to anticipate the

effects of meals on blood glucose, providing proactive insulin dosing management in response

of postprandial glucose increases.

Recent years have seen significant growth and diversification in the literature related to this

area. In 2014, N. Tadrisi Parsa, A. R. Vali, and R. Ghasemi [19] identified diabetes as a grow-

ing global health issue, with particular emphasis on the need for strict glycemic control in

patients with Type 1 diabetes due to their deficiency in insulin production. Their paper pro-

posed a method to regulate blood glucose levels using a mathematical body model, specifi-

cally the Bergman minimal model, to develop a nonlinear controller. They introduced a novel

backstepping-based sliding mode control (B-SMC) strategy to ensure practical tracking of de-

sired glucose concentrations. In 2016, J. Yadav et al. [20] presented a Fuzzy-PID (FPID)

control scheme for managing blood glucose levels in Type 1 diabetic patients. They utilized the

metaheuristic Cuckoo Search Algorithm (CSA) to optimize the gains of the FPID controller,

which provides fast convergence and efficient handling of global optimization in continuous

nonlinear systems. This controller combines fuzzy logic and optimization to efficiently address

complex problems such as blood glucose regulation, aiming to maintain normal glucose levels

rapidly with minimal insulin doses. The PID and FPID controllers were tuned using Genetic

Algorithm and CSA for comparative analysis and were tested on the Bergman minimal model,

taking into account parameter uncertainties, meal disturbances, and sensor noise. In 2022, E.
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Matamoros-Alcivar et al. [21] highlighted that Type 1 Diabetes Mellitus (T1DM) patients re-

quire lifelong insulin replacement. They discussed closed-loop therapies, or artificial pancreas

systems, which include a continuous subcutaneous insulin infusion pump, a continuous glu-

cose monitoring sensor, and a control algorithm that automatically adjusts insulin infusion in

real time. These systems function similarly to a healthy pancreas, regulating glucose levels with

minimal user input. The control algorithms commonly used in the development of artificial pan-

creas systems, such as Model Predictive Control (MPC) and Proportional-Integral-Derivative

(PID), are adapted to help T1DM patients regulate their blood glucose levels.

There are multiple versions of the Bergman model, each with specific features adapted to

various situations. In this article, a specific version of the Bergman model was chosen, and the

PID (Proportional-Integral-Derivative) control was applied in different contexts. These contexts

include normal individuals as well as Type 1 diabetic individuals, both in fasting states and in

the presence of meals. This application will be integrated into the artificial pancreas due to its

predictive capabilities. Although this device can identify blood glucose levels, using a predictive

model helps avoid critical states and maintain glucose levels within the normal range. Other

studies in this field have used different models or types of equations with various choices of

control parameters, but the results obtained are almost similar, demonstrating the effectiveness

of this control for blood glucose regulation.

The current investigation is structured as follows: Firstly, we introduce a minimal Bergman

model. Next, in section 3, we define the PID control. Lastly, in section 4, we present numerical

simulations of the theoretical results obtained.

2. MINIMAL BERGMAN MODEL

At the heart of understanding blood sugar regulation lies the minimal Bergman model. Devel-

oped by physiologist Richard N. Bergman, this model acts as a simplified map of the intricate

dance between glucose and insulin in our bloodstream. While the actual system is incredibly

complex, the Bergman model captures the key elements with a set of differential equations.

These equations represent fundamental biological processes:

• Glucose absorption: how quickly sugar enters the bloodstream after a meal.
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• Insulin secretion: how the pancreas releases insulin in response to rising glucose levels.

• Tissue insulin sensitivity: how effectively cells throughout the body utilize insulin to

absorb glucose.

By simulating these processes, the Bergman model allows scientists to analyze the dynamic

behavior of the glucose-insulin system. This provides valuable insights into:

• Physiological mechanisms: how our bodies naturally regulate blood sugar.

• Glycemic control strategies: development of effective methods to manage blood sugar

levels, particularly for diabetic patients.

The mathematical details of this model are described as follows

(1)


Ġ =−p1 [G(t)−Gb]−X(t)G(t)+M(t)

Ẋ =−p2X(t)+ p3 [I(t)− Ib]

İ =−n [I(t)− Ib]+ γ(I(t)−h)

The definitions of the parameters used in the model are listed in the following table. Imagine

Parameter Symbol Units

Plasma glucose level G(t) mg/dL

Remote insulin X(t) mU/L

Plasma insulin level I(t) mU/dL

Glucose base level before injection Gb mg/dL

Insulin base level before injection Ib µU/ml

Input (insulin) u(t) mU/min

Glucose absorption rate to blood via food M(t) -

Insulin independent constant p1 1 / min

Decrease rate of tissue’s glucose up taking p2 1 / min

Enhanced glucose up taking capability (insulin (µU / ml) / min2

Plasma insulin decay rate n 1 / min

Insulin secretion of β cells γ µmg / dL
TABLE 1. The meaning of parameters



8 ECHAJEI, HAFDANE, IDMBAREK, FERJOUCHIA, RACHIK

your body as a system managing sugar (glucose). Bergman’s minimal model simplifies this

system into three key parts:

(1) Blood Sugar Level (G): This represents the amount of glucose circulating in the blood-

stream.

(2) Insulin Action (X): Insulin acts as a key that allows cells to absorb sugar. X reflects

how effectively insulin is working at the tissue level, though we can’t directly measure

it.

(3) Circulating Insulin (I): This refers to the amount of insulin currently present in your

blood.

The model also considers disruptions caused by eating, represented by M(t). In healthy individ-

uals, the body has a built-in mechanism for regulating blood sugar (represented by γ(I(t)−h)).

However, in diabetic patients, this internal control system weakens. Bergman’s model cleverly

simplifies things by neglecting this term for diabetics. This allows scientists to focus on the

altered metabolic processes in diabetes, making it easier to understand the disease and develop

better treatments and management strategies.

While Bergman’s minimal model is a great starting point, it doesn’t account for how we treat

diabetes. That’s where the concept of a control variable comes in. Imagine a dial (u(t)) that

represents the amount of insulin injected into a diabetic patient’s bloodstream. By adjusting this

dial, doctors and patients can directly control insulin levels (I) based on blood sugar readings

(G). The objective is to maintain blood sugar within a healthy range, similar to a thermostat reg-

ulating room temperature. This approach, known as glycemic control, is crucial for managing

diabetes and preventing complications. By incorporating this control variable into the Bergman

model, we obtain a more powerful tool. This modified model allows researchers to simulate

and analyze different insulin delivery strategies, paving the way for the development of more

effective diabetes treatment plans. Then, we obtain the following system:

(2)


Ġ =−p1 [G(t)−Gb]−X(t)G(t)+M(t)

Ẋ =−p2X(t)+ p3 [I(t)− Ib]

İ =−n [I(t)− Ib]+u(t)



PID CONTROL IMPLEMENTATION ON BERGMAN MODEL FOR T1D 9

The minimal Bergman model in the presence of control in patients can be represented by the

following schema, which integrates the main metabolic parameters.

FIGURE 4. Diagram of Blood Glucose and Insulin Dynamics

3. PID CONTROL

To achieve tighter control of blood glucose, we can enhance model (1) by introducing a con-

trol signal, u(t). This signal acts as the conductor of an insulin delivery system, implemented

using a PID (Proportional-Integral-Derivative) controller. The PID controller analyzes the dif-

ference between the desired and actual blood sugar levels [22]. It then fine-tunes the insulin

dosage dynamically in three ways:

• Proportionally: responds immediately to the current difference between target and

actual glucose. A higher difference triggers a larger insulin correction.

• Integrally: considers the history of these differences. If blood sugar consistently runs

high or low, the controller gradually adjusts insulin delivery to compensate for this trend.

• Derivatively: anticipates future changes by analyzing the rate of change in glucose

levels. This proactive approach helps prevent large glucose swings by adjusting insulin

in advance
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Through these combined actions, the PID controller optimizes the system’s response, aiming

for a stable blood sugar balance. This approach provides a precise and responsive strategy for

regulating blood glucose. The specific control scheme is illustrated in the following diagram

FIGURE 5. Functional Diagram of a PID Controller

• The proportional term (P) reacts proportionally to the current error, i.e., the difference

between the setpoint and the measured value of the process. It acts to reduce this error

based on its magnitude.

• The integral term (I) takes into account the cumulative integral of the error over time. It

acts to eliminate persistent long-term errors by accumulating a correction proportional

to the duration for which the error persists.

• The derivative term (D) is proportional to the derivative of the error with respect to time.

It anticipates error variations by calculating the trend of change in the error over time.

It acts to attenuate oscillations and stabilize the system by preventing rapid variations in

the error.

This control can be mathematically expressed by the following formulation:

u(t) = Kpe(t)+Ki

∫ t

0
e(τ)dτ +Kd

de(t)
dt

Where

• e(t) = desired value−G(t) : The error between the desired output and the actual output

of the system at a given moment.

• Kp, Ki and Kd : the proportional, integral, and derivative gain coefficients.
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For diabetic patients, the Bergman model with PID (Proportional-Integral-Derivative) control

offers a sophisticated approach to managing blood glucose levels through insulin delivery. This

control system acts like a conductor for insulin, fine-tuning the amount based on current and

anticipated glucose fluctuations. The proportional term reacts immediately to the current dif-

ference between measured glucose and the target level. If glucose levels are high, it increases

the insulin dose to bring them down. The integral term addresses long-term trends by accu-

mulating past deviations from the target and gradually adjusting insulin delivery to counteract

persistent imbalances. The derivative term focuses on the rate of change in glucose levels. By

anticipating future variations based on the current slope, it proactively adjusts insulin to prevent

large swings. PID control refines the insulin dosage, without altering the injection method. This

dose can be delivered through traditional subcutaneous injections or via a continuous pump that

provides a steady stream of insulin.

4. SIMULATIONS AND DISCUSSION

This section explores the use of the Bergman model to predict blood glucose levels. Through

numerical simulations, we will compare the glucose response of two individuals: a healthy per-

son and someone with diabetes. We will analyze both fasting and meal scenarios to understand

how their bodies react. For the diabetic individual, we will introduce a PID (Proportional-

Integral-Derivative) control mechanism to investigate its effectiveness in regulating blood sugar

levels. The simulations use parameter values provided in the table below.

Figure 6 illustrates the simulated blood glucose concentration during a fasting period

(without a meal) for two individuals, representing a baseline state. Both individuals begin with

an initial glucose level of 200. In healthy individuals, glucose levels rapidly return to the normal

range 70–100 mg/dL, eventually stabilizing around 80 mg/dL. This demonstrates their body’s

effective ability to regulate blood sugar. In stark contrast, the diabetic individual’s glucose

concentration remains persistently elevated, exceeding the normal range. This highlights the

impaired ability of a diabetic person to maintain healthy blood sugar levels, even in a fasting

state.
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Parameter Normal Patient

p1 0.031 0

p2 0.012 0.011

p3 4.92−6 5.3−6

V 0.0039 0.0042

n 0.265 0.26

h 79.035 80.2

Gb 70 70

Ib 7 7

G0 220 220

I0 364.8 50
TABLE 2. parameters values.

FIGURE 6. Comparative Blood Glucose Levels of Healthy and Diabetic Individuals

Figure 7 simulates the blood sugar response of a healthy person following a meal. The initial

glucose level is 200. At time t=300, the meal introduction triggers a rapid rise in blood sugar,

exceeding 160. This postprandial surge is transient, however, as the body’s insulin response ef-

fectively regulates glucose levels. Blood sugar swiftly returns to normal values (between 70 and

100) and eventually stabilizes around 80. This figure exemplifies a healthy body’s remarkable

ability to maintain blood sugar control after eating. Even though a temporary increase occurs
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following the meal, the body efficiently restores glucose homeostasis, achieving long-term sta-

bility.

FIGURE 7. Blood glucose levels of normal person under meal disturbance.

Figure 8 illustrates the concerning blood sugar response of a diabetic individual following a

meal. While the initial glucose level is similar to the healthy case (200), the patient struggles

to regulate blood sugar after the meal is introduced at t = 400. Unlike the healthy person,

glucose levels experience a dramatic rise, reaching dangerously high values. This uncontrolled

hyperglycemia poses a significant health risk, highlighting the critical challenge diabetics face

in managing blood sugar spikes after meals. Such uncontrolled spikes can lead to severe long-

term complications if not properly managed.

FIGURE 8. Blood glucose levels of Patient under meal disturbance.
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Figure 9 showcases the promising impact of automatic insulin injection with PID control on a

diabetic patient’s blood sugar levels. Similar to the previous simulations, the initial glucose level

is set at 200. This control system demonstrates remarkable effectiveness. It rapidly normalizes

blood sugar, bringing it back within the healthy range (70− 100) and converging towards the

desired target of 80. Notably, even after introducing meals at t = 150 and t = 400, glucose levels

rapidly return to normal. This rapid response suggests that PID-controlled automatic insulin

injection can significantly improve diabetic patients’ quality of life. By efficiently managing

blood sugar fluctuations, even after meals, this system offers a potential path towards a more

normal and worry-free lifestyle.

FIGURE 9. Blood glucose levels of the patient during meal disturbance with

PID control.

To conclude, the findings depicted in the four figures offer a thorough understanding of blood

glucose dynamics across various contexts. The initial figure starkly contrasts the fasting blood

glucose levels of healthy individuals with those of diabetic patients, emphasizing the ongoing

struggle with glucose regulation in diabetes. Following this, the second figure illustrates the

prompt post-meal glucose regulation observed in healthy individuals, highlighting their efficient

metabolic response. Conversely, the third figure illuminates the challenges diabetic patients

encounter in regulating their blood glucose levels post-meal, indicating potential health hazards.

Lastly, the fourth figure showcases a promising approach: automatic insulin injection with PID

control. This method demonstrates fast glucose normalization even after meals, indicating its

potential for effective glycemic management and improved quality of life in diabetic patients.



PID CONTROL IMPLEMENTATION ON BERGMAN MODEL FOR T1D 15

The numerical simulations build upon these findings by illustrating the potential of PID con-

trol in stabilizing blood glucose levels in individuals with Type 1 diabetes, particularly during

meal disturbances. However, it is important to note that these simulations are conducted under

idealized conditions, such as perfect sensor accuracy and constant insulin sensitivity, which do

not fully capture the complexities of real-life diabetes management. In reality, factors such as

delayed insulin action, daily variations in insulin sensitivity, and external influences like phys-

ical activity, stress, and inconsistent food intake can significantly affect glycemic control. To

ensure that PID control systems are truly reliable, safe, and effective in everyday scenarios,

future research should aim to integrate these variables into more dynamic and realistic mod-

els. This would allow for better testing of how PID systems perform under varying conditions,

leading to more robust and adaptive control strategies for real-world diabetes management.

5. CONCLUSION

In this study, we have examined the complex realm of blood glucose regulation, particu-

larly focusing on individuals with Type 1 diabetes (T1D). Using the minimal Bergman model

and applying PID (Proportional-Integral-Derivative) control strategies, we have explored new

approaches for robust blood glucose (BG) management. Our investigation commenced with

a comprehensive overview of pancreatic physiology, elucidating the crucial roles of various

pancreatic hormones, notably insulin and glucagon, in orchestrating glucose homeostasis. We

highlighted the disparity in metabolic capabilities between healthy individuals and those with

diabetes, emphasizing the urgent need for effective management strategies. Central to our study

was the utilization of the minimal Bergman model, a powerful tool that encapsulates the dy-

namic interplay between glucose and insulin in the bloodstream. Leveraging this model, we

elucidated the fundamental principles underlying blood glucose regulation, laying the ground-

work for our subsequent analyses. Introducing the concept of PID control, we embarked on

a journey to refine BG regulation in diabetic individuals. Through meticulous simulations,

we demonstrated the efficacy of PID-controlled automatic insulin injection systems in swiftly

normalizing BG levels, even amidst perturbations induced by meal intake. Our findings high-

light the potential of integrating advanced control strategies, such as PID, into the management
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protocols for T1D. By offering real-time insulin dosage adjustments, these systems could rev-

olutionize glycemic control, reduce the risks of hyperglycemia, and improve the quality of life

for people with diabetes.
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[5] B. Göke, Islet Cell Function: α and β Cells - Partners Towards Normoglycaemia, Int. J. Clin. Pract. 62 (2008),

2–7. https://doi.org/10.1111/j.1742-1241.2007.01686.x.

[6] A.C. Hauge-Evans, A.J. King, D. Carmignac, et al. Somatostatin Secreted by Islet δ -Cells Fulfills Multiple

Roles as a Paracrine Regulator of Islet Function, Diabetes 58 (2009), 403–411. https://doi.org/10.2337/db08

-0792.

[7] R.L. Batterham, C.W. Le Roux, M.A. Cohen, et al. Pancreatic Polypeptide Reduces Appetite and Food Intake

in Humans, J. Clin. Endocrinol. Metab. 88 (2003), 3989–3992. https://doi.org/10.1210/jc.2003-030630.

[8] O. Cabrera, D.M. Berman, N.S. Kenyon, et al. The Unique Cytoarchitecture of Human Pancreatic Islets Has

Implications for Islet Cell Function, Proc. Natl. Acad. Sci. U.S.A. 103 (2006), 2334–2339. https://doi.org/10

.1073/pnas.0510790103.

[9] J.G. Betts, Anatomy and Physiology, OpenStax, Texas, (2013). https://openstax.org/books/anatomy-and-phy

siology/pages/3-2-the-cytoplasm-and-cellular-organelles.

[10] L. Freychet, Effect of Intranasal Glucagon on Blood Glucose Levels in Healthy Subjects and Hypoglycaemic

Patients With Insulin-Dependent Diabetes, The Lancet 331 (1988), 1364–1366. https://doi.org/10.1016/S014

0-6736(88)92181-2.

https://doi.org/10.1097/MOG.0b013e32832e9c41
https://doi.org/10.1369/jhc.5C6684.2005
https://doi.org/10.1369/jhc.5C6684.2005
https://doi.org/10.1016/S0196-9781(01)00604-0
https://doi.org/10.1016/S0167-0115(02)00067-8
https://doi.org/10.1111/j.1742-1241.2007.01686.x
https://doi.org/10.2337/db08-0792
https://doi.org/10.2337/db08-0792
https://doi.org/10.1210/jc.2003-030630
https://doi.org/10.1073/pnas.0510790103
https://doi.org/10.1073/pnas.0510790103
https://openstax.org/books/anatomy-and-physiology/pages/3-2-the-cytoplasm-and-cellular-organelles
https://openstax.org/books/anatomy-and-physiology/pages/3-2-the-cytoplasm-and-cellular-organelles
https://doi.org/10.1016/S0140-6736(88)92181-2
https://doi.org/10.1016/S0140-6736(88)92181-2


PID CONTROL IMPLEMENTATION ON BERGMAN MODEL FOR T1D 17

[11] M. Komatsu, M. Takei, H. Ishii, Y. Sato, Glucose-stimulated Insulin Secretion: A Newer Perspective, J.

Diabetes Investig. 4 (2013), 511–516. https://doi.org/10.1111/jdi.12094.

[12] A. Khan, J. Pessin, Insulin Regulation of Glucose Uptake: A Complex Interplay of Intracellular Signalling

Pathways, Diabetologia 45 (2002), 1475–1483. https://doi.org/10.1007/s00125-002-0974-7.

[13] W. Sibrowski, H.J. Seitz, Rapid Action of Insulin and Cyclic AMP in the Regulation of Functional Messenger

RNA Coding for Glucokinase in Rat Liver, J. Biol. Chem. 259 (1984), 343–346. https://doi.org/10.1016/S002

1-9258(17)43664-7.

[14] S.-Y. Kim, H. Kim, T.-H. Kim, et al. SREBP-1c Mediates the Insulin-Dependent Hepatic Glucokinase Ex-

pression, J. Biol. Chem. 279 (2004), 30823–30829. https://doi.org/10.1074/jbc.M313223200.

[15] S. Aiston, L.J. Hampson, C. Arden, et al. The Role of Protein Kinase B/Akt in Insulin-Induced Inactivation

of Phosphorylase in Rat Hepatocytes, Diabetologia 49 (2006), 174–182. https://doi.org/10.1007/s00125-005

-0068-4.

[16] Institute for Health Metrics and Evaluation (IHME), Global Burden of Disease Study 2019 (GBD 2019),

(2020). https://ghdx.healthdata.org/gbd-2019.

[17] D. Magliano, E.J. Boyko, IDF Diabetes Atlas, 10th edition, International Diabetes Federation, Brussels, 2021.

[18] S.D. Patek, B.W. Bequette, M. Breton, et al. In Silico Preclinical Trials: Methodology and Engineering

Guide to Closed-Loop Control in Type 1 Diabetes Mellitus, J. Diabetes Sci. Technol. 3 (2009), 269–282.

https://doi.org/10.1177/193229680900300207.

[19] N.T. Parsa, A.R. Vali, R. Ghasemi, Back Stepping Sliding Mode Control of Blood Glucose for Type I Dia-

betes, Int. J. Med. Health, Biomed. Bioeng. Pharm. Eng. 8 (2014), 775–779.

[20] J. Yadav, A. Rani, V. Singh, Performance Analysis of Fuzzy-PID Controller for Blood Glucose Regulation in

Type-1 Diabetic Patients, J. Med. Syst. 40 (2016), 254. https://doi.org/10.1007/s10916-016-0602-6.

[21] E. Matamoros-Alcivar, T. Ascencio-Lino, R. Fonseca, et al. Implementation of MPC and PID Control Al-

gorithms to the Artificial Pancreas for Diabetes Mellitus Type 1, in: 2021 IEEE International Conference on

Machine Learning and Applied Network Technologies (ICMLANT), IEEE, Soyapango, El Salvador, 2021:

pp. 1–6. https://doi.org/10.1109/ICMLANT53170.2021.9690529.

[22] H. Ferjouchia, F.Z. Iftahy, A. Chadli, et al. Application of Optimal Control Strategies for Physiological Model

of Type 1 Diabetes - T1D, Commun. Math. Biol. Neurosci. 2020 (2020), 35. https://doi.org/10.28919/cmbn/

4598.

https://doi.org/10.1111/jdi.12094
https://doi.org/10.1007/s00125-002-0974-7
https://doi.org/10.1016/S0021-9258(17)43664-7
https://doi.org/10.1016/S0021-9258(17)43664-7
https://doi.org/10.1074/jbc.M313223200
https://doi.org/10.1007/s00125-005-0068-4
https://doi.org/10.1007/s00125-005-0068-4
https://ghdx.healthdata.org/gbd-2019
https://doi.org/10.1177/193229680900300207
https://doi.org/10.1007/s10916-016-0602-6
https://doi.org/10.1109/ICMLANT53170.2021.9690529
https://doi.org/10.28919/cmbn/4598
https://doi.org/10.28919/cmbn/4598

	1. Introduction
	2. Minimal Bergman Model 
	3. PID Control 
	4. Simulations and Discussion
	5. Conclusion
	Conflict of Interests
	References

