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Abstract. Classifying lung diseases from images has been a challenging task for Deep Learning (DL) methods.

Self-Supervised Learning (SSL) in particular has been widely recognized to be effective for pre-training, especially

new methods such as DINOV2 ViT/S-14 and ConvNeXt-V2. In this research, Transfer Learning (TL) was con-

ducted on the two models by using the NIH CXR-14 dataset to perform 15-class classification. Additionally, SwAV

ResNet-50, DINO ViT-S/16, and CheXNet were adopted as the baselines. Evaluation results showed that DINOV2

ViT-S/14 is superior to the other three models pre-trained on ImageNet with 0.743 macro-averaged AUC, but is

inferior to CheXNet which was pre-trained using the same NIH CXR-14 dataset albeit without the ”No Finding”

class. However, the CheXNet only obtained 0.773 AUC with 0.328 recall. Further analysis on feature separability

showed that both CheXNet and DINOV2 ViT-S/14 were unable to extract meaningful features that differentiate

the ”No Finding” class with the other 14 lung conditions, confirming the finding from a previous study that this

dataset’s labels is noisy, rendering it unsuitable for downstream TL tasks. However, DINOV2 ViT-S/14 showed

similar attention visualizations with CheXNet on some classes despite being pre-trained on natural images from
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ImageNet. Therefore, despite the unsatisfactory performance in this dataset, DINOV2 holds great potential in

similar future studies, but it may require pre-training the models on medical image datasets.

Keywords: deep learning; self-supervised learning; vision transformers; chest X-ray; convolutional neural net-

works.
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1. INTRODUCTION

Lung diseases have consistently remained among the top-20 leading causes of death. Chronic

Obstructive Pulmonary Disease (COPD), such as emphysema, ranked third among these leading

causes [1]. As such, early screening for these anomalies are imperative, such as by utilizing

Machine Learning (ML) or even Deep Learning (DL). DL models had been adopted in various

medical fields, but it requires massive volumes of training data. However, the issue of data

scarcity persisted as a huge gap [2]. Additionally, the major imbalance between the number

of healthy and sick samples introduced issues for DL models, leading to biased predictions

towards the majority classes [3]. In the field of lung diseases, subtle and overlapping visual

characteristics between different conditions became another hurdle to overcome for DL models

[4].

In recent years, the Self-Supervised Learning (SSL) paradigm gained a lot of traction. SSL

is a method to train models in learning data representations without labels, thus overcoming

the hurdle of limited data availability. It had shown promising results in various fields namely

Speech Recognition, Natural Language Processing, and also lung disease detection through the

means of Transfer Learning (TL). Previous studies suggested that SSL pre-training in computer

vision allows DL models to extract more meaningful visual features compared to supervised

ones [5, 6]. Additionaly, numerous studies have demonstrated that SSL, specifically Contrastive

Learning (CL), not only enhances DL model’s ability to generalize but also proves effective in

addressing the data imbalance problem, especially in image classification tasks where images in

minority class are often under-represented in the model’s predictions as well. It seems that CL,

which trains models to extract more similar features invariant to transformations, allows DL

models to improve their feature representations or embeddings [3]. Therefore, the method can

prove promising to distinguish subtle differences in lung images such as Chest X-Rays (CXR).
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Throughout the years, various SSL algorithms had been tested for CXR classification. CL

methods had proven successful thus far for CXR classification cases using either Convolutional

Neural Networks (CNN) or Vision Transformers (ViT), such as the Swapping Assignments be-

tween multiple Views (SwAV), self-Distillation with No labels (DINO), and SimCLR [3, 7, 8],

making CL pre-training dubbed as the State-of-The-Art for CNN models [9]. Aside from CL,

restorative learning such as Masked Auto-Encoders (MAE) had also received more popularity

for ViT models and deemed to be more suitable [10]. Still, a lot of improvement can still be

done, such as investigating the feature separability as well as explainability [9]. A previous

study in particular had proven that DINO allowed ViT models to focus on more correct Regions

of Interest (RoI) in lung disease classification compared to CNNs [11]. Therefore, it will be

beneficial to further explore newer SSL pre-training methods for classifying lung conditions

through CXR images. For ViT models, DINO’s improved version, DINOV2, had shown re-

markable results in various classification cases [12]. Similarly, the new ConvNeXt-V2, a CNN

model claimed to be even superior to ViTs, was pre-trained using MAE and brought outstanding

performance [13]. However, both methods had yet to be evaluated on CXR classification cases

with considerable number of classes.

The main goal of this research is to compare and analyze the performance of newer SSL algo-

rithms in a downstream lung condition classification task. In this research, DINOV2 ViT-S/14

and ConvNeXt-V2, which are two of the newest additions among SSL pre-trained models, were

compared in classifying 15 lung conditions. DINOV2 is a CL method where ConvNeXt-V2 was

pre-trained restoratively, confronting the trends of using CL on CNNs and restorative learning

on ViTs. The models were compared with replicated baseline models from previous studies,

namely ResNet-50 pre-trained using SwAV [3] and ViT-S/16 model pre-trained using the orig-

inal DINO [11]. All four models were pre-trained on ImageNet, similar to the conditions made

on the original works. In addition, CheXNet [14], which was pre-trained specifically for lung

condition classification, was also replicated and re-trained. The adoption of CheXNet was done

to verify whether the model’s performance even when trained on natural images in ImageNet

can surpass another pre-trained using medical images. However, if the models proved inade-

quate, CheXNet can be used for verifying whether the models’ unsatisfactory performance were
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caused by incorrect configurations or due to the dataset itself. The evaluation were conducted

based on three key aspects: the model’s discriminative confidence, feature separability, and

attention visualization.

The following section describes past related studies in using DL and SSL pre-training for

lung CXR image classification. Section 3 describes details of the research methodology as well

as the four SSL algorithms used whereas Section 4 discusses the findings. The conclusion is

presented in Section 5.

2. RELATED WORKS

Ever since the introduction of CheXNet, DL has been a rapidly growing method for Computer-

Aided Diagnosis (CAD). By pre-training a DenseNet-121 model on the National Institute of

Health Chest X-Ray 14 (NIH CXR-14) dataset, the model managed to outperform human radi-

ologists on classifying 14 categories of lung conditions despite only achieving 0.435 F1 score

[14]. Ever since then, pre-training a model and conducting TL on a downstream task has been

a major trend among AI researchers for CXR classification. In 2022, TL on DenseNet-121 was

conducted along with joint learning to train it in classifying 18 classes of lung conditions, 14 of

them originating from the NIH CXR-14 dataset excluding the ”No Findings” class. However,

the AUC of the models only reached 0.9 for four classes and none was from the NIH CXR-14

dataset, attaining an average AUC of 0.822 [15]. In a similar study, combining ResNet-50 and

DenseNet-121 brought about more than 0.93 AUC on four-class CXR classification case [16].

Other CNN backbones had also proven their capabilities on binary CXR classification, attain-

ing around 0.98 recall for all models [17]. Other similar studies proved the dominance of ViT

as well for CXR image classification, obtaining 0.95 recall for binary pneumonia classification

[18] and 0.958 accuracy on four-class classification [19]. CheXNet had also been used, albeit

in a binary classification context where it performed not too well due to the noisy labels [20].

As more research emerged, it also paved a way to experiments involving different pre-training

schemes, including SSL.

With the growing popularity of SSL, usages of CL has grown in CXR image classification

tasks. The method itself has been dubbed the State-of-The-Art for pre-training CNN models [9]

and known to allow ViT models to extract informative semantic features [21]. In our previous
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research, we proved that using models pre-trained through CL algorithms such as SwAV [22]

allowed ResNet-50 models to maintain their performance even when trained on imbalanced

data, attaining 0.952 AUC for four-class CXR classification [3]. In a recent study, even one of

the simplest CL algorithm, SimCLR [23], had proven capable of allowing CNNs to reach 0.95

AUC with merely 500 images for fine-tuning in a binary classification task [7]. Moreover, CL

had proven its success not only for CNNs, but also ViT models. ViT models pre-trained using

DINO had proven superior to SwAV ResNet-50 when fine-tuned on four-class CXR classifica-

tion, even when the dataset is imbalanced [11]. In a similar study, researchers had further ver-

ified its capability by pre-training a ViT model through DINO using the NIH CXR-14 dataset,

allowing it to obtain 0.961 F1 score when fine-tuned on the Cell dataset. However, the model

proved inferior compared to ResNet-50 when fine-tuned on the COVIDGR dataset [8] . Such

results could be caused by the fact that ViT models require lots of training data [9] and less than

1,000 images was used in the research. In other recent studies, researchers proposed restorative

learning instead of CL for pre-training ViT, such as the Masked Auto-Encoders (MAE) [10].

Through restorative learning, ViT models can obtain outstanding results after being trained on

vast amounts of data, including both general objects (e.g. ImageNet) and the targeted domain

samples (e.g. CXR images) [9].

Overall, CL had proven to be an effective approach in pre-training both CNNs and ViTs.

Despite restorative learning growing to be more prominent in recent years for ViT, newer CL

algorithms such as DINOv2 [12], the upgraded version of DINO said to be even more accurate,

may be promising to test. Additionally, the advent of ConvNeXt, which was an improved

version of ResNet-50, had caused a stir as it was said to be even superior to ViT for various

computer vision tasks [24]. With the introduction of ConvNeXt-V2 pre-trained using MAE

[13], it can be said that the streak of innovation will continue further. In this research, we aim to

compare these newer models pre-trained through SSL, namely ViT pre-trained using DINOv2

and ConvNeXt-V2, in classifying CXR images from the challenging NIH CXR-14 data. As the

dataset itself contain over 100,000 images, it should be an interesting test to validate whether

CNNs and ViTs can maintain their performance.
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3. RESEARCH METHODOLOGY

This section describes the details surrounding the experiment setup regarding the comparative

analysis of ViTs and CNNs pre-trained using recently developed SSL pre-training algorithms.

3.1. Dataset. This research utilized the publicly available NIH CXR-14 dataset [25]. This

dataset contains over 100,000 CXR images in non-DICOM format as well as other associated

data from more than 30,000 patients. For this research, only 91,324 images with single-class

labels from a total of 15 classes were selected. These 15 classes include 14 lung anomaly

labels and one ”No Findings” class, indicating that none of the 14 aforementioned anomalies

were found. To create these labels, the authors used Natural Language Processing to text-

mine disease classifications from the associated radiological reports. The labels are expected to

be 90% accurate and suitable for weakly-supervised learning. It should also be noted that the

dataset is severely imbalanced, where more than 66% of the images belong to the ”No Findings”

class. The label distribution is explained in the next section.

3.2. Data Pre-processing. For fairer comparisons with current State-of-The-Art methods, the

original subset splitting provided by the NIH was used for splitting the dataset into two subsets.

One was the train set and the other was the test set. As the authors of the dataset only pro-

vided the split for these two subsets, we further split the train set into two subsets, with one

being used for validation. 20% images from the train set was used for the validation set, re-

sulting in 64.368%, 14.683%, and 19.549% distribution among the train, validation, and test

sets, respectively, as listed in Table 1. All images were then resized to 224 × 224 pixels to fit

the pre-trained models’ input shape. The Contrast-Limited Adaptive Histogram Equalization

(CLAHE) was then applied to all subsets to enhance image contrast and the visibility of subtle

features important for diagnosis while limiting enhanced contrast [26]. The method itself had

proven beneficial for CNN models in CXR classification tasks [27]. The overall pre-processing

steps were illustrated in Figure 1.

However, the appalling imbalance will surely affect the models’ performances. The available

training data for the minority class, which is Hernia, is only 52 images whereas the ”No Find-

ing” class boasts 40,400 training data. Previous studies has shown that Random Undersampling
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TABLE 1. Distribution of CXR images across the three subsets.

No. Class Total Test Val Train Class Weight Resampled

1 Atelectasis 4,215 (4.615%) 801 682 2,732 1.434 2,732

2 Cardiomegaly 1,093 (1.197%) 316 155 622 6.300 3,732

3 Consolidation 1,310 (1.434%) 481 165 664 5.902 3,984

4 Edema 628 (0.688%) 231 79 318 12.323 1,908

5 Effusion 3,955 (4.331%) 1,167 557 2,231 1.757 2,231

6 Emphysema 892 (0.977%) 305 117 470 8.338 2,820

7 Fibrosis 727 (0.796%) 176 110 441 8.886 2,646

8 Hernia 110 (0.120%) 45 13 52 75.363 312

9 Infiltration 9,547 (10.454%) 2,220 1,465 5,862 0.669 5,862

10 Mass 2,139 (2.342%) 443 339 1,357 2.888 8,142

11 No Finding 60,361 (66.095%) 9,861 10,100 40,400 0.097 16,160

12 Nodule 2,705 (2.962%) 457 449 1,799 2.178 10,794

13 Pleural Thickening 1,126 (1.233%) 309 163 654 5.992 3,924

14 Pneumonia 322 (0.353%) 88 46 188 20.845 1,128

15 Pneumothorax 2,194 (2.402%) 953 248 993 3.946 5,958

Total 91,324 17,853 14,688 58,783 72,333

FIGURE 1. Flowchart of the data preprocessing pipeline

(RUS) did not seem to bring positive impacts in this particular task [3, 11]. Moreover, this ap-

proach will also reduce the impact of exploding gradients due to class weighting, which were

used for training the models following approaches of the two aforementioned studies.
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In our approach, we used the class weights of the original train set to determine which class

should be oversampled and undersampled. Class weighting itself is formulized as:

(1) WC =
n

c×nC

where WC denotes the class weight for class C, n is the total number of data in the specified

subset, c is the number of classes, and nC represents the number of data in class C. The rules

were set as follows:

(1) If wC ≥ 2, then oversample the images five times.

(2) If 1.5≤ wC < 2, then keep the data as is.

(3) If wC < 0.1, then undersample the data by 60%.

The thresholds were established through rigorous prior experiments based on the resulting val-

idation loss of a baseline model. The oversampling was done using geometric augmentations,

namely horizontal flipping and rotations, while RUS was used for the undersampling. After the

resampling process, the values of wC calculated using equation 1 range from 0.298 to 4.275 ex-

cluding Hernia, which had a weight of 15.456. This means that losses for misclassified Hernia

images during training will be multiplied by 15.456 instead of 75.363, thereby minimizing the

explosion of gradients during training. No resampling was done on the test and validation sets.

For the oversampling, the rotation was set to -40, -20, 20, and 40 degrees, meaning that when

added with horizontal flipping, five new images were generated for each image, yielding a total

of six images per image after oversampling. Details of the data distribution after resampling

are listed in Table 1. No augmentations were conducted on the validation and test sets. All im-

ages were normalized to the range of 0-1 and standardized using ImageNet’s mean and standard

deviation values, which are [0.485, 0.456, 0.406] and [0.229, 0.224, 0.225], respectively.

3.3. Pre-trained models. A total of two SSL pre-trained models were evaluated along with

three baselines. The former refers to a ViT-S/14 model pre-trained using DINOV2 and a

ConvNeXt-V2 atto model. To the best of our knowledge, no experiments have been done on

these two models for CXR classification with more than 10 classes. The baselines are CheXNet,

a ResNet-50 pre-trained using SwAV, and a ViT-S/16 model pre-trained using the regular DINO
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SSL algorithm, all of which were selected based on their impressive performance in CXR clas-

sification cases [14, 3, 11]. It should be noted that comparing CheXNet with the other models

cannot be considered fair as the four other models were trained using ImageNet without the

prior knowledge of medical image feature extraction. Hence, CheXNet is only used as a bench-

mark on whether the dataset is reliable as the original CheXNet was only trained on samples

of the NIH CXR-14 dataset without the ”No Finding” class. Details about the models and SSL

pre-training algorithms are provided below.

3.3.1. CheXNet. CheXNet is a DenseNet-121 model pre-trained through multilabel super-

vised learning on 14 classes of the NIH CXR-14 dataset. The aim was enabling the model to

identify these anomalies better compared to human radiologists. However, it should be noted

that the training data only included anomalies without healthy CXR images, which is one of

its limitations. The model still surpassed human radiologists with 0.435 F1 score while the

latter obtained an average of 0.387 F1 score. Upon deeper analysis, the model still found it

challenging to classify infiltration, pneumonia, consolidation, and nodules [14].

FIGURE 2. Illustrations for three of the SSL pre-training algorithms evaluated

in this study: (A) SwAV, (B) DINO, and (C) ConvNeXt-V2

3.3.2. SwAV. SwAV is a CL algorithm that utilizes swapped prediction to train models that

can produce more similar and consistent outputs for different augmentations of the same image

[22], thereby allowing the models to produce robustly similar embeddings for similar or aug-

mented images and make them more capable in finding similarities between images in the same
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class. Unlike typical CL algorithms, SwAV compares the cluster assignments of each view in-

stead of their features. From the illustration provided in Figure 2(A), SwAV comprises three

main steps which are numbered in the figure as well.

(1) Perform multi-crop on an input image x to produce the augmented views, x1 and x2,

which were further noised using color distortion and blurring. Pass both views to a DL

model F(x) to produce the embedding features Z1 and Z2.

(2) Take the learnable prototype vector C and calculate its dot product with Z1 and Z2 to

produce Z1.C and Z2.C.

(3) Assign Z1.C and Z2.C to clusters using the Sinkhorn-Knopp algorithm, producing Q1

and Q2 which are referred to as ”codes”. Perform the swapped prediction in the loss

calculation using Cross-Entropy (CE) loss calculated through the following equations.

(2) p(k)t =
exp(1

τ
(Zt ·Ck))

∑k′ exp(1
τ
(Zt ·Ck′))

(3) L(Zt ,Qs) =−∑
k

Q(k)
s ∗ log(p(k)t )

(4) L(Zt ,Zs) = L(Zt ,Qs)+L(Zs,Qt)

The loss is the sum of L(Z1,Q2) and L(Z2,Q1) calculated through the CE loss between

Q and the softmax value of Z.C where k denotes the number of prototype vectors and τ

is the softening temperature.

3.3.3. DINO. DINO is a combination of self-distillation with CL, meaning that CL was per-

formed using the same model architecture combined with Exponential Moving Average (EMA).

The original method utilized two ViT models referred to as the student model Fs(x) and the

teacher model Ft(x). Utilizing the multi-crop augmentation, the student model is trained to

imitate the teacher model’s output embedding’s distribution. There are four main steps in the

algorithm as illustrated in Figure 2(B).

(1) An input image x is randomly augmented, either using multi-crop or random photomet-

ric augmentation (e.g. color jitter, blurring, or solarization), generating a set of V global

views. When V = 2, x1 and x2 will be produced.
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(2) Create sets of local views from x1 and x2, which are their cropped or resized versions

with lower resolutions. The local views are fed into Fs(x) while the global views are

processed by Ft(x). The outputs of Fs(x) are Zs1 and Zs2 whereas the outputs of Ft(x)

are Zt1 and Zt2, respectively.

(3) Replace Zs1 and Zs2 with their softmax values and perform softmax centering on Zt1 and

Zt2, then calculate the loss of Fs(x) using equation 5 where L(a,b) =−a× log(b).

(5) Ls(x) = L(Zt1,Zs2)+L(Zt2,Zs1)

(4) Perform back-propagation on Fs(x) and update the center value of Ft(x), then update the

parameters of Ft(x) using EMA as shown in equation 6 where θt and θs represents the

parameters of Ft(x) and Fs(x), respectively. λ is the momentum coefficient with values

between 0.996 to 1.

(6) θt = λθt +(1−λ )θs

Basically, the student model is trained to use local views, and generate output embeddings

that mimics the global features produced by the teacher model. The method surpassed all pre-

vious CL algorithms on ImageNet downstream classification [21].

3.3.4. DINOV2. DINOV2 further improves DINO by combining it with the loss mechanism

of Image BERT (iBOT) [28], KoLeo regularizer [29], and the cluster assignment of SwAV [22].

The processes are as follows:

(1) Train the model for image-level objective using DINO. The process is the same as regu-

lar DINO until the calculation of losses using equation 5. However, the softmax center-

ing is replaced with the Sinkhorn-Knopp algorithm used in SwAV. This step produces

LDINO.

(2) Train the model for patch-level objective using iBot. This is done by masking the input

image patches fed to the student model Fs(X), producing the embedding Zs. The input

for the teacher model Ft(x) is not masked, and its output is fed into the Sinkhorn-Knopp

algorithm to produce the output embeddings Zt . The loss is then calculated using

(7) LiBot =−
n

∑
i=1

Ztilog(Zsi)
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where i and n denotes the index and number of patch indices of the masked tokens. This

way, the student model is also trained to analyze the image’s semantic features through

de-masking.

(3) Regularize the model using KoLeo regularizer where dn,i = mini6= j||xi− x j|| with xi

representing a data point with the index i in a batch of input.

(8) LKoLeo =−
1
n

n

∑
i=1

log(dn,i)

(4) Calculate the total loss as L= LDINO+LiBot +LKoLeo, then perform back-propagation on

Fs(x) using L and update the parameters of Ft(x) using EMA, as formulated in equation

6.

By combining these methods, the ViT model is trained not only to produce similar embeddings

between local and global views on image-levels, but also on the patch-levels, prompting it

to produce general-purpose spatial features. This led to greater accuracy on a downstream

evaluation using ImageNet compared to regular DINO and MAE using ViT [12].

3.3.5. ConvNeXt-V2. ConvNeXt is a fully-convolutional neural network that combines the

features of ViT models, specifically Swin Transformer, to ResNet-50. These features include

the adoption of patching mechanism utilizing larger convolution kernels in the model’s stem

cells, the inverted bottleneck architecture for the stem cells, and replacing the ReLU activation

function with GELU [24]. ConvNeXt-V2 takes the ConvNeXt architecture and incorporates

SSL pre-training along with the usage of Global Response Normalization (GRN) layers. For

the SSL pre-training, ConvNeXt-V2 adopted the Masked Auto-Encoder (MAE) approach, in

which it takes a masked image x′ and feeds it to the model’s encoder E(x) and decoder D(x)

to reproduce the original unmasked image x, as illustrated in Figure 2(C). Mathematically, x

can be expressed as x = D(E(x′)). When evaluated on a downstream classification task using

ImageNet, the model surpassed even standard MAE-ViT models, which was known to be re-

markable in accuracy, proving once again how CNNs trained with restorative learning such as

MAE can still prove superior to ViTs [13].

3.4. Experiment Setup. The aim of this research was to compare the performance of the

different pre-trained models on single-label CXR classification through TL. Hence, all of the



SSL VIT AND CNN WITH CHEXNET IN CLASSIFYING LUNG CONDITION 13

pre-trained models got their decoders replaced with a fully-connected network, comprising a

Dropout layer, a Dense layer with 128 neurons and ReLU activation function, another Dropout

layer, and a Dense output layer. The models were built using PyTorch, pre-trained on ImageNet

except for CheXNet, and fine-tuned using the grid search strategy. Four hyperparameters were

tuned, namely the learning rate lr ∈ {1e− 1,1e− 2,1e− 3,1e− 4,1e− 5}, the L2 regularizer

lambda λ ∈ {0,1e−1,1e−2,1e−3,1e−4,1e−5}, the Dropout rate rdrop ∈ {0,0.2,0.4}, and

the number of unfrozen encoder blocks for each model, effectively evaluating the best network

adoption strategy for the TL as well. Only up to half of the convolution and transformer blocks

for ConvNeXt-v2 and ViT models were unfrozen for the fine-tuning. Transformations using

random horizontal flip and random rotation from -60 to 60 degrees were randomly applied on

the input images during training to reduce the risks of overfitting. All models were trained for

50 epochs with 8 batch size. Additionally, class weighting and early stopping with a patience

of 10 epochs were also applied.

3.5. Evaluation Method. Three evaluation metrics were set as the prioritized metrics, namely

recall, F1 Score, and Area Under the Receiver Operating Characteristic Curve (AUROC). Re-

call, which is formulized in equation (9), measures the rate of correct predictions against the

number of data in a class, also known as the True Positive Rate (TPR). Larger recall values

show that the model can effectively classify images belonging to a specific class. F1 score is

the harmonic mean between recall and precision calculated using equation (11). This particular

metric can be crucial when the dataset is imbalanced as it can maintain the balanced trade-

offs between recall and precision, providing insights to the proportion fo True Positives with

both False Positives and False Negatives. Unlike recall and F1 which measure a classification

model’s correctness, AUROC, also known as Area Under the Curve (AUC), evaluates the con-

fidence of the model’s predictions to differentiate between classes, which is why it became the

main metric in determining the best model in section 4. The ROC curve itself compares TPR

against the False Positive Rate (FPR). Values close to 1 indicate higher confidence and better

separability. In addition, the precision for the ”No Finding” class is also calculated as a good

model for this case should exhibit less false positives for this particular class.
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(9) Recall = T PR =
T P

T P+FN

(10) Precision =
T P

T P+FP

(11) F1 score = 2∗ Precision∗Recall
Precision+Recall

To measure the model’s feature separation and comprehension capability, t-Distributed Sto-

chastic Neighbor Embedding (t-SNE) and Gradient-weighted Class Activation Mapping (Grad-

CAM) was used to inspect the produced features for all classes. Good classification models

exhibit high degrees of separability. t-SNE works as a dimension reduction technique that

changes the high dimensional data into a lower dimensional space. By analyzing these lower

dimensional features from the model’s embeddings, the model’s ability to separate different

classes can be measured. Clear t-SNE clustering indicates that the model successfully learned

to use important features that differentiate the classes, especially in high dimensional data [30].

GradCAM on the other hand visualizes image regions deemed relevant by the model to make

their predictions, typically shown as heatmaps. It has been commonly used for measuring the

model’s correctness in terms of feature importance interpretation in the form of RoI [31].

4. RESULTS AND DISCUSSSION

4.1. Fine-tuning Results on Network Adaption for Each Model. Overall, evaluation re-

sults show that partial network adaption works best for all models. However, the models’

classification performance were unsatisfactory. SwAV, which proved successful in a similar

CXR classification study [3], only managed to achieve 0.730 macro-averaged AUC and 0.253

recall for this 15-class classification case using three unfrozen blocks, becoming the best SwAV

model in this experiment. As shown in Table 2, despite having the best train and validation

loss, the zero-adapted version with four unfrozen blocks performed slightly worse compared to

the ResNet-50 model with three unfrozen blocks, whereas the fully-adapted model with zero

unfrozen blocks performed the worst. 26.1% of the best model’s ”No Finding” was false, hence
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the low recall and F1 scores. It is also implied that a lot of wrong classifications occur between

the 14 anomalies based on the F1 score.

TABLE 2. Evaluation results on different numbers ofunfrozen blocks for SwAV

ResNet-50. The asterisk (*) indicates the best model.

Unfrozen Train loss Val Loss Test Loss Test AUC Recall F1 Precision of ”No Finding”

0 2.166 2.309 2.043 0.595 0.081 0.200 0.558

1 1.937 2.082 2.317 0.681 0.236 0.145 0.715

2 2.149 2.027 2.451 0.642 0.171 0.123 0.688

3* 1.798 2.093 2.050 0.730 0.253 0.204 0.739

4 1.682 1.962 2.108 0.727 0.250 0.186 0.754

Results for the other baseline, which was the DINO ViT-S/16, are listed in Table 3. Overall,

the models performed worse compared to SwAV ResNet-50. Similar to the previous study

[11], the ViT model with only one unfrozen block achieved the overall best results with 0.707

macro-averaged AUC on the test set and 0.209 recall. However, it had less false ”No Finding”

predictions compared to the SwAV ResNet-50 model, as implied by the precision in Table 3

that shows a 1.4% reduction in false ”No Finding” classifications. However, it appears that the

model was more confused in differentiating the anomalies due to the lower recall and F1 score.

The results are pretty much similar when the number of unfrozen blocks increased, but the AUC

plummeted when six transformer blocks were unfrozen.

ConvNeXt-V2, which was claimed to surpass numerous DL models in computer vision [13],

obtained the worst overall performance in this experiment. With 0.703 AUC and 0.184 recall

as shown in Table 4, the model was inferior to both of the previous baselines. Almost 30% of

the model’s ”No Finding” predictions were false, regardless of the number of unfrozen convo-

lution blocks. However, this also shows how consistent the model’s performance is. Given how

the model was previously trained on ImageNet, pre-training ConvNeXt-V2 on medical images

could be promising. Overall, the best model has one unfrozen convolution block.

DINOV2 ViT-S/14 obtained the overall lowest validation loss among all models with very

slight overfitting observed. As written in Table 5, the best validation loss was 1.753 despite

being magnified by the class weights. In the test set, the model with five unfrozen transformer
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TABLE 3. Evaluation results on different numbers of unfrozen blocks for

DINO ViT-S/16. The asterisk (*) indicates the best model.

Unfrozen Train loss Val Loss Test Loss Test AUC Recall F1 Precision of ”No Finding”

0 2.370 2.071 2.287 0.544 0.104 0.097 0.637

1* 1.959 1.912 2.124 0.707 0.209 0.170 0.753

2 1.999 1.886 2.078 0.697 0.198 0.166 0.740

3 1.732 1.959 2.173 0.690 0.238 0.161 0.806

4 2.039 1.927 2.112 0.706 0.218 0.167 0.762

5 2.063 1.895 2.111 0.695 0.189 0.163 0.751

6 2.227 2.008 2.167 0.606 0.121 0.139 0.693

TABLE 4. Evaluation results on different numbers of unfrozen blocks for

ConvNeXt-V2. The asterisk (*) indicates the best model.

Unfrozen Train loss Val Loss Test Loss Test AUC Recall F1 Precision of ”No Finding”

0 2.099 1.957 2.198 0.689 0.154 0.116 0.708

1* 1.949 1.911 2.150 0.703 0.184 0.132 0.709

2 2.116 1.959 2.189 0.682 0.155 0.137 0.707

3 2.070 1.940 2.097 0.697 0.166 0.145 0.707

4 2.096 1.895 2.165 0.688 0.156 0.131 0.682

5 2.070 1.927 2.178 0.696 0.159 0.138 0.697

6 2.115 1.940 2.167 0.694 0.156 0.131 0.696

blocks obtained the best results, with 0.743 AUC and 0.233 recall. The classification metrics are

lower than SwAV ResNet-50, but the AUC is higher. This indicates comparable performance to

the baseline with better confidence, as the higher AUC implied more distinct differentiations in

the model’s output probabilities. However, the results for all models pre-trained on ImageNet

were inadequate, which can be attributed to the huge distinction between natural images in

ImageNet and medical images [32]. Future studies may specifically explore pre-training on

medical image datasets.

To validate whether the inadequate results were solely caused by the pre-training dataset do-

main gap with the downstream dataset, CheXNet was also fine-tuned in this experiment. From
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TABLE 5. Evaluation results on different numbers of unfrozen blocks for

DINOV2 ViT-S/14. The asterisk (*) indicates the best model.

Unfrozen Train loss Val Loss Test Loss Test AUC Recall F1 Precision of ”No Finding”

0 2.264 2.022 2.156 0.651 0.105 0.095 0.673

1 1.699 1.753 1.916 0.738 0.189 0.166 0.733

2 1.596 1.789 2.007 0.729 0.221 0.185 0.709

3 1.657 1.795 1.995 0.722 0.206 0.173 0.723

4 1.608 1.789 2.008 0.734 0.211 0.177 0.713

5* 1.565 1.756 1.970 0.743 0.233 0.186 0.720

6 1.828 1.827 2.035 0.680 0.178 0.154 0.710

TABLE 6. Evaluation results on different numbers of unfrozen blocks for

CheXNet. The asterisk (*) indicates the best model.

Unfrozen Train loss Val Loss Test Loss Test AUC Recall F1 Precision of ”No Finding”

0* 2.381 2.244 2.353 0.773 0.328 0.195 0.749

1 2.069 1.809 2.661 0.766 0.351 0.183 0.798

2 1.763 1.772 3.059 0.745 0.305 0.160 0.766

3 1.699 1.844 2.953 0.731 0.305 0.155 0.783

4 1.974 1.920 2.930 0.740 0.294 0.151 0.793

the results shown in Table 6, it appears that even CheXNet that was pre-trained on the same NIH

CXR-14 dataset performed poorly. However, it should be noted that during the pre-training of

CheXNet, the ”No Finding” class was not used. This means that the addition of ”No Finding”

shifted the model’s performance greatly, resulting in only 0.773 AUC achieved with 0.328 re-

call. Moreover, 25.1% of the ”No Finding” predictions were false. Therefore, deeper analysis

will be necessary, which are described in the following subsections. Overall, zero-adaption

worked best on CheXNet, which may be caused by its pre-trained parameters already having

sufficient knowledge to extract noteworthy features from CXR images.

4.2. Comparison Between Models.
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TABLE 7. AUC scores for each class in the test set. The asterisks (*) indicate

the best model between CheXNet and those pre-trained in ImageNet.

Class (Proportion in Train Set) SwAV DINO ConvNeXt-V2 DINOV2 CheXNet

Atelectasis (3.777%) 0.719 0.671 0.675 0.735 0.741 *

Cardiomegaly (5.159%) 0.892 0.823 0.845 0.863 0.897 *

Consolidation (5.508%) 0.715 0.701 0.697 0.714 0.732 *

Edema (2.638%) 0.831 0.828 0.832 0.822 0.842 *

Effusion (3.084%) 0.775 0.747 0.755 0.790 0.811 *

Emphysema (3.899%) 0.827 0.762 0.738 0.874 * 0.867

Fibrosis (3.658%) 0.727 0.753 0.740 0.813 * 0.780

Hernia (0.431%) 0.859 0.854 0.845 0.861 0.964 *

Infiltration (8.104%) 0.567 0.596 0.573 0.598 0.603 *

Mass (11.256%) 0.720 0.651 0.700 0.740 0.803 *

No Finding (22.341%) 0.628 0.626 0.621 0.633 * 0.619

Nodule (14.923%) 0.682 0.627 0.624 0.653 0.760 *

Pleural Thickening (5.425%) 0.676 0.629 0.625 0.680 0.708 *

Pneumonia (1.559%) 0.552 0.597 0.562 0.574 0.612 *

Pneumothorax (8.237%) 0.778 0.740 0.712 0.790 0.850 *

To further analyze the models’ performance, the class-specific AUC scores were analyzed.

From the scores listed in Table 7, DINOV2 ViT-S/14 was the best model out of the four models

pre-trained using ImageNet. The former obtained the best AUC scores on 10 out of 15 classes in

the dataset, even outperforming CheXNet on three classes, namely ”Emphysema”, ”Fibrosis”,

and ”No Finding”. Such results may be attributed to the fact that DINOV2 trained ViT models

to also pay attention to patch-level features in addition to global image features [12], effectively

combining local and global attention. Ironically, the original DINO failed to perform well

compared to other models. CheXNet achieved better results overall, but it can be seen that the

AUC for most classes were moderate. Only ”Cardiomegaly”, ”Emphysema”, and ”Hernia” got

more than 0.85 AUC on CheXNet. This indicates that the other classes’ features may be more
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FIGURE 3. Confusion Matrix for DINOV2 ViT-S/14 and CheXNet.

Yellow-colored cells indicate which model obtained more True Positives for

each class.

subtle or ambiguous. From this point onward, only DINOV2 ViT-S/14, which achieved the best

performance from the models pre-trained on ImageNet, and CheXNet will be further analyzed.

In addition, we also identified several problematic classes to be analyzed further based on the

low AUC scores, namely ”Atelectasis”, ”Consolidation”, ”Infiltration”, ”No Finding”, ”Pleural

Thickening”, and ”Pneumonia”.

Figure 3 provides the confusion matrix for the two best models. For ”Atelectasis”, ”Effu-

sion”, ”Infiltration”, and ”No Finding”, DINOV2 ViT-S/14 obtained significantly more True

Positives compared to CheXNet, despite the latter’s higher AUC scores for the classes except

”No Finding”. These three anomalies primarily show more subtle features compared to other

such as ”Cardiomegaly” and ”Consolidation”, implying that DINOV2’s iBOT loss could pos-

sibly be the reason why the ViT model managed to outperform CheXNet. On the other hand,

CheXNet classified remarkably more True Positives for most of the other classes. For classes
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such as ”Cardiomegaly” (dilated or thicker heart), ”Nodule” (marked by lumps in the lungs),

”Hernia” (bulging lungs through the chest cavity), and ”Pneumothorax” (accumulated air in the

pleural cavity), the features are sometimes visible directly on the thoracic regions, meaning that

local attention could be a better fit for detecting them. Therefore, it is not strange that CheXNet

would perform significantly better in classifying these classes. However, both models produced

excessive misclassifications of images with ”No Findings”. DINOV2 ViT-S/14 tends to predict

these images as either ”Atelectasis”, ”Effusion”, or ”Infiltration”. CheXNet seem to classify

these images more evenly across other possible labels, meaning that this class specifically is

very suspicious. To further verify this finding, t-SNE visualizations will be analyzed in the next

subsection.

FIGURE 4. t-SNE visualizations for: (A) DINOV2 ViT-S/14 and (B) CheXNet.

4.3. Feature Separability. From the visualizations provided in Figure 4, no clear pattern

can be made for any of the classes. The left side of the figure shows the dimension-reduced

features for each class, while on the right side the labels are unified into merely two classes,

namely ”Has Anomalies” and ”No Finding”. The ”Has Anomalies” label encompasses all data
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from the 14 classes except ”No Finding”. This was done to analyze why the latter proved

challenging for all models including CheXNet to classify. From the left side of the figure, it

is clear why no models obtained more than 0.35 recall. Even the two best performing models

failed to extract substantial information for each class, resulting in overlapping data points for

each class in the scatterplot, both in Figure 4(A) and (B). However, binarizing the labels seem to

show something notable. On the right side of the figure, DINO-V2 ViT-S/14 managed to group

more ”No Finding” images together, implying that the features produced by the model are more

similar. This explains why the model outperformed CheXNet both in AUC and True Positives

for the ”No Finding” class. It is also possible that this is due to the fact that ViT models are

more capable of extracting global features compared to CNNs [33].

FIGURE 5. GradCAM Visualizations for DINO ViT-S/14 and CheXNet using

samples from the dataset.

4.4. Visual Analysis. To further compare the two best models, GradCAM was used for visual

analysis. Six samples from different classes were taken from the test set. The six samples shown

in Figure 5 had correct predictions from both DINOV2-S/14 and CheXNet, hence they were

chosen to visualize how well the model focused on the features deemed relevant. Cardiomegaly
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is signified by the enlargement of the heart [34], so the model should focus on the regions of the

heart, which was done correctly by CheXNet. However, DINOV2 ViT-S/14 focused on some

regions around the lungs as well, which explains the lower confidence. Edema and Emphysema

affects the lungs’ internals, meaning that the heatmaps should focus on the areas inside the

lungs. However, CheXNet focuses on the heart instead for Edema but correctly focuses on the

right lungs in the sample with Emphysema. On the other hand, ViT focuses on the lung regions

for both samples. Its confidence for the Emphysema sample is notable higher compared to

CheXNet.

Effusion and Pneumothorax are signified by fluid build-ups and collapses around the lungs.

In other words, the GradCAM should show more focus on the areas around the lungs. Un-

fortunately, DINOV2 ViT-S/14 seem to not perform too well on this aspect, as the heatmap

for the Effusion sample got scattered focus nearly on the whole image, while it focused on

the abdomen region as well for the Pneumothoras sample. CheXNet managed to focus on the

lungs for both samples, making it superior to the ViT model despite the lower confidence on

the Pneumothorax sample. One interesting finding is that CheXNet’s heatmap was large for the

”No Finding” sample as well while DINOV2 ViT-S/14 showed miniscule activation maps. This

means that the CheXNet models found ”symptoms indicating no findings”, which is unusual

when the goal is to detect anomalies. However, ”No Finding” in the dataset means none of the

14 anomalies were found and it is possible that other unlisted anomalies exist in the ”No Find-

ing” class [25]. Future studies may further evaluate the GradCAM of the models for normal

lungs as well. Overall, it can be concluded that CheXNet is still superior to DINOV2 ViT-S/14

in this experiment as the ViT model’s focus still seem to be on the global features as opposed

to CheXNet which focuses on local features, hence the compact attention maps for CheXNet in

Figure 5.

4.5. Discussion. Table 8 displays the performance comparison between the five pre-trained

models with two other studies that also utilized TL with the NIH CXR-14 dataset used in the

downstream task. However, we did not find published papers that used all 15 classes of the

dataset and obtained high AUC. Most studies did not use the ”No Finding” class except for one

[36], but only two other classes were used alongside ”No Finding”. Therefore, it is possible that
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TABLE 8. Comparison of the five models with related previous studies that

utilized NIH CXR-14 dataset.

Method Classes AUC Recall F1 Score Precision of ”No Finding”

Related Studies
ResNet-50 [25] 8 classes excluding

”No Finding”

0.696 - - -

MobileNetV2 for bi-

nary classification [35]

14 classes excluding

”No Finding”

0.89 0.453 0.556 -

EfficientNet-V2 [36] 3 classes including

”No Finding”

- 0.814 - 0.779

Baseline Replications
SwAV ResNet-50 [3]

All 15 classes

0.730 0.253 0.204 0.739

DINO ViT-S/16 [11] 0.707 0.209 0.170 0.753
CheXNet [14] 0.773 0.328 0.195 0.749

Proposed Models
ConvNeXt-V2

All 15 classes
0.703 0.184 0.132 0.709

DINOV2 ViT-S/14 0.743 0.233 0.186 0.720

the ”No Finding” class itself is the problem. From Figures 3 and 4, even CheXNet was unable

to effectively differentiate between ”No Finding” and all other classes. However, DINOV2 ViT-

S/14 still maintained the best AUC among all models pre-trained using the ImageNet dataset.

The fact that none of the models came close to CheXNet may be caused by the discrepancies

between the natural images in ImageNet and medical images [32], meaning that the models

might still require another pre-training using medical image datasets.

Upon further exploration, a previous study had proven that label noises exist in the NIH

CXR-14 dataset. This means that some data got wrong labels, which will obviously affect the

performance of any ML models. The study involved three physicians and one radiologist, with

each person labeling subsets of the dataset given to them. The study found that approximately

35% of the labels did not match the real conditions of the CXR images [20]. Hence, it is no

wonder the models performed quite poorly, which is a major limitation in this study. Regardless,

the GradCAM visualization still proved that simply performing TL from ImageNet to medical

images did not yield adequate results. Therefore, future studies may further explore pre-training

the models on medical images first. Furthermore, the NIH CXR-14 dataset can be said to be
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more suitable for pre-training instead of downstream tasks. Given the 35% label noise, SSL

pre-training may be the best method for pre-training models using this dataset.

5. CONCLUSION

Based on the experiment results, all models did not achieve remarkable results, including

CheXNet. This could be caused by the noisy labels of the NIH CXR-14 dataset itself, especially

in the ”No Finding” class, as found by a previous study [20]. However, DINOV2 ViT-S/14

emerged as the best model out of the other models pre-trained in ImageNet based on the AUC

of most classes in the dataset. Based on the GradCAM visualizations, it can be inferred that the

combination of DINO loss and iBOT loss does allow ViT models to possess the capability of

local attention in addition to its global attention mechanism, which might explain its superior

performance with an average AUC of 0.743. When compared to CheXNet, the DINOV2 ViT-

S/14 model was still inferior in all metrics. However, it appears that using DINOV2 to pre-train

ViT models directly using medical images may be a noteworthy opportunity to be explored.

Due to the challenge of possible noisy labels, using the NIH CXR-14 dataset for downstream

tasks is not recommended. The 0.195 overall F1 score of CheXNet had proven this as when

the ”No Finding” class was not included, the same model obtained much better results. The

t-SNE visualizations further supported this as CheXNet too was unable to extract meaningful

representations to differentiate the ”No Finding” class with the other 14 anomalies.
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