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Abstract. Melanoma is a rare type of skin cancer but the most serious compared to other types of skin cancer. The

study of melanoma growth is interesting to analyze so that related parties can determine how quickly this cancer

spreads and determine the proper and efficient treatment method. This paper uses the mathematical modeling

of tumor growth to describe melanoma growth in the presence of virotherapy. The model shows the interaction

between melanoma and uninfected tumor cells, completed by a Logistic law as a classical fraction for population

growth to represent the natural melanoma growth function. Then, this model is discretized by the Non-Standard

Finite Difference Method, then solved numerically, and completed by the 4th Runge Kutta method for validation.

Moreover, this study gave a sensitivity analysis of several parameters to see how much melanoma growth changes

over these parameters. Finally, it can be shown that the melanoma cell growth rate and virotherapy rate have the

most significant effect on the number of melanoma cells.

Keywords: tumor dynamical system; logistic growth; non-standard finite difference method; sensitivity analysis.

2020 AMS Subject Classification: 34A34, 34B60, 65L05.

1. INTRODUCTION

Skin tumors are the most common skin findings and become reasons for consulting a derma-

tologist [1], [2]. Like other tumors, skin tumors can be benign (non-cancerous) and malignant
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(cancerous). Skin cancer is an abnormal growth of skin cells, usually caused by ultraviolet

(UV) radiation overexposure. This cancer can become a global threat to health and is expected

to increase rapidly in the next 20 years if not diagnosed at an early stage [3]. There are three

types of skin cancer: basal cell carcinoma, squamous cell carcinoma, and melanoma. These first

two types are the most common and known as non-melanoma skin cancer, whereas melanoma

is rare but the most aggressive and deadliest skin cancer[4], [5], [6], [7]. In 2020, Arnold et

al. [8] stated from global cancer data that there were 325000 new melanoma cases and 57000

deaths due to melanoma. If 2020 rates continue, they expect the burden of melanoma is likely

to increase by 50% for new cases and increase in deaths by 68% by 2040.

Melanoma early detection becomes an essential thing for better outcomes so that the mortality

because of it can be reduced [9]. Some technological innovations, including novel communi-

cation and imaging tools, are developed to help dermatology in melanoma diagnosis [10]. A

systematic review of eligible publications in periods 2018 - 2022 shows that perform of sev-

eral Artificial Intelligence (AI) techniques as well as or better than dermatologists in detecting

melanoma [11]. A comprehensive survey also shows that the machine/deep learning approach

can help skin lesion analysis detect melanoma [12]. Furthermore, there are at-home testing can

be applied to detect melanoma without the help of a skin specialist [13].

It is also important to carry out studies on predicting melanoma growth both with or without

the treatment. By this prediction, optimizing the treatment efficacy can be derived. Melanoma

growth in medical and biological science can be derived by in vivo and in vitro experiments

such as the xenograft model in blood serum and tissue [14], growth hormone receptor [15].

Deep learning methods can help these experiments to get more information in forecasting and

predicting melanoma growth [16], [17], [18], [19]. Furthermore, many mathematicians use

mathematical models to describe tumor and cancer growth dynamics, including melanoma.

This study applied two nonlinear differential equations models that represent uninfected and

infected (melanoma) cell populations in tumor cells based on some biological parameters. The

model conducts the competition between the infected and uninfected cells in tumor cells as

predator and prey. In the previous research [20], the gompertzian model use to describe the

cell population growth. In this research, the logistic growth function is chosen here to describe
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classical biology for tumor cell population growth. This model is completed by a virotherapy

parameter as a melanoma treatment. Then, the Non-Standard Finite Difference (NSFD) scheme

constructed the discrete-time model version and compared it to the 4th Runge Kutta scheme

for validity. The numerical solution and simulations are completed by sensitivity analysis to

investigate the model response when one parameter is varied, and other parameters are held as

constants. The results show that the infected (melanoma) cell population is the most affected

by the virotherapy parameter. In contrast, the uninfected cell population is the most affected by

the immune system parameter.

2. DYNAMICAL SYSTEM OF LOGISTIC MELANOMA CELL

The population of tumor cells divides into uninfected non-cancerous cells and infected can-

cer cells, which mutually influence each other [21]. Interaction between uninfected cells and

infected cells can be described by a modified Lotka-Volterra model where infected cells are the

predators of uninfected cells. Next, the infected cell is named a melanoma cell since this pa-

per discusses the dynamical system of melanoma cell growth. Let x(t) and y(t) be the number

of uninfected cells and melanoma cells over time t so that a nonlinear system describes their

dynamical interaction:

(1)
dx
dt

= uxG(x,y)−δx−βxy,

(2)
dy
dt

= βxy+myG(x,y)−αy,

where the terms uxG(x,y) in (1) and myG(x,y) in (2) describe increasing number of unin-

fected and melanoma cells because of biological models’ classical fractional population growth

G(x,y), respectively. Here, u is the uninfected growth rate and m is the melanoma cell growth

rate, which will enhance in each population number. The transmission rate between uninfected

and melanoma cells is interpreted by β . It can reduce the number of uninfected cells but in-

creases the number of melanoma cells. The number of uninfected cells may decrease because of

the immune system by rate δ . The presence of virotherapy can reduce the number of melanoma

cells by rate α . In this study, the function G(x,y) represents a logistic model so that:

(3) G(x,y) = 1− x+ y
k

,
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where k is carrying capacity.

3. STABILITY CRITERIA

TABLE 1. Equilibrium points and their stability criteria

Equilibrium Eigen Value Stability Criteria

Point

E1 λ1 = u−δ u < δ

λ2 =−α +m m < α

E2 λ1 =
α

m(u+βk)−δ −βk α < m(δ+βk)
uβk

λ2 = α−m α < m

E3 λ1 =−u+δ u > δ

λ2 =
δ

u (m−βk)−α +βk−δ α > δ

u (m−βk)−δ

E4 λ1,2 =
−A±

√
A2−4B

2 B > 0

A =−A1−A2

B = A1A2

A1 = m
(

1− x∗+2y∗
k

)
−α +βx∗

A2 = u
(

1− 2x∗+y∗
k

)
−δ −βy∗

Stability criteria for the logistic model (1) - (3) can be derived starting from its equilibrium

point. Using the logistic function (3) and setting the dynamical system (1) - (2) equal to zero,

then four equilibrium points obtained as follows:

(4) E1 = (0,0);E2 =

(
0,

k(m−α)

m
)

)
;E3 =

(
k(u−δ )

u
,0
)
,

(5) E4 = (x∗,y∗) =
(
−αu+δm+βkm−αβk
−βu− kβ 2 +βm

,k− k(α−βx∗)
m

− x∗
)
,

where E1 indicates that no tumor cells are found in the body. In contrast, E2 and E3 show the

presence of tumor cells. Furthermore, E2 shows that all tumor cells are melanoma cells but E3

indicates that all tumor cells are uninfected. In E4, some tumor cell becomes melanoma cell

and the others are still as uninfected cells.
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Next, the stability of each equilibrium point can be derived by solving the characteristic

equation det(λ I− J) = 0 for λ , where J is the Jacobian matrix for a nonlinear system (1) and

(2):

J =


u
(

1− 2x+y
k

)
−δ −βy −

(u
k +β

)
x

−
(m

k −β
)

y m
(

1− x+2y
k

)
−α +βx

 .(6)

Substitute each equilibrium point in (4) and (5) into (6), then the characteristic equation will

give the eigenvalue for each equilibrium point. The equilibrium point is stable if and only if

a real part of each eigenvalue is negative. The stability criteria for each equilibrium point are

shown in Table 1.

4. DISCRETE TIME MODEL OF LOGISTIC MELANOMA CELL GROWTH

The discrete-time form for the nonlinear dynamical system (1) – (2) will solved numerically

by the Non-Standard Finite Difference (NSFD) method. Let the differential equation system.

(7)
dε

dt
= F(ε,ω),

where ε = x,y, ω is a parameter set, and F(ε,ω) is a continuous nonlinear function with a

continuous partial derivative in the domain. According to Mickens [???], the NSFD scheme

related to the nonlinear system (7) is

(8)
εn+1−Ψεn

Φ
= F(εn,ω),

where Ψ and Φ are functions depending on the eigenvalues (λ1,λ2) which are obtained by

section 2, and time step size ∆t = tn+1− tn, as follows

(9) Ψ(λ1,λ2,∆t) =
λ1eλ2∆t−λ2eλ1∆t

λ1−λ2
,

(10) Φ(λ1,λ2,∆t) =
eλ1∆t− eλ2∆t

λ1−λ2
.

Furthermore, the eigenvalues for equilibrium point E4 may be complex numbers. Let λ1,2 =

a±bi where a and b a real and imaginary parts of the eigenvalue, respectively, then equations



6 VISKA NOVIANTRI, FELICIA AURELIA SUWANDI

(9) and (10) become

(11) Ψ(λ1,λ2,∆t) =
1
b

ea∆t(bcos(b∆t)−asin(b∆t))

(12) Φ(λ1,λ2,∆t) =
1
b

ea∆t sin(b∆t).

Apply (8) into (1) and (2), so that the NSFD scheme for this nonlinear model becomes,

(13)
xn+1−Ψxn

Φ
= uxn

(
1− xn + yn

k

)
−δxn−βxnyn,

(14)
yn+1−Ψyn

Φ
= βxnyn +myn

(
1− xn + yn

k

)
−αyn,

where x0 and y0 are initial condition with n = 1,2, ...

5. RESULTS AND ANALYSIS

5.1. Numerical Simulation. Four simulations were conducted to see the tumor cell growth

behavior related to each equilibrium point based on input parameters as in Table 2. In this table,

δ is assumed, while the other parameter values are derived from previous research [22]. By

checking and calculating the parameter input in Table 2 for the stability criteria in Table 1, it

can be derived that each simulation leads to a different equilibrium point with their eigenvalues

as in Table 3. Simulation 1-3 has a negative real eigenvalue while Simulation 4 gives a complex

eigenvalue with a negative real part.

Tumor cell number over time generated by NSFD scheme (13) – (14), using (9) – (10) for

Simulation 1 - 3 and (11) – (12) for Simulation 4 since its eigenvalue is a complex number.

These numerical simulations also validate with the 4th Runge Kutta scheme by calculating the

difference value using the following formula:

(15) ∆εn = |εn(NSFD)− εn(RK)|

where ∆εn = ∆xn,∆yn describe the cell number difference between NSFD value εn(NSFD) and

Runge Kutta εn(RK). The results for Simulation 1 – 4 are shown in Figure 1 – 4, respectively.

Each figure consists of four sub-figures: (a) Cell number over time by NSFD scheme, (b) Cell

number over time by 4th Runge Kutta scheme, (c) Cell number differences between NSFD and

Runge Kutta based on formula (15), and (d) Phase portrait.
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TABLE 2. Parameter Data
Simulation u m δ β α k h x0 y0 T

1st 0.1 0.2000 0.2 1.4000 0.2500 1 0.01 0.1 0.35 150

2nd 1 0.5311 0.2 1.4000 0.3000 1 0.01 0.1 0.35 150

3rd 1 0.5311 0.2 0.2529 1.2936 1 0.01 0.1 0.35 150

4th 1 0.5311 0.2 2.5291 1.2936 1 0.01 0.1 0.35 150

TABLE 3. Equilibrium Points and Their Eigenvalues

Simulation Equilibrium Point Eigenvalue

1st E1 = (0,0) λ1 =−0.0499,λ2 =−0.1

2nd E2 = (0;0.4351) λ1 =−0.2311,λ2 =−0.2443

3rd E3 = (0.8;0) λ1 =−0.7999,λ2 =−0.9851

4th E4 = (0.4109,0.1102) λ1,2 =−0.2347±0.5920i

In Simulation 1, Figures 1 (a) and (b) show that the number of uninfected and infected cells

have the same pattern even though different numerical schemes approximate them. Uninfected

and infected cell numbers decrease before reaching their equilibrium point E1(0,0). The unin-

fected cell goes to equilibrium point E1(0,0) faster than infected cells since the initial value of

the uninfected cell is closer to E1 than the infected cell. Quantitatively, the NSFD and Runge

Kutta results are almost the same since the maximum difference between them is only 8×10−5

as in Figure 1(c). The difference value for infected (∆x) and uninfected cells (∆y) reach the

maximum value at time t ≈ 3. The difference value of the infected cell (∆y) fluctuates more

than the infected cell (∆y), but they converge to 0. The phase portrait for Simulation 1 shows

that E1 is asymptotic stable as in Figure 1 (d), which is appropriate with its negative eigenval-

ues. The trajectory starts from (x0,y0)=(0.35,0.1) then goes to E1 = (0,0) as time increase. In

this case, E1 describes that virotherapy is successful in killing all tumor cells.
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FIGURE 1. Simulation 1 results

FIGURE 2. Simulation 2 results



SENSITIVITY PARAMETER FOR LOGISTIC MELANOMA CELL 9

FIGURE 3. Simulation 3 results

FIGURE 4. Simulation 4 results
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The same qualitative results between NSFD and Runge Kutta occur in Simulation 2, as in

Figures 2 (a) and (b). Both sub-figures show that the uninfected and infected cell numbers

grow in the opposite direction, even though the infected cell slightly fluctuates at time t < 25.

When t > 25, the infected cell numbers will stable at 0.4351, while the uninfected cell numbers

decrease and become 0 at t < 12. These numerical results are appropriate with the analytical

results that Simulation 2 will converge to E2 = (0,0.4351). This condition tells us that all

tumor cells found in the body become infected. The difference ∆x over time is always smaller

than ∆y as in Figure 2(c). The maximum ∆x and ∆y reach at time t ≈ 5 with values less than

≈ 0.0002 and 0.0006, respectively. Next, the trajectory for this simulation starts from (x0,y0) =

(0.1,0.35) then goes to E2 shown in Figure 2(d).

The numerical results for Simulation 3 are given in Figure 3. The NSFD (a) and Runge Kutta

(b) results describe that the uninfected and infected cells grow in the opposite direction for very

short periods before going constant. Here, the infected cell numbers drop quickly to 0 and the

uninfected cell numbers grow to 0.8, then stable afterward. It is aligned with the analytical so-

lution in Table 3 that Simulation 3 will stable to equilibrium point E3 = (0.8,0). The difference

between NSFD and Runge Kutta for tumor cell numbers is plotted in subfigure (c). Based on

Figures 2(c) and 3(c), Simulation 2 and 3 give ∆x and ∆y in the opposite behavior. In Figure

3(c), ∆x is always greater than ∆y. The maximum difference for ∆x and ∆y in Simulation 3 are

less than 0.009 and less than 0.001, respectively. As in subfigure 1(d) and 2(d), subfigure 3(d)

has a similar phase portrait, which is the equilibrium point type is a node and asymptotic stable

since λ2 < λ1 < 0.

Figure 4 shows the numerical results for Simulation 4. Similar to sub-figures 1(a)-(b), 2(a)-

(b), and 3(a)-(b), sub-figure 4(a)-(b) gives the same qualitative results between NSFD and

Runge Kutta to approximate the number of uninfected and infected cells. Unlike previous sim-

ulations, Simulation 4 shows that the number of uninfected and infected cells fluctuates more

before reaching equilibrium. Moreover, when t > 2, uninfected cells are always greater than

infected cells. Both sub-figures show that the uninfected and infected cells converge, which

describes the condition where the tumor consists of uninfected and infected cells. The fluctu-

ating results also show in the difference value ∆x and ∆y as in Figure 4(c), with the maximum
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difference for ∆x and ∆y is less than 0.004 and 0.002, respectively. Nevertheless, the difference

∆x and ∆y is asymptotic stable and follows the uninfected and infected cells pattern over time.

These results align with the phase portrait as in sub-figure 4(d). This sub-figure shows that the

trajectory starts from (x0,y0) and then goes to E4 as a spiral point since the eigenvalues for E4

are complex numbers with negative real parts.

Based on Simulation 1-4 results, it can be concluded that the numerical results of all simu-

lations follow the analytical results in Table 2. The NSFD scheme has a small difference from

the 4th Runge Kutta scheme so the NSFD scheme successfully approximates the number of

uninfected and infected cells. Furthermore, Simulation 1- 4 has the same results as the other

research [23].

5.2. Sensitivity Analysis. The sensitivity analysis applied here investigates the model re-

sponse when one parameter is varied and holds other parameters as a constant. For the dif-

ferential equation system (7), the parameter sensitivity can be described through the following

differential equation system:

(16)
d
dt

(
∂ε

∂ω

)
= J

∂ε

∂ω
+

∂F
∂ω

where J is a 2×2 Jacobian matrix (6).

Interesting parameters to investigate the model response (1) and (2) are u,m,δ ,β ,α so that
∂ε

∂ω
and ∂F

∂ω
are 2×5 matrix as follows:

(17)
∂ε

∂ω
=


∂x
∂u

∂x
∂m

∂x
∂δ

∂x
∂β

∂x
∂α

∂y
∂u

∂y
∂m

∂y
∂δ

∂y
∂β

∂y
∂α

 ,

(18)
∂F
∂ω

=

 x
(
1− x+y

k

)
0 −x −xy 0

0 y
(
1− x+y

k

)
0 xy −y

 .

Next, the differential equation system (16) is solved numerically by the 4th Runge Kutta

scheme based on parameter data in Tables 2 and 3. These numerical simulations represent pa-

rameter sensitivity in different equilibrium points. Figure 5 - 8 show the sensitivity parameter

for equilibrium point E1 (Simulation 1), E2 (Simulation 2), E3 (Simulation 1), and E4 (Simula-

tion 4), respectively. These figures are organized into two columns, where each column visually
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represents the sensitivity level of the parameters investigated for the uninfected and infected cell

population. From all simulations, only Simulations 4 in Figure 8 show that the sensitivity levels

for each parameter are asymptotic stable. Since all parameters fluctuate quickly at time t < 30,

it is difficult to investigate the most significant parameter of the cell population alterations in

Simulation 4. However, the impact of all parameters can be seen clearly when time t > 30, since

all are stable. It can be seen that parameter α becomes the most significant impact on the cell

alterations. This implies that higher virotherapy can reduce the number of melanoma cells and

increase uninfected cells significantly. In contrast, an uninfected growth rate leads to increasing

melanoma cells.

FIGURE 5. Sensitivity Parameter for Simulation 1

FIGURE 6. Sensitivity Parameter for Simulation 2
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FIGURE 7. Sensitivity Parameter for Simulation 3

FIGURE 8. Sensitivity Parameter for Simulation 4

In Simulations 1-3, parameters α and m have the most significant impact on the melanoma

cell alterations. As in Simulation 4, the virotherapy rate (α) can reduce the melanoma cell

population significantly, in contrast with the melanoma cell growth rate (m). Furthermore, the

immune system (δ ) is the most parameter that can reduce the uninfected cell. However, the

impact of each parameter on the uninfected cell is slightly different.

6. CONCLUSION

The logistic growth function has successfully modelled the mathematical interaction between

uninfected cells and melanoma cells under virotherapy treatment. Explicitly, this model gener-

ates four equilibrium points representing free tumor cells, free uninfected cells, free melanoma

cells, and the presence of uninfected and melanoma cells (interior equilibrium). All equilibrium

points are conditionally stable, where their eigenvalues can be used to derive the numerical

scheme, Non-Standard Finite Difference (NSFD) method. This numerical scheme has a high
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accuracy since the difference is less than 0.9% compared to the 4th Runge Kutta Scheme. The

simulation results show that the uninfected and melanoma grow in different directions for all

equilibrium points, except in interior equilibrium. Furthermore, the sensitivity analysis shows

that higher virotherapy can reduce the number of melanoma cells and increase uninfected cells

significantly.
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