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Abstract. Yellow fever is currently affecting the African subcontinent, with Ghana accounting for the major-

ity of confirmed cases (37.7%). As infections resurface in regions that have been free of yellow fever for more

than a decade, it has become crucial to develop a mathematical model that accurately represents the transmission

dynamics of yellow fever within a toxic infected population. The analysis of the existence and stability of the mod-

els’ equilibrium points is conducted. The sensitivity index study revealed that a, β1, β2, Λ, γ were the most sen-

sitive parameters influencing the spread of yellow fever. The model is numerically solved using MAT-

LAB ODE45 to determine its epidemiological implications. Preventing the advancement from infected (IH) to

toxic infected (DH) individuals is essential, necessitating prompt intervention; hence, to mitigate the spread, it is

imperative to decrease the contact rate between DH and the susceptible individuals. The dynamics of DH empha-

size the significance of focusing on severe cases, for controlling outbreaks. Also, the stabilization phase of infected

vectors suggests that measures aimed at vector reproduction or mortality may help limit the spread over time.
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1. INTRODUCTION

Yellow fever(YF)is an infectious disease that is persistent in Africa [1]. It is a viral dis-

ease and one of the most dangerous diseases spread by mosquitoes. It is transmitted to hu-

mans through the bite of infected mosquitos, specifically the Aedes and Haemagogus mosquito

species. It is an overlooked tropical infection that has received limited research attention [2].

YF is predominantly found in Africa, Central and South America, but it has previously caused

huge epidemics in Europe and North America [3].

Recent outbreaks in Angola (2015-2016) [4] and Brazil (2016-2017) [5] highlight the virus’s

continued threat to public health. Yellow fever cases have risen dramatically over the last 15

years, with the majority occurring in West Africa [6].

The incidents persist in Africa and South America. Predicting the epidemics requires con-

sidering local mosquito populations, YF virus strain, eco-climatic conditions, sociopolitical

and demographic factors, and vaccine coverage [7]. YF remains a significant hazard to public

health, particularly in Africa, where it infects an estimated 840,000-1.7 million people annually,

causing 84,000-170,000 severe cases and 29,000-60,000 fatalities [8]. Ghana recently experi-

enced a YF outbreak in the Savannah region, resulting in 70 confirmed cases and 30 deaths

[9].

Mathematical modeling has significantly enhanced the potential for intervening in vector-

borne neglected tropical diseases. Recent epidemiological research has demonstrated the im-

portance of mathematical modeling in combating infectious disease outbreaks [6].

[6] proposed a mathematical model to analyze the transmission patterns of YF, consider-

ing human and vector (mosquito) populations. Their model was solved numerically using the

4th-order Runge-Kunta scheme and their results demonstrate that control strategies such as re-

ducing mosquito biting rates, human-vector transmission

rates, and raising vaccine success rates can successfully slow disease spread.

[3] developed a sophisticated mathematical model to examine and simulate crucial epidemi-

ological mechanisms behind the Angola YF outbreak. Their model was calibrated to measure

YF cases and fatalities, while the basic reproduction number (R0) was determined as a measure

of time. Although their research sheds light on the dynamics of YF breakout in Angola, but
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did not establish a theoretical stability for the disease to die out. [10] presented a fractional

YF virus model, incorporating the Caputo derivative to analyze the dynamics of yellow fever

virus transmission. Their results show that the Caputo fractional derivative provides more real-

istic information than the classical derivative and that the Adams-Bashfort-Moulton predictor-

corrector method gives the expected depiction of the results for analyzing the dynamics of the

projected model.

According to [11], YF is plaguing the African subcontinent, and according to Eliminate

YF Epidemics (EYE), more than 25 African countries are classified as high-risk countries.

Although the EYE strategy is a global plan to eradicate YF outbreaks by 2026, Ghana has

been reported to have the majority of the confirmed cases (37.7%) [12]. As infections reoccur

in regions that have been free of YF for over 10 years, it has become essential to develop a

mathematical model that captures the transmission dynamics of yellow fever within a toxic

infected population.

2. MODEL FORMULATION AND DESCRIPTION

A mathematical model for the transmission dynamics of YF within human and vector

(mosquito) population is proposed. The human (NH) and vector (NV ) populations are con-

sidered to be divided into compartments represented by state variables that change over time.

NH comprises of Susceptible SH , Exposed EH , Infected IH , Toxic infected DH , Vaccinated VH ,

and Recovered RH humans. Similarly, NV includes Susceptible SV , Exposed EV , and Infected

IV mosquitoes. Hence, the total population is denoted as

(1) N(t) = SH +EH + IH +DH +VH +RH +SV +EV + IV

Figure 1 presents the transfer diagram of transmission dynamics of yellow fever within two

different populations.
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FIGURE 1. Model formulation for YF.

Thus the model equations given the transfer diagram 1:

(2)



dSH

dt
= γ−λ1SH−µHSH−αSH

dEH

dt
= λ1SH− (σ +µH)EH

dIH

dt
= σEH− (µH +ρ + τ)IH

dDH

dt
= τIH− (µH +KH +ω)DH

dVH

dt
= αSH− εVH−µHVH

dRH

dt
= ωDH +ρIH + εVH−µHRH

dSV

dt
= Λ−λ2SV −µvSV

dEV

dt
= λ2SV − (φV +µV )EV

dIV
dt

= φvEV −µV IV

with initial conditions SH = SH(0),EH = EH(0), IH = IH(0),DH = DH(0),VH = VH(0),RH =

RH(0),SV = SV (0),EV = EV (0), IV = IV (0), where λ1 and λ2 are defined as λ1 = aβ1IV and

λ2 = aβ2(IH +DH).



YELLOW FEVER TRANSMISSION DYNAMICS 5

TABLE 1. The description of the state variables of the YF model.

Variable Description

SH number of Susceptible individuals

EH number of Exposed individuals

IH number of Infected individuals

DH number of Toxic infected individuals

VH number of Vaccinated individuals

RH number of Recovered individuals

SV number of Susceptible vectors

EV number of Exposed vectors

IV number of Infected vectors

Theorem 1. Positivity and boundedness of solutions

Given {SH(t),EH(t), IH(t),DH(t),VH(t),RH(t),SV (t),EV (t), IV (t)}>≥ 0 of system (2), then the

set {SH(t),EH(t), IH(t),DH(t),VH(t),RH(t),SV (t),EV (t), IV (t)} of solutions are non-negative

and bounded ∀ t > 0 if there exist lim
t→∞

supNH(t)≤ γ

µH+α
, and lim

t→∞
supNV (t)≤ Λ

µV
.

Proof. Suppose t1 = sup{t > 0 : SH(t),EH(t), IH(t),DH(t),VH(t),RH(t),SV (t),EV (t), IV (t)} ≥

0. It is sufficient for t1 > 0, since all the compartments are more than zero.

If t < ∞ then the state variables are equal to zero. From the susceptible individuals compart-

ment of system (2),

dSH

dt
= γ−λ1SH−µHSH−αSH

dSH

dt
+(aβ1Iv +µH +α)SH = γ

d
dt

{
SHe(aβ1Iv+µH+α)t

}
= γe(aβ1Iv+µH+α)t

SH(t1)e(aβ1Iv+µH+α)t−SH(0) =
∫ t1

0
γe(aβ1Iv+µH+α)tdt > 0

SH(t1) = SH(0)e−(aβ1Iv+µH+α)t1 + e−(aβ1Iv+µH+α)t1
∫ t1

0 γe(aβ1Iv+µH+α)tdt > 0.

Thus SH(t1)> 0. A similar approach on the rest of the compartments shows a positive states

whenever t > 0.
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Now, for boundedness,

0 < IH < NH and 0 < IV < NV

Adding the human compartments of model (2) gives:

dNH

dt
= γ−NH µH−DHKH

γ− (µH−DHKH)NH ≤
dNH

dt
≤ γ−NH µH

γ

µH +DHKH
≤ lim

t→∞
infNH(t)≤ lim

t→∞
supNH(t)≤

γ

µH +α

Similarly, for the vector population:

dNV

dt
= Λ−µV NV

Λ−µV NV ≤
dNV

dt
≤ Λ−µV NV

Λ

µV
≤ lim

t→∞
infNV (t)≤ lim

t→∞
supNV (t)≤

Λ

µV

Hence, the state variables are bounded.

�

3. MODEL ANALYSIS

3.1. Disease Free Equilibrium (E0).

The YF model (2) has a point E0, obtained by setting the right-hand sides of the equations and

the infected classes (EH , IH , DH , VH , RH , SV , EV , IV ) to zero.

E0 =

(
γ

µH +α
,0,0,0,

αγ

(µH +α)(ε +µH)
,0,

Λ

µV
,0,0

)
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TABLE 2. Biological parameters and their descriptions along with values

and references.

Parameter Description Value Reference

a Mosquito daily biting rate 0.5-0.7 [13]

β1 Transmission probability from vec-

tor to host

0.3 per bite [14]

σ Progression rate from exposed to

infected class in human

3-6 days [3]

γ Recruitment rate of human 10-800 per day [15]

µH Natural death rate for human 4.94×10−5 [16]

µV Natural death rate for vector 0.35 [16]

Λ Recruitment rate of mosquito 0.051 [15]

α Effective vaccination rate of sus-

ceptible human

0.043 per day [3]

β2 Transmission probability from host

to vector

0.6 per bite [17]

ε Progression rate from vaccinated to

recovered class

0.143 day−1 [17]

ρ Progression rate from infected to re-

covered class

0.143 day−1 [3]

KH Disease-induced death rate 3.5×10−4 day−1 [3]

τ Progression rate from infected to

toxic infected class

15% [3]

φV Progression rate from exposed to

infected class in vector

1/18 [3, 6]

ω Progression rate from toxic infected

to recovered class

0.143 day−1 [3, 18]
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3.2. The basic reproductive number (R0).

Using the Next Generation Matrix approach, matrices F and V are key components used to

calculate R0 and analyze the stability of disease-free equilibria [19].

F =



aβ1SHIv

0

0

aβ2Sv(IH +DH)

0


, and V =



(σ +µH)EH

−σEH +(µH +ρ + τ)IH

−τIH +(µH +KH +ω)DH

(φV +µV )EV

−φV EV +µV Iv


.

JF =



0 0 0 0 aβ1γ

µH+α

0 0 0 0 0

0 0 0 0 0

0 aβ2Λ

µV

aβ2Λ

µV
0 0

0 0 0 0 0



JV =



(σ +µH) 0 0 0 0

−σ (µH +ρ + τ) 0 0 0

0 −τ (µH +KH +ω) 0 0

0 0 0 (φV +µV ) 0

0 0 0 −φV µV



J−1
V =



1
(σ+µH)

0 0 0 0
σ

((σ+µH)(µH+ρ+τ))
1

(µH+ρ+τ) 0 0 0

0 τ

(µH+ρ+τ)(µH+KH+ω)
1

(µH+KH+ω) 0 0

0 0 0 1
(φV+µV )

0

0 0 0 φV
(µV (φV+µV ))

1
µV



(3) JF J−1
V =



0 0 0 aβ1γφv
µV (µH+α)(φV+µV )

aβ1γ

µV (µH+α)

0 0 0 0 0

0 0 0 0 0
aβ2σΛ

µV (µH+ρ+τ)(σ+µH )
aβ2Λ

µV
(

(µH+KH+ω)+τ

(µH+ρ+τ)(µH+KH+ω)
) aβ2Λ

(µH+KH+ω)µV
0 0

0 0 0 0 0


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We obtain a non-zero sub-matrix A, which is a 2×2 block formed by the interaction between

the non-zero entries of Eq. (3)

(4) A =

 0 aβ1γφv
µV (µH+α)(φV+µV )

aβ2Λ

µV
( (µH+KH+ω)+τ

(µH+ρ+τ)(µH+KH+ω)) 0



λ
∗
1,2 =±

√(
aβ2Λ(µH +KH +ω)+aβ2Λτ

µv (µH +ρ + τ)(µH +KH +ω)

)(
aβ1γφv

µV (φV +µV )(µH +α)

)
Hence the largest eigenvalue gives

(5) R0 =

√(
aβ2Λ(µH +KH +ω)+aβ2Λτ

µv (µH +ρ + τ)(µH +KH +ω)

)(
aβ1γφv

µV (φV +µV )(µH +α)

)
3.3. Local stability of E0.

The local stability of E0 of system (2) is determined using the Next-Generation Matrix (NGM),

such that E0 is locally asymptotically stable whenever R0 < 1 or otherwise.

J(E0) =



−k1 0 0 0 0 0 0 0 − aβ1γ

µH+α

0 −k3 0 0 0 0 0 0 0

0 σ −k4 0 0 0 0 0 0

0 0 τ −k5 0 0 0 0 0

α 0 0 0 −k6 0 0 0 0

0 0 ρ ω ε −µH 0 0 0

0 0 −aβ2Λ

µV
−aβ2Λ

µV
0 0 −µV 0 0

0 0 aβ2Λ

µV

aβ2Λ

µV
0 0 0 −k8 0

0 0 0 0 0 0 0 φV −µV


where the constants are defined as follows:

k1 = (µH +α), k2 = aβ1γ,

k3 = (σ +µH), J = (aβ1IV +µH +α),

k4 = (µH +ρ + τ), k5 = (µH +KH +ω),

k6 = (ε +µH), k7 = (φV +µV )

The characteristic equation, given by P(λ ) = |λ I− J(E0)|= 0, is represented as:
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P(λ ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ + k1 0 0 0 0 0 0 0 −aβ1γ

k1

0 λ + k3 0 0 0 0 0 0 0

0 σ λ + k4 0 0 0 0 0 0

0 0 τ λ + k5 0 0 0 0 0

α 0 0 0 λ + k6 0 0 0 0

0 0 ρ ω ε λ +µH 0 0 0

0 0 −aβ2Λ

µV
−aβ2Λ

µV
0 0 λ +µV 0 0

0 0 aβ2Λ

µV

aβ2Λ

µV
0 0 0 λ + k7 0

0 0 0 0 0 0 0 φV λ +µV

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

According to the Gershgorin circle theorem [20], E0 is locally asymptotically stable.

3.4. Global stability of E0.

We investigate the global stability of the disease-free equilibrium using the Castillo-Chavez

theorem [21]. We express our model in the form:

(6)


dX
dt = F(X ,Y ),

dY
dt = G(X ,Y ), G(X ,0) = 0,

where X = {SH ,VH ,RH ,SV} ∈ R4 represents the uninfected population, and Y =

{EH , IH ,DH ,EV , IV} ∈ R5 denotes the infected population. Let E0 = (X∗,0), where

X∗ =
(

γ

µH +α
,0,0,0,

αγ

(µH +α)(ε +µH)
,0,

Λ

µV
,0,0

)
.

The global asymptotic stability of E0, must satisfied the following:

• H1 : If dX
dt = F(X ,0), then X∗ is said to be globally stable.

• H2 : dz
dt =DZG(X∗,0)−Ĝ(X ,Z), with Ĝ(X ,Z)≥ 0 for all (X ,Z)∈Ω, where DZG(X∗,0)

is the Jacobian of G(X ,Z) with regards to (EH , IH ,DH ,EV , IV ).

If the system (2) satisfies the above conditions, then according to [21], the theorem below holds.

Theorem 2. The equilibrium E0 = (X∗,0) of system (2) is said to be globally asymptotically

stable whenever R0 < 1 such that H1 and H2 are fulfilled.
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Proof. From equation (6), F(X ,Y ) and G(X ,Y ) given as:

F(X ,Y ) =


γ−µHSH−αSH

αSH− εVH−µHVH

ωDH +ρIH + εVH−µHRH

Λ−λ2−µV Sv

 , G(X ,Y ) =



λ1− (σ +µH)EH

σEH− (µH +ρ + τ)IH

τIH− (µH +KH)DH−ωDH

λ2− (φV +µV )EV

φV EV −µV IV


.

Now, from H1, the solution of dX
dt = F(X ,0), as t → ∞ is X∗ =

(
γ

µH+α
, αγ

(µH+α)(ε+µH)
, Λ

µV

)
.

Thus regardless of the initial condition, X∗ is globally asymptotically stable.

The Jacobian DZG(X∗,0) is:

DZG(X∗,0) =



−k3 0 0 0 aβ1SH

σ −k4 0 0 0

0 τ −k5 0 0

0 aβ2SV aβ2SV −k7 0

0 0 0 φV −µV


,

where, k3 = (σ +µH),k4 = (µH +ρ + τ),k5 = (µH +KH +ω),k7 = (φV +µV ).

From condition H2, we compute:

Ĝ(X ,Z) =



0

0

0

0

0


.

Since Ĝ(X ,Z) ≥ 0, it is clear that the conditions H1 and H2 are satisfied and E0 = (X∗,0) is

global asymptotically stable. �

3.5. Existence of endemic equilibrium point (E∗).

Given the transmission rates λ ∗∗H and λ ∗∗V , we define:

(7)


λ
∗∗
H = aβ1Iv

λ
∗∗
V = aβ2(IH +DH)
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The equilibrium states for the host and vector populations of system (2) are :

(8)



S∗∗H =
γ

(λ ∗∗H +µH +α)
E∗∗H =

λ ∗∗H S∗∗H
(σ +µH)

I∗∗H =
σE∗∗H

(µH +ρ + τ)
D∗∗H =

τI∗∗H
(µH +KH +ω)

V ∗∗H =
αS∗∗H

(ε +µH)
R∗∗H =

ωD∗∗H +ρI∗∗H + εV ∗∗H
µH

S∗∗V =
Λ

(λ ∗∗2 +µv)
E∗∗V =

λ ∗∗2
(φV +µV )

I∗∗V =
φvE∗∗V

µV

3.6. Local Stability of E∗.

Theorem 3. The point E∗ of system (2) is locally asymptotically stable if R0 > 1 and otherwise

unstable.

(9) J(E∗) =



−A 0 0 0 0 0 0 0 −aβ1S∗∗H

aβ1I∗∗V −(σ +µH) 0 0 0 0 0 0 0

0 σ −k4 0 0 0 0 0 0

0 0 τ −k5 0 0 0 0 0

α 0 0 0 −(ε +µH) 0 0 0 0

0 0 ρ ω ε −µH 0 0 0

0 0 −aβ2S∗∗V −aβ2S∗∗V 0 0 −µV 0 0

0 0 aβ2S∗∗V aβ2S∗∗V 0 0 0 −(φV +µV ) 0

0 0 0 0 0 0 0 φV −µV


where A = (aβ1IV + k1).

According to equation (9), J(E∗) is a strictly column diagonally dominating matrix. Again,

(−A,−(σ +µH)−k4,−k5′−(ε+µH),−µH ,−(φV +µV ),−µV )< 0, so all eigenvalues of J(E∗)

have a real part. Using the Gershgorin circle theorem [22], E∗ is locally stable if

(10)


|A|> |aβ1SH |, |σ +µH |> |aβ1IV |, |k4|> |σ |, |k5|> |τ|,

µV |> |φV | |(ε +µH)|> |α|, |µH |> |ρ|+ |ω|+ |ε|,

|µV |> |aβ2SV |+ |aβ2SV |, |φV +µV |> |aβ2SV |+ |aβ2SV ||.
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3.7. Global stability of E∗.

Theorem 4. The endemic equilibrium E∗, of system (2) is globally asymptotically stable if

R0 > 1.

Proof. Let L a Lyapunov function be defined by

L = S∗∗H

(
SH

S∗∗H
− ln

SH

S∗∗H

)
+E∗∗H

(
EH

E∗∗H
− ln

EH

E∗∗H

)
+ I∗∗H

(
IH

I∗∗H
− ln

IH

I∗∗H

)
+D∗∗H

(
DH

D∗∗H
− ln

DH

D∗∗H

)
+V ∗∗H

(
VH

V ∗∗H
− ln

VH

V ∗∗H

)
+R∗∗H

(
RH

R∗∗H
− ln

RH

R∗∗H

)
+S∗∗V

(
SV

S∗∗V
− ln

SV

S∗∗V

)
+E∗∗V

(
EV

E∗∗V
− ln

EV

E∗∗V

)
+ I∗∗V

(
IV
I∗∗V
− ln

IV
I∗∗V

)
.

By substituting model (2) into the derivative of L, we have

L̇ =

(
1− S∗∗H

SH

)
(γ−λ1SH−µHSH−αSH)

+

(
1− E∗∗H

EH

)
(λ1SH− (σ +µH)EH)+

(
1− I∗∗H

IH

)
(σEH− (µH +ρ + τ)IH)

+

(
1− D∗∗H

DH

)
(τIH− (µH +KH +ω)DH)+

(
1− V ∗∗H

VH

)
(αSH− εVH−µHVH)

+

(
1− R∗∗H

RH

)
(ωDH +ρIH + εVH−µHRH)+

(
1−

S∗∗V
SV

)
(Λ−λ2SV −µvSV )

+

(
1−

E∗∗V
EV

)
(λ2SV − (φV +µV )EV )+

(
1−

I∗∗V
IV

)
(φvEV −µV Iv) .

Collecting positive and negative terms together of the above leads to:

dL
dt

= Q−K.

where

Q = αSH +λ1S∗∗H +σE∗∗H +µHE∗∗H +µHI∗∗H +ρI∗∗H + τI∗∗H +µHD∗∗H

+KHD∗∗H +ωDH + εV ∗∗H +λ2S∗∗V +φvE∗∗H +µV E∗∗H +µV Iv +µV I∗∗V ,

K = µHEH +λ1S∗∗H
E∗∗H
EH

+µHIH−σ I∗∗H +µHDH +KHDH

+ τIH
D∗∗H
DH

+µHVH +αSH
V ∗∗H
VH

+µHV ∗∗H +µHRH +ωDH
R∗∗H
RH

+ρIH
R∗∗H
RH

+ εVH
R∗∗H
RH

+µHR∗∗H +µV EV +λ2SV
E∗∗H
EH

+φvI∗∗V
E∗∗V
IV

.
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Thus, if Q<K, then dL
dt ≤ 0. By LaSalle’s invariant principle [23], E∗ is globally asymptotically

stable in Ω if Q < K. �

4. SENSITIVITY ANALYSIS

To minimize the number of deaths and complications due to YF infections, it is vital to

understand the relative relevance of several factors involved in the transmission and prevalence

[24]. The forward sensitivity index of R0 concerning the progression rate from infected to toxic

infected class τ is given by:

Π
R0
τ =

∂R0

∂τ
× τ

R0
=−0.6264.

A similar approach when applied to the remaining parameters is shown in table 3. It can be

observed that the mosquito biting rate, a is the most significant parameter. This and other

parameters have positive sensitivity indices while the remaining parameters in R0 have negative

indices.

TABLE 3. Sensitivity Indices of Parameters

Parameter Sensitivity Index

a 1

β1 0.5

σ 6.175×10−6

γ 0.5

µH -0.49999

KH -0.082793

Λ 0.5

α -0.4975

β2 0.5

ρ -0.243986

τ -0.6264

φV 0.000444
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4.1. Numerical Simulation.

We perform a numerical simulation of the model (2) using parameter values in table 2 using

Matlab ODE45 to ascertain its epidemiological implications. Figure 2a. shows how susceptible

individuals decrease with time to 100 and become constant for the rest of the days.

(A) (B)

FIGURE 2. Simulation of susceptible humans SH and host vectors SV with time

The rapid decline in SV is a result of the short life span of mosquitoes and more vectors

moving into another compartment.

(A) (B)

FIGURE 3. Simulation of exposed human and vectors over time
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On the other hand, SV with time declines from 10 to less than 1 within 10 days and remain

constant for the rest of the time frame (Figure 2b). Figure 3a. displays how the exposed individ-

uals with time decreases until it becomes constant after 30 days. The exposed vectors (Figure

3b.) rise from 20 and continue to move up until they get to their peak within the first 8 days and

begin to decay with time. This is a result of more vectors getting infected.

(A) (B)

FIGURE 4. Simulation of infected human and vectors populations over time

The number of infected humans (Figure 4a.) increases rapidly at the initial state of the infec-

tions until it reaches its peak and then decreases with time before becoming constant after 10

days or more after the endemic. The increase in the infected vector at the initial stage indicates

an initial outbreak phase followed by a stabilization period (Figure 4b). The infection rises

sharply within the first 20 days, suggesting a high progression rate from EV to IV . After around

40 days, the curve starts to flatten, implying that the vector infection rate is slowing down. The

stabilization suggests that either the number of EV has reduced, or the mortality rate of vectors

balances new infections. This highlights the importance of vector control measures in the early

stages of an outbreak.
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(A) (B)

FIGURE 5. Simulation of recovered and vaccinated human population

Due to the increase in vaccination and treatment rates at different values, the recovered pop-

ulation increases steeply with time (Figure 5a), indicating that more people are been vaccinated

against YF. Figure 5b, similar to the infected humans depicts the change in the vaccinated in-

dividuals with time. This demonstrates how the number of vaccinated individuals increases

steadily within the first few days as infected people move into this compartment but later de-

creases when more people have taken the vaccine.

FIGURE 6. Simulation of toxic infected humans with time

Figure 6 illustrates how quickly infected individuals enter a toxic state, where the steep in-

crease suggests a rapid progression from IH to the toxic state due to high transmissibility. After

4 days, the toxic state reaches its peak, indicating the maximum burden of toxic infected cases.

The gradual decrease is a result of increased recovery, reduced contact rates, or depletion of

infectious individuals and possibly high mortality.
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CONCLUSION

Transmission dynamics of yellow fever with a toxic infected population model were pro-

posed and carefully analyzed within the perfect vaccinated population. The existence and sta-

bility analysis of the models’ equilibrium points are investigated. Our sensitivity index analysis

indicated a,β1,β2,Λ,γ were the most sensitive parameters influencing the spread of YF. The

model is solved numerically using MATLAB ODE45 to ascertain its epidemiological implica-

tions. The increase in the infected vector at the initial stage is due to more susceptible vectors

getting infected and becoming infectious (Figure 4b). Preventing progression from IH to DH is

crucial, requiring timely treatment. Therefore to contain the spread, it is essential to reduce the

contact rate of toxic individuals DH with the susceptible population (SH). The dynamics of DH

highlight the importance of focusing on severe cases to control outbreaks. Hence, interventions

should aim to reduce the transition rate τ and increase recovery ω to mitigate the impact of toxic

infections. Furthermore, the stabilization phase (figure 4b) implies that interventions targeting

vector reproduction or mortality could help limit the spread of YF over time.
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