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Abstract. Bats are known reservoirs of the Ebola virus, making the control of the disease within bat population

crucial for preventing human outbreaks. This study presents a fractional-order Ebola model to describe the dy-

namics of Ebola virus disease (EVD) in bat population, incorporating memory effects to provide a more accurate

representation of disease spread compared to traditional integer-order models. We analyze the model’s global

properties, including stability and equilibrium points, and propose a time-dependent environmental decontamina-

tion control strategy aimed at minimizing the number of infectious bats while reducing associated costs. Using

numerical simulations with specialized methods for fractional-order systems, we validate the theoretical results

and demonstrate the effectiveness of the control strategy. The findings highlight that the proposed control signifi-

cantly reduces the number of infectious bats, underscoring environmental decontamination as a viable measure for

EVD control in bat population.
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1. INTRODUCTION

EVD is one of the most severe and life-threatening infectious diseases known to humanity.

It is caused by the Ebola virus, a member of the Filoviridae family, and was first identified in

1976 during simultaneous outbreaks in what is now the Democratic Republic of Congo (DRC)

and South Sudan. Since its discovery, the disease has become a recurring health crisis, partic-

ularly in regions of sub-Saharan Africa, where healthcare systems face significant challenges

in containing its spread. The virus is notorious for its ability to cause sudden, severe outbreaks

with high mortality rates and devastating social and economic consequences.

Over the years, the statistics associated with Ebola have painted a grim picture of its impact.

The largest recorded outbreak occurred between 2014 and 2016 in West Africa, where the dis-

ease claimed more than 11,000 lives out of over 28,600 reported cases, highlighting a mortality

rate of nearly 40% [1]. Smaller outbreaks, while less catastrophic, also underscore the danger

posed by this virus, which can have fatality rates ranging from 25% to 90% depending on ac-

cess to medical care and the timing of intervention. The second-largest outbreak was recently

declared in the DRC in August 2018, claiming approximately 2299 lives by July 2020 [2].

EVD has a significant ecological connection with bats, which are widely believed to be the

natural reservoir of the virus. While the exact origins of Ebola remain under investigation,

mounting evidence suggests that fruit bats of the Pteropodidae family play a critical role in the

virus’s life cycle [3]. These bats can carry the virus without exhibiting symptoms, allowing it

to persist in nature and potentially spill over into other species, including humans.

The transmission of the Ebola virus from bats to humans often occurs indirectly. Bats may

infect other wildlife, such as primates or duikers, when they shed the virus through saliva, feces,

or urine [4, 5]. Humans can then contract the virus through contact with these infected animals,

typically via hunting, handling, or consumption of bushmeat [6, 7]. In some cases, direct hu-

man exposure to bat secretions or bites has also been linked to initial cases of outbreaks. For

instance, during the 2007 outbreak in Luebo in DRC, epidemiological investigations revealed

that the first human victim had purchased freshly killed bats from hunters for consumption [8].

This activity was linked to the subsequent human-to-human transmission events that led to the

outbreak. Similarly, in the 2014–2016 West African Ebola epidemic, the index case was traced



A FRACTIONAL-ORDER EBOLA MODEL FOR BAT POPULATION 3

to a two-year-old child in Meliandou in Guinea [9]. Researchers believe the child contracted

the virus through direct contact with insectivorous bats from a colony near the village. This ini-

tial zoonotic transmission was followed by human-to-human spread, resulting in a widespread

epidemic.

The role of bats in Ebola ecology is particularly significant because of their widespread habi-

tat and interaction with human communities. In regions where bats are hunted for food or their

habitats overlap with agricultural and settlement areas, the risk of zoonotic spillover increases.

Certain cultural practices, such as the preparation and consumption of bat meat, can amplify the

likelihood of human exposure to the virus.

Mathematical modeling has become an essential tool in understanding the spread of EVD

within bat population and its transmission to other species. Early models focused on mapping

the spatial distribution of infected bats, providing critical insights into high-risk areas. For in-

stance, the study [10] used statistical and computational models to predict regions where bats

infected with filoviruses, including Ebola, are likely to be found. This approach has proven

valuable for disease monitoring and control efforts. Another study modeled bat-to-bat trans-

mission using bilinear incidence functions, assuming that infected bats do not recover from the

virus [11].

Building on these efforts, Rhoubari et al. [12] enhanced the epizootic model from [11] by

introducing a cure rate and developing two generalized incidence functions. These functions ac-

count for various transmission dynamics described in the literature, such as bilinear incidence,

saturated incidence, the Beddington-DeAngelis functional response, the Crowley-Martin func-

tional response, and the Hattaf-Yousfi functional response. A specific case of this model was

later analyzed in [13], focusing on the impact of memory and saturated incidence functions.

Moreover, in [14], the authors proposed and analyzed a reaction-diffusion model using par-

tial differential equations to explore the spatial dynamics of Ebola virus diffusion within bat

population.

Research into the unique immune system of bats has shed light on their ability to coexist with

pathogens like EVD [15, 16, 17]. Bats have evolved immune responses that enable them to tol-

erate infections that are lethal to other species. Studies have highlighted how these immune
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adaptations allow bats to serve as reservoirs for numerous viruses without experiencing severe

symptoms. Understanding these mechanisms is crucial for developing strategies to mitigate the

spread of EVD and other zoonotic diseases. Considering these ecological and mathematical

perspectives, we propose to advance the understanding of EVD dynamics within bat population

by studying a fractional-order model. Unlike traditional integer-order models, fractional-order

models offer greater flexibility in capturing the memory and hereditary properties of biological

systems, which are critical in the context of EVD transmission. This approach allows for a

more nuanced representation of the complex interactions between bats, the virus, and the envi-

ronment. In addition, we will incorporate an optimal control strategy focusing on environmental

decontamination. This strategy aims to reduce the contamination of bats, the initial source of

Ebola, from contamined environment and minimize the risk of virus transmission from bats to

other species and ultimately to humans.

The proposed fractional-order model for Ebola transmission in bat population considers di-

rect transmission through contact with infectious bats and indirect transmission via a contam-

inated environment, where infectious bats shed the virus. This fractional-order model, in the

absence of control measures, is described by:

(1)



C
0 Dα

t P1(t) = β α −mαP1−λ α
1 P1P2−λ α

2 P1Q,

C
0 Dα

t P2(t) = λ α
1 P1P2 +λ α

2 P1Q− (mα + rα)P2,

C
0 Dα

t P3(t) = rαP2−mαP3,

C
0 Dα

t Q(t) = δ αP2− eαQ.

The variables and parameters of system (1) are defined in the following table.

As described in [18], we adopt a fractional-order system in which all terms are raised to the

fractional power α . This approach ensures the unified application of fractional-order dynamics

across the model, in contrast to many existing studies that apply the fractional-order derivative

only to the subpopulations on the left-hand side of the system. By extending the influence of α

to the parameters on the right-hand side, the model achieves dimensional and temporal consis-

tency, ensuring that all processes evolve under the same fractional framework. This is crucial

for capturing the memory effects and hereditary dynamics inherent in biological systems, influ-

encing not only the state variables but also recruitment, interactions, and decay rates. Scaling
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Symbol Description

P1(t) Population of susceptible bats at time t.

P2(t) Population of infectious bats at time t.

P3(t) Population of recovered bats at time t.

Q(t) Level of environmental contamination at time t.

α Order of the fractional derivative, capturing the memory effect in the dynamics.
C
0 Dα

t Caputo fractional derivative of order α .

β Recruitment rate of susceptible bats into the population.

m Natural mortality rate of bats.

λ1 Transmission rate between susceptible and infectious bats.

λ2 Transmission rate between susceptible bats and the contaminated environment.

r Recovery rate of infectious bats.

δ Rate at which infectious bats contribute to environmental contamination.

e Rate of environmental decontamination.

TABLE 1. Description of the variables and parameters in the fractional-order

system (1)

the recruitment rate and other parameters by α further reflects the non-instantaneous and tem-

porally scaled nature of these processes, enhancing the realism of the model. By applying the

same temporal scaling to parameters and subpopulations alike, this methodology provides a

more holistic and robust representation of the underlying biological dynamics.

The first aim of this work is to examine the model’s dynamics, and the second is to present an

optimal contol environmental decontamination strategy. To this end, we structure this work in

the following manner. In Section 2, we present some preliminary results that are fundamental to

the development of the main analysis. This includes key definitions, lemmas, and propositions

that will be used throughout the paper. In Section 3, the existence of solutions and equilibria

is discussed. We establish the conditions under which the system has at least one solution. In

Section 4, we perform a stability analysis of equilibria. The results are essential for under-

standing the long-term behavior of the system under different initial conditions. In Section 5,
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we explore the fractional optimal control problem, including environmental decontamination

as a control measure, aimed at minimizing the spread of the disease between bats. Section 6

provides numerical simulations to validate the theoretical findings, demonstrating the stability

of the system under various values of the order derivative α . Moreover, we present a detailed

numerical scheme that underpins the simulations of the states with and without the proposed

control strategy. Finally, in Section 7, the paper concludes with a summary of the main findings,

potential implications of the results, and suggestions for future research directions.

2. FOUNDATIONAL RESULTS

We begin by revisiting the definitions of the fractional-order integral, the Caputo fractional

derivative, and the Mittag-Leffler function, as outlined in [19].

Definition 2.1. The fractional integral of order α > 0 of a function f : IR+→ IR is defined as

follows:

Iα f (t) =
1

Γ(α)

∫ t

0
(t− x)α−1 f (x)dx,

where Γ(.) is the Gamma function.

Definition 2.2. The Caputo fractional derivative of order α > 0 of a continuous function f :

IR+→ IR is given by:

Dα f (t) = In−αDn f (t),

where D =
d
dt

and n−1 < α ≤ n, n ∈ N. In particular, when 0 < α ≤ 1, we have:

Dα f (t) =
1

Γ(1−α)

∫ t

0

f ′(x)
(t− x)α

dx.

Definition 2.3. Let α > 0. The function Eα defined by

Eα(z) =
∞

∑
j=0

z j

Γ(α j+1)
,

is called the Mittag-Leffler function of parameter α .

For biological reasons, we assume that the initial conditions of system (1) satisfy:

(2) P1(0) = φ1(0)≥ 0, P2(0) = φ2(0)≥ 0, P3(0) = φ3(0)≥ 0, Q(0) = φ4(0)≥ 0
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To establish the non-negativity of solutions with initial conditions (2), we also need the fol-

lowing lemmas.

Lemma 2.4. ([20]). Suppose that g(t) ∈C[a,b] and Dαg(t) ∈C(a,b] for 0 < α ≤ 1, then we

have:

g(t) = g(a)+
1

Γ(α)
Dαg(ξ )(t−a)α a≤ ξ ≤ t, ∀t ∈ (a,b].

Lemma 2.5. ([20]). Suppose that g(t)∈C[a,b] and Dαg(t)∈C(a,b] for 0<α ≤ 1. If Dαg(t)≥

0 ∀t ∈ (a,b], then g(t) is non-decreasing for each t ∈ [a,b]. If Dαg(t)≤ 0 ∀t ∈ (a,b], then g(t)

is non-increasing for each t ∈ [a,b].

Theorem 2.6. For any initial conditions satisfying (2), system (1) has a unique solution on

[0,+∞). Moreover, this solution remains non-negative and bounded for all t ≥ 0.

Proof. In order to prove that the solution is bounded, we consider the following function:

T (t) = P1(t)+P2(t)+P3(t)+Q(t).

Then we can obtain:
C
0 Dα

t T (t)≤ β
α − γT (t),

where γ = min{mα ,mα −δ α ,eα}. Hence,

T (t)≤ T (0)Eα (−γtα)+
β α

γ
[1−Eα (−γtα)] ,

where Eα(z) = ∑
∞
k=0

zα

Γ(αk+1) is the Mittag-Leffler function of parameter α . Since 0 ≤

Eα (−γtα)≤ 1, we get:

T (t)≤ T (0)+
β α

γ
,

which implies that P1,P2,P3, and Q are bounded.

On the other hand, we have:

C
0 Dα

t P1 | P1=0 = β
α > 0,

C
0 Dα

t P2 | P2=0 = λ
α
2 P1Q for all P1,Q≥ 0,

C
0 Dα

t P3 | P3=0 = rαP2 for all P2 ≥ 0,

C
0 Dα

t Q | Q=0 = δ
αP2 for all P2 ≥ 0.
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From Lemmas 2.4 and 2.5, it can be concluded that the solution of (1) remains non-

negative.

3. EXISTENCE OF SOLUTION AND EQUILIBRIA

We will now establish the existence and uniqueness of the solution for the proposed model

using the renowned fixed point theorem. Let H(J ) be a Banach space consisting of real-valued

continuous functions defined on the interval J = [0,b], equipped with the sup norm. Define

G= (H(J ))4 with the norm:

‖(P1,P2,P3,Q)‖= ‖P1‖+‖P2‖+‖P3‖+‖Q‖,

where

‖P1‖= sup
t∈J
|P1(t)|, ‖P2‖= sup

t∈J
|P2(t)|, ‖P3‖= sup

t∈J
|P3(t)|, ‖Q‖= sup

t∈J
|Q(t)|.

The proposed model can then be expressed as:

(3)



C
0 Dα

t P1(t) = F1(t,P1),

C
0 Dα

t P2(t) = F2(t,P2),

C
0 Dα

t P3(t) = F3(t,P3),

C
0 Dα

t Q(t) = F4(t,Q),

where

F1(t,P1) = β
α −mαP1−λ

α
1 P1P2−λ

α
2 P1Q,

F2(t,P2) = λ
α
1 P1P2 +λ

α
2 P1Q− (mα + rα)P2,

F3(t,P3) = rαP2−mαP3,

F4(t,Q) = δ
αP2− eαQ.

Employing the Riemann-Liouville integral I α
0 on both sides of system (3), we have:

P1(t)−P1(0) =
1

Γ(α)

∫ t

0
(t− x)α−1F1(x,P1)dx,

P2(t)−P2(0) =
1

Γ(α)

∫ t

0
(t− x)α−1F2(x,P2)dx,
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P3(t)−P3(0) =
1

Γ(α)

∫ t

0
(t− x)α−1F3(x,P3)dx,

Q(t)−Q(0) =
1

Γ(α)

∫ t

0
(t− x)α−1F4(x,Q)dx.

The functions F1,F2,F3, and F4 fulfill the Lipschitz condition whenever P1(t),P2(t),P3(t),

and Q(t) have an upper bound.

For any P1,P∗1 ,P2 and P∗2 , we have:

‖F1(t,P1(t))−F1(t,P∗1 (t))‖ ≤ ρ1 ‖P1(t)−P∗1 (t)‖ ,

where ρ1 = mα +λ α
1 ‖P2‖+λ α

2 ‖Q‖. Following a similar approach, one obtains:

‖F2(t,P2(t))−F2(t,P∗2 (t))‖ ≤ ρ2 ‖P2(t)−P∗2 (t)‖ ,

‖F3(t,P3(t))−F3(t,P∗3 (t))‖ ≤ ρ3 ‖P3(t)−P∗3 (t)‖ ,

‖F4(t,Q(t))−F4(t,Q∗(t))‖ ≤ ρ4 ‖Q(t)−Q∗(t)‖ ,(4)

where

ρ2 = λ
α
1 ‖P1‖+mα + rα ,

ρ3 = mα ,

ρ4 = eα .

This suggests that the Lipschitz condition is satisfied by all the functions. On the other hand,

by using the recursive formula, we have:

P1,n(t)−P1(0) =
1

Γ(α)

∫ t

0
(t− x)α−1F1(x,P1,n−1)dx,

P2,n(t)−P2(0) =
1

Γ(α)

∫ t

0
(t− x)α−1F2(x,P2,n−1)dx,

P3,n(t)−P3(0) =
1

Γ(α)

∫ t

0
(t− x)α−1F3(x,P3,n−1)dx,

Qn(t)−Q(0) =
1

Γ(α)

∫ t

0
(t− x)α−1F4(x,Qn−1)dx,(5)
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By considering successive differences, the following results are obtained:

ΦP1,n(t) = P1,n(t)−P1,n−1(t) =
1

Γ(α)

∫ t

0
(t− x)α−1(F1(x,P1,n−1)−F1(x,P1,n−2))dx,

ΦP2,n(t) = P2,n(t)−P2,n−1(t) =
1

Γ(α)

∫ t

0
(t− x)α−1(F2(x,P2,n−1)−F2(x,P2,n−2))dx,

ΦP3,n(t) = P3,n(t)−P3,n−1(t) =
1

Γ(α)

∫ t

0
(t− x)α−1(F3(x,P3,n−1)−F3(x,P3,n−2))dx,

ΦQn(t) = Qn(t)−Qn−1(t) =
1

Γ(α)

∫ t

0
(t− x)α−1(F4(t,Qn−1)−F4(t,Qn−2))dx.

Then ∥∥ΦP1,n(t)
∥∥≤ ρ1

Γ(α)

∫ t

0
(t− x)α−1∥∥ΦP1,n−1(x)

∥∥ dx,

∥∥ΦP2,n(t)
∥∥≤ ρ2

Γ(α)

∫ t

0
(t− x)α−1∥∥ΦP2,n−1(x)

∥∥ dx,

∥∥ΦP3,n(t)
∥∥≤ ρ3

Γ(α)

∫ t

0
(t− x)α−1∥∥ΦP3,n−1(x)

∥∥ dx,

(6) ‖ΦQn(t)‖ ≤
ρ4

Γ(α)

∫ t

0
(t− x)α−1∥∥ΦQn−1(x)

∥∥ dx.

Theorem 3.1. A unique solution exists for the system (1) with any nonnegative initial condition

for all t ∈ [0,b] if the following condition holds:

ρi
bα

αΓ(α)
< 1, i = 1,2,3,4.

Proof: As can be observed from (4), the functions F1,F2,F3, and F4 satisfy the Lipschitz

condition. Thus, ∥∥ΦP1,n(t)
∥∥≤ (ρ1

bα

αΓ(α)

)n

‖P1−P1(0)‖ ,

∥∥ΦP2,n(t)
∥∥≤ (ρ2

bα

αΓ(α)

)n

‖P2−P2(0)‖ ,

∥∥ΦP3,n(t)
∥∥≤ (ρ3

bα

αΓ(α)

)n

‖P3−P3(0)‖ ,

‖ΦQn(t)‖ ≤
(

bα

αΓ(α)

)n

‖Q−Q(0)‖ .

Hence, the defined sequences exist and fulfill the conditions
∥∥ΦP1,n(t)

∥∥→ 0,
∥∥ΦP2,n(t)

∥∥→ 0,∥∥ΦP3,n(t)
∥∥→ 0, ‖ΦQn(t)‖ → 0 as n→ ∞. Therefore, we deduce that the sequences P1,n, P2,n,

P3,n, and Qn are Cauchy sequences within the Banach space H(J ) with the sup norm. Hence,
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they are uniformly convergent [21]. By applying the limit theorem on all equations of (5), the

limit of these sequences as n→ ∞ is the unique solution of the model.

We now examine the existence of equilibrium points. The proposed model always possesses

a Ebola-free equilibrium denoted E0 given as:

E0

(
β α

mα
,0,0,0

)
.

The remaining equilibrium points of system (1) are determined by the following equations:

F1(t,P1) = β
α −mαP1−λ

α
1 P1P2−λ

α
2 P1Q = 0,(7)

F2(t,P2) = λ
α
1 P1P2 +λ

α
2 P1Q− (mα + rα)P2 = 0,(8)

F3(t,P3) = rαP2−mαP3 = 0,(9)

F4(t,Q) = δ
αP2− eαQ = 0.(10)

From (7)-(10), we have:

P∗2 =
β α −mαP∗1

mα + rα
, P∗3 =

rα

mα

β α −mαP∗1
mα + rα

, Q∗ =
δ α

eα

β α −mαP∗1
mα + rα

.

where P∗1 = mα+rα

λ α
1 +λ α

2
δα

eα

. Since P∗2 ≥ 0, we have P∗1 ≤
β α

mα . We define the basic reproduction

number R0 as follows:

R0 =
λ α

1 β α +λ α
2

δ α β α

eα

mα(mα + rα)
.

Theorem 3.2. Let R0 be defined as above.

(i) When R0 ≤ 1, system (1) has a single disease-free equilibrium given by E0

(
β α

mα ,0,0,0
)

.

(ii) If R0 > 1, the Ebola-free equilibrium persists, and system (1) also exhibits a unique

endemic Ebola equilibrium of the form E ∗
(
P∗1 ,P

∗
2 ,P

∗
3 ,Q

∗) with P∗1 = mα+rα

λ α
1 +λ α

2
δα

eα

, P∗2 =
β α−mα P∗1

mα+rα ,

P∗3 = rα

mα

β α−mα P∗1
mα+rα , and Q∗ = δ α

eα

β α−mα P∗1
mα+rα .

4. ASYMPTOTIC STABILITY ANALYSIS

This section aims to analyze the stability of the equilibria.

Theorem 4.1. The Ebola free equilibrium E0 is globally asymptotically stable when R0 ≤ 1.

However, it becomes unstable if R0 > 1.



12 ZINEB EL RHOUBARI, MOUSSA BACHRAOUI, KHALID HATTAF

Proof. Consider the following Lyapunov functional

V (t) = eαP2 +λ
α
2

β α

mα
Q.

The time derivative of V along the positive solution of (1) is expressed as

C
0 Dα

t V (t) = eαC
0 P2 +λ

α
2

β α

mα
Dα

t Q,

=

(
eα

λ
α
1 P1− eα(mα + rα)+δ

α
λ

α
2

β α

mα

)
P2 +λ

α
2 eα

(
P1−

β α

mα

)
Q,

≤
(

eα
λ

α
1

β α

mα
− eα(mα + rα)+δ

α
λ

α
2

β α

mα

)
P2

= eα(mα + rα)(R0−1)P2.

As a result, C
0 Dα

t V (t) ≤ 0 for R0 ≤ 1. Moreover, it is straightforward to verify that the

largest compact invariant set within {(P1,P2,Q) | C0 Dα
t V (t) = 0} is the singleton {E0}. Apply-

ing LaSalle’s invariance principle [23], we conclude that E0 is globally asymptotically stable

when R0 ≤ 1. Through a simple computation, the characteristic equation at E0 is given by:

(mα +λ )2
(

λ
2 +λ

(
eα +mα + rα −λ

α
1

β α

mα

)
+ eα(mα + rα)(1−R0)

)
= 0.

Let

H (λ ) =

(
λ

2 +λ

(
eα +mα + rα −λ

α
1

β α

mα

)
+ eα(mα + rα)(1−R0)

)
We observe that lim

λ→+∞

H (λ ) = +∞ and H (0) = eα(mα + rα)(1−R0). When R0 > 1, it

follows that H (0)< 0. Therefore, there exists a λ0 ∈ (0,+∞) such that H (λ0) = 0, indicating

that the characteristic equation at E0 has a positive root for R0 > 1. Consequently, E0 is unstable

when R0 > 1.

Theorem 4.2. When R0 > 1, the endemic Ebola equilibrium E ∗ is globally asymptotically

stable.

Proof. Define a Lyapunov functional as follows

K (t) = P1(t)−P∗1 −P∗1 ln
(

P1(t)
P∗1

)
+P2(t)−P∗2 −P∗2 ln

(
P2(t)
P∗2

)
+

g(S∗,P∗)
η

(
Q(t)−Q∗−Q∗ ln

(
Q(t)
Q∗

))
.
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C
0 Dα

t K (t) =
(

1−
P∗1
P1

)
C
0 Dα

t P1(t)+
(

1−
P∗2
P2

)
C
0 Dα

t P2(t)+
λ α

2 P∗1
eα

(
1− Q∗

Q

)
C
0 Dα

t Q(t).

Using β α = mαP∗1 +λ α
1 P∗1 P∗2 +λ α

2 P∗1 Q∗ = mαP∗1 +(mα + rα)P∗∗2 et δ αP∗2 = eαQ∗, we have

C
0 Dα

t K (t) = mαP∗1

(
1− P1

P∗1

)(
1−

P∗1
P1

)
+λ

α
1 P∗1 P∗2

(
2−

P∗1
P1
− P1

P∗1

)
+λ

α
2 P∗1 Q∗

(
3−

P∗1
P1
− P1

P∗1

QP∗2
Q∗P2

− Q∗P2

QP∗2

)
.

Given that the arithmetic mean is always greater than or equal to the geometric mean, it follows

that

3−
P∗1
P1
− P1

P∗1

QP∗2
Q∗P2

− Q∗P2

QP∗2
≤ 0.

Thus, C
0 Dα

t K (t) ≤ 0 when R0 > 1. Moreover, the largest compact invariant set in

{(P1,P2,Q) | C0 Dα
t K (t) = 0} is the singleton {E ∗}. Thanks to LaSalle’s invariance principle,

E ∗ is globally asymptotically stable for R0 > 1.

5. FRACTIONAL OPTIMAL CONTROL PROBLEM

In bats, Ebola virus can be shed through saliva, feces, or urine, contaminating the environ-

ment. In this section, we propose to control the spread of Ebola between bats by the strategy

of decontamination of environment. The main aim is to minimize the number of infectious bats

while reducing the cost associated with this strategy.

5.1. Environmental Decontamination as Control Measure. By reducing viral persistence

in roosting or feeding areas, decontamination decreases the likelihood of bats becoming infected

through environmental contact. This is achieved by introducing environmental decontamination

as a preventive measure with a time-dependent control c(t). Therefore, we formulate the fol-

lowing fractional optimal control problem:

(11) minJ(P2(t),c(t)) =
∫ t f

0

[
P2(t)+Aσc2(t)

]
dt

subject to the fractional control system:
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(12)



DαP1(t) = β α −mαP1−λ α
1 P1P2− (1− c(t))λ α

2 P1Q,

DαP2(t) = λ α
1 P1P2− (mα + rα)P2 +(1− c(t))λ α

2 P1Q,

DαP3(t) = rαP2−mαP3,

DαQ(t) = δ αP2− eαQ.

with initial conditions:

(13) P1(0) = P1
0 ≥ 0, P2(0) = P2

0 ≥ 0, P3(0) = P3
0 ≥ 0, Q(0) = Q0 ≥ 0.

The parameter A is a positive weight, adjusting the overall cost to a suitable scale, σ is a

parameter related to the extent of the decontamination effort, and Aσc2(t) is the cost of applying

control effort c. t f is the duration of the control program. The set of admissible control functions

is:

(14) U =
{

c(t) ∈ L∞(0, t f ) : 0≤ c(t)≤ cmax ≤ 1, ∀t ∈ [0, t f ]
}
.

To establish the existence of the optimal control for our problem, we ensure the following

conditions: First, the set of admissible controls U is non-empty, convex, and closed in L∞(0, t f ).

Second, for any control c(t) ∈U , the fractional state equations have unique solutions, ensuring

the well-posedness of the state system. Third, the cost functional J is bounded from below,

which prevents the cost from becoming unbounded and ensures feasibility. Finally, the cost

functional J is lower semi-continuous, which is essential for applying the direct method in

the calculus of variations to conclude the existence of an optimal control. By satisfying these

conditions, we can confirm the existence of an optimal control for the given fractional control

system.

5.2. Optimality conditions. To derive the necessary optimality conditions for our fractional

optimal control problem, we define the Hamiltonian function as:

H = P2(t)+Aσc2(t)+ξ1(t)(β α −mαP1−λ
α
1 P1P2− (1− c(t))λ α

2 P1Q)

+ξ2(t)(λ α
1 P1P2− (mα + rα)P2 +(1− c(t))λ α

2 P1Q)

+ξ3(t)(rαP2−mαP3)+ξQ(t)(δ αP2− eαQ) ,(15)
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where ξ1(t), ξ2(t), ξ3(t), and ξQ(t) are the adjoint variables corresponding to P1(t),P2(t),P3(t),

and Q(t), respectively.

Applying Theorem 4.1 and Lemma 4.2 from [24], the necessary conditions for the optimality

of (11) are:

C
0 Dα

t P1(t) = β
α −mαP1(t)−λ

α
1 P1(t)P2(t)− (1− c(t))λ α

2 P1(t)Q(t),

C
0 Dα

t P2(t) = λ
α
1 P1(t)P2(t)+(1− c(t))λ α

2 P1(t)Q(t)− (mα + rα)P2(t),

C
0 Dα

t P3(t) = rαP2(t)−mαP3(t),

C
0 Dα

t Q(t) = δ
αP2(t)− eαQ(t),(16)

and

C
0 Dα

t ξ1(t ′) =−ξ1(t ′)
(
mα +λ

α
1 P2(t ′)+(1− c(t ′))λ α

2 Q(t ′)
)
,

C
0 Dα

t ξ2(t ′) =−1+λ
α
1 P1(t ′)(ξ2(t ′)−ξ1(t ′))+ rα

ξ3(t ′)+δ
α

ξQ(t ′)

+
(
(1− c(t ′))λ α

2 P1(t ′)− (mα + rα)
)

ξ2(t ′),

C
0 Dα

t ξ3(t ′) =−mα
ξ3(t ′),

C
0 Dα

t ξQ(t ′) =−eα
ξQ(t ′).(17)

with t ′ = t f − t, positive initial data and transversality conditions:

(18) ξ1(t f ) = ξ2(t f ) = ξ3(t f ) = ξQ(t f ) = 0.

Taking the partial derivative of H with respect to c:

∂H

∂c
= 2Aσc(t)+ξ1(t)λ α

2 P1Q−ξ2(t)λ α
2 P1Q

Setting this equal to zero for optimality:

2Aσc(t) = (ξ2(t)−ξ1(t))λ α
2 P1Q

So, the optimal control is given by:

c∗(t) = min
(

cmax,max
(

0,
(ξ2(t)−ξ1(t))λ α

2 P1Q
2Aσ

))
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6. NUMERICAL SIMULATIONS

In this section, we will conduct numerical simulations to achieve two primary objectives,

first, to validate the theoretical stability results, and second, to illustrate the effectiveness of the

optimal control strategy in reducing the number of infectious bats. These simulations will also

showcase the model’s dynamics for variant orders of the derivative α . The initial conditions

are:

P1(0) = 400, P2(0) = 10, P2(0) = 100, Q(0) = 4,

6.1. Stability. We simulate system (1) using the following parameter values: β α = 1.5, mα =

0.0003, λ α
1 = 4.5× 10−6, λ α

2 = 1.3× 10−4, rα = 0.1, δ α = 0.02, and eα = 0.8. A simple

calculation yields R0 = 0.9383. Consequently, system (1) has a single Ebola-free equilibrium,

E0(5000,0,0,0), which is globally asymptotically stable. This result is illustrated in Figure 1,

where we observe that the disease eventually dies out.

Next, we simulate the scenario where the basic reproduction number exceeds one. For

this, we set λ α
1 = 2.5× 10−5 while keeping the other parameter values unchanged. This re-

sults in R0 = 3.4201 > 1. As a result, system (1) has a unique endemic Ebola equilibrium

E ∗(1759.8457,23.5361,0.5887), which is globally asymptotically stable. This implies that the

Ebola virus persists within the bat population, making the disease endemic. This outcome is

shown in figure 2.

The contour plot in figure 3 illustrates the relationship between the basic reproduction number

R0, which serves as the threshold determining the stability behavior of the system, and the

fractional infection rates λ α
1 and λ α

2 for Ebola in the bat population, considering the parameters:

β α = 1.5, mα = 0.0003, rα = 0.041, δ α = 0.02, and eα = 0.8. The horizontal axis represents

λ α
1 , while the vertical axis represents λ α

2 , with contour lines showing constant levels of R0.

At low values of both λ α
1 and λ α

2 , R0 is minimal, indicating effective control of disease

spread. As either λ α
1 or λ α

2 increases, R0 grows significantly, reflecting the additive contribu-

tion of the two infection pathways to disease transmission. Even if one of the rates remains

low, a high value in the other is sufficient to maintain a high R0, emphasizing the importance

of controlling both pathways.
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The contour corresponding to R0 = 1 marks the critical threshold between controlled con-

ditions (R0 < 1) and outbreak scenarios (R0 > 1). Keeping λ α
1 and λ α

2 in the region where

R0 < 1 is essential to prevent the spread of Ebola among bats. However, controlling the trans-

mission rate from infectious bats to susceptible individuals (λ α
1 ) is challenging due to the high

mobility and interactions within bat populations. This suggests prioritizing the control of trans-

mission from the contaminated environment (λ α
2 ), which may involve targeted environmental

decontamination or habitat management to reduce the risk of indirect transmission.

Overall, the contour plot emphasizes the need for targeted interventions to reduce both λ α
1

and λ α
2 , as high infection rates in either pathway can sustain the outbreak. Achieving and

maintaining R0 < 1 is critical for effective control of Ebola in the bat population.
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FIGURE 1. Stability of the Ebola free equilibrium E0.

6.2. Control measure. The numerical scheme implemented in the MATLAB code utilizes an

iterative forward-backward sweep method to solve the optimal control problem with fractional-

order dynamics. The method begins by integrating the state equations forward in time using a

fractional Euler-type method, capturing the system’s memory effects. Subsequently, the adjoint

variables, are integrated backward in time. The control variable is iteratively updated based
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FIGURE 2. Stability of the endemic Ebola equilibrium E ∗.
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on the adjoint variables, ensuring the optimality of the solution. The process repeats until

convergence is achieved, providing a robust solution that balances control effectiveness with

system dynamics. Without restricting generality, we consider the case where α = 0.8. The

numerical sheme is described as follows.

Step 1: Initialization

Set the initial conditions:

P1(0) = 400, P2(0) = 10, P3(0) = 100, Q(0) = 4

Set the adjoint variables at the final time:

ξ1(tfinal) = 0, ξ2(tfinal) = 0, ξ3(tfinal) = 0, ξQ(tfinal) = 0

Set the control variable:

c(0) = 0

Parameters:

β
α = 1.5, mα = 0.0003, λ

α
1 = 2.5×10−5, λ

α
2 = 1.3×10−4

rα = 0.041, δ
α = 0.02, eα = 0.8, A = 1, σ = 0.01, cmax = 1, α = 0.8

Time discretization:

t0 = 0, tfinal = 1000, ∆t = 0.01, n = ceil
(tfinal

∆t

)
= 100000

Step 2: Forward Sweep for State Variables with Control

For i = 0 to n−1, do:

P1(i+1) = P1(i)+
(∆t)α

Γ(α +1)
[β α −mαP1(i)−λ

α
1 P1(i)P2(i)− (1− c(i))λ α

2 P1(i)Q(i)]

P2(i+1) = P2(i)+
(∆t)α

Γ(α +1)
[λ α

1 P1(i)P2(i)+(1− c(i))λ α
2 P1(i)Q(i)− (mα + rα)P2(i)]

P3(i+1) = P3(i)+
(∆t)α

Γ(α +1)
[rαP2(i)−mαP3(i)]

Q(i+1) = Q(i)+
(∆t)α

Γ(α +1)
[δ αP2(i)− eαQ(i)]

Step 3: Backward Sweep for Adjoint Variables
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For i = n−1 down to 0, do:

ξ1(i) = ξ1(i+1)− (∆t)α

Γ(α +1)
[−ξ1(i+1)(mα +λ

α
1 P2(i+1)+(1− c(i+1))λ α

2 Q(i+1))]

ξ2(i) = ξ2(i+1)− (∆t)α

Γ(α +1)
[−1+λ

α
1 P1(i+1)(ξ2(i+1)−ξ1(i+1))+ rα

ξ3(i+1)+δ
α

ξQ(i+1)

+(1− c(i+1))λ α
2 P1(i+1)ξ2(i+1)− (mα + rα)ξ2(i+1)

]
ξ3(i) = ξ3(i+1)− (∆t)α

Γ(α +1)
[−mα

ξ3(i+1)]

ξQ(i) = ξQ(i+1)− (∆t)α

Γ(α +1)
[−eα

ξQ(i+1)]

Step 4: Update Control Variable

Compute the new control:

cnew(i) = min
(

cmax,max
(

0,
(ξ2(i)−ξ1(i))λ α

2 P1(i)Q(i)
2Aσ

))
Step 5: Check for Convergence

If:

‖cnew− c‖< tolerance

then break the loop.

Update control:

c = cnew

Step 6: Forward Sweep for State Variables without Control

For i = 0 to n−1, do:

P1(i+1) = P1(i)+
(∆t)α

Γ(α +1)
[β α −mαP1(i)−λ

α
1 P1(i)P2(i)−λ

α
2 P1(i)Q(i)]

P2(i+1) = P2(i)+
(∆t)α

Γ(α +1)
[λ α

1 P1(i)P2(i)+λ
α
2 P1(i)Q(i)− (mα + rα)P2(i)]

P3(i+1) = P3(i)+
(∆t)α

Γ(α +1)
[rαP2(i)−mαP3(i)]

Q(i+1) = Q(i)+
(∆t)α

Γ(α +1)
[δ αP2(i)− eαQ(i)]
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FIGURE 4. classes with and without environmental decontamination control
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Figure 4 displays the results comparing the dynamics of the four variables (P1, P2, P3, and

Q) over time (measured in days) under two different scenarios: with control (blue solid lines)
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and without control (red dashed lines). The top plot illustrates the behavior of susceptible

bats P1, where it is observed that without control, P1 gradually increases and levels off after

approximately 800 days. In contrast, with control, P1 follows a similar initial trend but then

decreases sharply around 800 days, suggesting that the control effectively reduces P1 at a crucial

point in time.

The second plot shows the dynamics of infectious bats P2, that is being minimized, where a

significant peak is observed without control around 800 days. With control, the peak is mod-

erated, indicating that the control is successfully managing the growth of P2 and possibly pre-

venting a large spike. The third plot depicts the recovered bats P3 dynamics, where the variable

increases in both scenarios but reaches a higher value without control. The control scenario

results in slower growth and stabilization at a lower value, reflecting the effectiveness of the

control in limiting P3’s rise.

Finally, the bottom plot shows Q’s behavior, where a noticeable peak occurs around 800

days without control. With control, the peak is lower and more delayed, indicating the con-

trol’s success in mitigating rapid increases in Q. Overall, across all plots, the control strategy

demonstrates significant impact by reducing peaks, stabilizing the system, and preventing sharp

increases, thereby effectively managing the dynamics of the variables P1, P2, P3, and Q over

time.

On the other hand, The figure 5 illustrates the optimal control function c(t) over time, rep-

resenting the control measure of environmental decontamination. The function c(t) starts at its

maximum value, indicating full activation of decontamination efforts from the beginning, and

gradually decreases to nearly zero around 250 days, suggesting a reduction in efforts as the en-

vironment becomes cleaner. Between 250 and 600 days, c(t) remains close to zero, indicating

minimal or no decontamination activity during this period. However, around 600 days, c(t) rises

sharply back to its maximum value, reflecting a reactivation of decontamination efforts due to

renewed contamination. The control measure then decreases again towards the end of the pe-

riod, signaling a return to a cleaner state with reduced decontamination needed. Overall, c(t)

exhibits an adaptive strategy, increasing during periods of high contamination and decreasing

when the environment stabilizes.
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7. CONCLUSION

The relationship between bats and the Ebola virus highlights the intricate interplay between

wildlife and human health. As natural reservoirs, bats play a vital role in maintaining the virus

in the environment, with human exposure often occurring through direct or indirect contact.

Mathematical models are crucial for understanding the dynamics of disease transmission and

evaluating potential control strategies. These frameworks provide a systematic approach to

simulate complex interactions between bats, the virus, and their shared environment. In this

study, we aim to capture the extended influence of bat behavior and environmental factors on

the persistence of the virus through a robust modeling approach. These models offer a more

accurate representation of the interactions between Ebola virus reservoirs and their environment.

Through comprehensive stability analysis, this study highlights the critical role of the basic

reproduction number (R0) in determining the persistence or eradication of Ebola within bat pop-

ulations. For R0 ≤ 1, the Ebola-free equilibrium is globally stable, indicating that the disease

will eventually disappear. Conversely, when R0 > 1, the endemic equilibrium becomes stable,

signifying the sustained presence of the virus within the population. These findings provide

valuable insights into the long-term dynamics of Ebola outbreaks, offering a theoretical ba-

sis for understanding and managing the disease under various ecological and epidemiological

conditions.

An additional key contribution of this study is the integration of an optimal control strat-

egy focused on environmental decontamination. This approach effectively mitigates the spread

of Ebola virus disease (EVD) by targeting environmental reservoirs, reducing infection rates

within bat populations, and lowering spillover risks to other species, including humans. Nu-

merical simulations validate the theoretical results, demonstrating that environmental decon-

tamination significantly reduces the number of infectious bats and minimizes environmental

contamination. These findings underscore the practical importance of implementing targeted

disease control strategies to manage zoonotic diseases like Ebola.

Future research can expand on this framework by exploring alternative control strategies,

such as habitat modifications or enhanced environmental management practices. Additionally,
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incorporating stochasticity or spatial heterogeneity could better simulate real-world complex-

ities. Future studies could also focus on modeling spillover dynamics between bats and other

species, including humans, to provide a deeper understanding of zoonotic transmission path-

ways and identify critical intervention points. This study provides a robust foundation for ad-

vancing infectious disease modeling and guiding public health efforts to mitigate the risks of

spillover events.
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