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Abstract. Breast cancer remains a significant public health challenge worldwide, with rising incidence rates in both

developed and developing nations. This study presents a fractional mathematical model to examine the progression

of breast cancer within the healthcare system of Jordan. The proposed model integrates fractional calculus to

account for the non-linear dynamics and long-memory effects characteristic of biological systems. It employs

a compartmental framework, categorizing women into six states: Susceptible, Preclinical, Clinical, Treatment,

Remission, and Death. Transition rates between these states are derived from local epidemiological data to ensure

relevance to Jordan’s healthcare context. The model is analyzed for stability, disease-free equilibrium (DFEP),

and endemic equilibrium (EEP), using fractional differential equations to explore the dynamics of breast cancer
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progression. Numerical solutions are obtained using the Modified Fractional Euler Method (MFEM), showcasing

the impact of various parameters on disease spread and treatment outcomes. Results emphasize the utility of

fractional-order models in capturing the intricate interplay of biological and clinical factors influencing breast

cancer dynamics. This study provides valuable insights for policymakers and healthcare professionals, facilitating

the optimization of resource allocation and the development of targeted intervention strategies in Jordan.

Keywords: breast cancer progression; fractional calculus; compartmental model; stability analysis; healthcare

system of Jordan.
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1. INTRODUCTION

Globally, cancer is a major public health concern. Out of all the varieties of cancer that now

exist, breast cancer is the most common and leading cause of cancer in women, and it continues

to rise in both developed and developing countries [1, 2]. Breast cancer (BC) is the result of

unchecked, malignant or benign breast cell proliferation. In contrast to the malignant cancer

kinds, which include invasive lobular carcinoma, invasive ductal carcinoma, papillary carci-

noma, and mucinous carcinoma, Benign cancer kinds are phyllodes, tubular adenoma tumor,

adenosis, and fibroadenoma [3]. The most popular method for diagnosing breast cancer is the

triple assessment test comprises of biopsy test, imaging, and clinical examination [4]. Because

it can identify the type, sub-type, and stage of breast cancer, compared to medical imaging pro-

cedures such as mammography, MRI, ultrasound, and CT, the histopathological image (biopsy

test) is the gold standard for diagnosing breast cancer [5]. Histopathological analysis is used to

establish the existence or absence of disease as well as to grade the disease and determine how

far along it is [6]. Breast cancer grading facilitates the assessment of the disease’s aggressive-

ness, growth rate, and extent of dissemination. The three grades for breast tumors are 1. and 3.

Grade 1 breast cancer cells are often slow-growing and resemble normal cells in homogeneity

and size. Compared to normal cells, grade 2 cells are slightly larger, vary in shape, and grow

more quickly. Similarly, Grade 3 cancer cells have a distinct appearance and typically prolif-

erate more quickly than healthy cells [7, 8]. Because microscopic histopathological analysis

is typically performed by eye inspection, its accuracy depends on how well the doctor per-

forms. Because of this, multi-classifying breast cancer utilizing histological photos is a difficult
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endeavor because it is subjective, the correctness of the results depends on the observer’s expe-

rience and knowledge, and the process is time-consuming and laborious. Furthermore, because

most underdeveloped nations lack skilled pathologists, every day, a pathologist is expected to

examine a variety of biopsy samples from different cases. Owing to the limited pathologist’s

analysis of a wide range and volume of data, as well as the intricacy of the images, conclusions

could be misinterpreted. Exaggerated or underinterpreted diagnosis are two possible types of

misdiagnosis. Women who do not have cancer may be subjected harmful therapies and needless

expenses as a result of misinterpretation. On the other side, if women fail to receive treatment

at an early stage, the cancer may progress to more invasive stages due to incorrect or inade-

quate interpretation of the biopsy results. Furthermore, the enhanced multi-class classification

of the disease type serves as the basis for choosing the optimal therapeutic approach for breast

cancer. By employing therapeutic approaches, early control of tumor cell metastasis can be

achieved with the accurate identification of breast cancer subclasses. However, the manual

biopsy test approach may not be reliable for classifying breast cancer into multiple categories.

The aforementioned issues can be resolved by using computer aided diagnostic (CAD) tools for

breast cancer histology. Intelligent diagnostic algorithms can lessen the workload of patholo-

gists while improving diagnosis accuracy and lowering the mistake rate in breast cancer type

classification and grading [9, 10]. Designing appropriate histopathological image capture, intel-

ligent feature extraction methodologies, and pre-processing is, however, a demanding task for

computer-aided breast cancer detection [9]. Deep learning techniques can extract features from

photos, automatically recognize visual patterns, and represent images in an abstract form that

incorporates the most visible information needed to distinguish them from other similar images.

Recent research has developed deep neural network (DNN) models for the diagnosis of breast

cancer using histopathology images [11, 12]. A deep CNN-like patch level voting model and a

merging model were used to categorize breast tissue biopsy images as normal, benign, malig-

nant, or invasive cancer, with an accuracy of 87.5% [13]. Similarly, deep convolutional neural

network (DCNN) and gradient boosted tree approach were used to categorize breast cancer into

the fundamental four types, with an accuracy of 93.8 ± 2.3% and 87.2 ± 2.6%, respectively [14].

Araujo et al. [15] used CNN to extract features and support vector machines to classify images
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at different scales, including nuclei and tissue organization. The study reported an accuracy

of 77.8% for all four classes and 83.3% for carcinoma (invasive and in situ) or non-carcinoma

(benign and normal). The Inception-v3 convolutional neural network was fine-tuned for patch

classification, and majority vote was employed for overall slide classification, resulting in an

accuracy of 85% for all four classes and 93% for non-cancer (benign and normal) versus ma-

lignant (invasive carcinoma or in situ) [16].

Fractional calculus is becoming increasingly popular in medical systems, chemical, and bi-

ological [17]. It expands the usual, integer-order differential calculus to non-integer order

[18, 19, 20]. Many scholars have already demonstrated that fractional order models are su-

perior at describing this phenomenon, see [21, 22, 23, 24, 25, 26, 27]. Great achievements are

provided in a variety of domains, including biosciences, bioengineering, economics, medicine,

control, physics, neural networks, and signal processing [28, 29]. Many authors concur that

fractional operators can help capture and explain the more relative repercussions of physical

processes with increased non-linearity and complexity, as well as history-based properties and

long-range memory [30]. In [31], the dynamics of a fractional partial differential equation

model of the Zika virus are investigated. The authors use the Atangana-Baleanu fractional

derivative to describe how the spread of humans and mosquitoes effects disease transmission.

Cancer is becoming more prevalent in our culture because it is one of the top causes of

illness and death worldwide. Because of this, there are numerous treatment options available,

including surgery, radiation therapy, chemotherapy, immunotherapy, hormone therapy, and anti-

angiogenic therapy. For all of these treatments, it is important to weigh the pros, cons, and side

effects of each treatment. As a result, a logical mathematical approach to cancer therapy is to

examine a mathematical model of tumor temporal evolution that includes therapy action as a

control mechanism, with the goal of reducing tumor volume while minimizing negative side

effects on healthy cells. To select the best therapy, we formulate an optimal control problem

that entails minimizing tumor volume over a certain time horizon while optimizing the patient’s

health-related quality of life [32].
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2. BASIC FUNDAMENTALS

In this section, we will discuss certain definitions and properties of fractional calculus, which

will pave the way for the important results later.

Definition 2.1. Suppose σ is a real, non-negative number. Then Jσ
a defined on L1[a,b], where

L1[a,b] is the set of all functions that whose absolute values are integrable on [a,b] by [33]:

(1) Jσ
a ψ(s) =

1
Γ(σ)

∫ s

a
(s−w)σ−1

ψ(w)dw, a≤ s≤ b,

is referred to as the Riemann-Liouville fractional-order integral operator of order σ .

In the following, we will mention several properties of the Riemann-Liouville fractional-

order integral operator.

(1) Let m,n≥ 0 and ψ ∈ L1[a,b]. Then we have: Jm
a Jn

a ψ= Jm+n
a ψ .

(2) For m,n≥ 0, we have: Jm
a Jn

a ψ= Jn
a Jm

a ψ .

(3) For m,n≥ 0, we have: Jm+n
a ψ= Jm+n−1

a J1
a ψ .

Definition 2.2. Assume σ ∈ R and r = dσe. The operator Dσ
a is defined as:

(2) Dσ
a ψ = DrJr−σ

a ψ,

is referred to as the Riemann-Liouville fractional-order differential operator of order σ .

When γ = 0 in Equation (3), we obtain D0
a = I, also known as the Identity operator [34]. The

next step is to present the main definition of the operator at hand.

Definition 2.3. Assume σ is a real, nonnegative number. The Riemann-Liouville fractional-

order differential operator of a function ψ of order σ is defined as [33] for a positive integer r

with r−1 < σ ≤ r:

(3) Dσ
a ψ(s) =

1
Γ(r−σ)

dr

dsr

∫ s

a
(s−w)r−σ−1

ψ(w)dw.

Without losing generality, assume a = 0 in Equation (3) to get:

(4) Dσ
0 ψ(s) =

1
Γ(r−σ)

dr

dsr

∫ s

0
(s−w)r−σ−1 f (w)dw.
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The Riemann-Liouville fractional-order derivative of the function ψ of order σ is also defined

by the following for 0 < σ ≤ 1:

(5) Dσ
0 ψ(s) =

1
Γ(1−σ)

d
ds

∫ s

0
(s−w)−σ

ψ(w)dw.

The Power Rule property can be deduced from Equation (5) and summarized as follows:

(6) Dσ
0 sp =

Γ(p+1)
Γ(p−σ +1)

sp−σ ,

where p∈R. Regarding this, it should be noted that a constant function C has a fractional-order

derivative that is not zero. Thus, [35]:

(7) Dσ
0 C =

s−σ

Γ(1−σ)
C,

where C is constant.

The Riemann-Liouville fractional-order derivative operator is discussed in detail in the fol-

lowing content. These properties can be used to illustrate how such an operator interacts with

itself and the Riemann-Liouville integral operator.

(1) Consider n≥ 0. For every ψ ∈ L1[a,b], Dn
aJn

a ψ = ψ practically everywhere.

(2) Assume σ1,σ2≥ 0 and φ ∈ L1[a,b] such that ψ = Jσ1+σ2
a φ . Then Dσ1

a Dσ2
a ψ = Dσ1+σ2

a ψ .

Definition 2.4. Assume r = dσe and σ ∈ R. The definition of the Caputo fractional derivative

operator Dσ
a is

(8) Dσ
a ψ = Jr−σ

a Dr
ψ.

Definition 2.5. Suppose σ ∈ R+ and r = dσe such that r−1 < σ ≤ r. The Caputo fractional-

order derivative operator of order σ is given as [33]

(9) Dσ
a ψ(s) =

1
Γ(r−σ)

∫ s

a
(s− τ)r−σ−1

ψ
(r)(τ)dτ, s > a.

Equation (9) helps the following power rule property to be obtained:

(10) Dσ
∗ sp =


Γ(p+1)

Γ(p−σ+1)s
p−σ , r−1 < σ ≤ r, p > r−1, p ∈ R

0 , r−1 < σ ≤ r, p≤ r−1, p ∈ N.
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Following that, we’ll go over some fundamental Caputo fractional-order derivative operator

characteristics. These characteristics are connected to the linearity and non-commutativity of

the operator under study.

(1) Let r−1 < σ ≤ r such that r ∈ N. Then

(Dσ
a (λψ(s)+µg(s))) = (λDσ

a ψ(s)+µDσ
a g(s)),

where λ and µ are two scalers.

(2) Let r−1 < σ ≤ r such that r, β ∈ N, and σ ∈ R. Then

(Dσ
a Dβ

a ψ(s)) = (Dσ+β
a ψ(s)) 6= (Dβ

a Dσ
a ψ(s)).

Theorem 2.6. Consider CDiσ
∗ ω(x) ∈ C(0,T ], for i = 0,1,2, · · · ,n+ 1, and 0 < σ ≤ 1. The

function ω(x) can be extended around x0 in the following manner [36]:

(11) ω(x) =
n

∑
i=0

(x− x0)
iσ

Γ(iσ +1)

(
CDiσ
∗ ω

)
(x0)+

(x− x0)
(n+1)σ

Γ((n+1)σ +1)

(
CD(n+1)σ
∗ ω

)
(ζ ),

∀x ∈ (0,T ], where 0 < ζ < x.

3. COMPARTMENTAL MODEL

To develop a proper mathematical model for the progression of breast cancer in Jordan’s

healthcare system, local data must be adapted to wide cancer modeling methodologies. To

create a compartmental model, we assume the following compartments:

(1) Susceptible (S): Women who are at risk of developing breast cancer but do not currently

have it.

(2) Preclinical (P):Women at the preclinical stage of breast cancer who have not received a

diagnosis.

(3) Clinical (C): Women with a breast cancer diagnosis (clinical stage).

(4) Treatment (T): Women are receiving medical treatment.

(5) Remission (R): Women who have achieved remission after receiving effective treatment.

(6) Death (D): Women who have died of breast cancer.

To represent the transition between all the previous compartments, we established the follow-

ing fractional differential equations:
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(1) Susceptible to preclinical: The transition from susceptible to preclinical occurs at a rate

that is proportional to the incidence rate (β ), i.e.,

Dσ
∗ S(s) =−βS(s),

the incidence rate of breast cancer could be approximated by 60
100000 women annually

(0.0006).

(2) Preclinical to clinical: The rate of diagnosis of breast cancer drives the transition from

preclinical to clinical (γ), i.e.,

Dσ
∗ P(s) = βS(s)− γP(s),

the diagnosed rate (γ) shows the probability of transitioning from undiagnosed to di-

agnosed. This percentage can be approximated for Jordan’s healthcare system by the

value of 80% of cases detected at some point.

(3) Clinical to Treatment: The transition from clinical to therapy is driven by the rate at

which diagnosed patients begin treatment (δ ), i.e.,

Dσ
∗C(s) = γP(s)−δC(s),

the treatment initiation rate δ , representing the period from diagnosis to therapy, might

be approximated by 70%.

(4) Treatment to Remission: The treatment success rate determines the transition from treat-

ment to remission (α), i.e.,

Dσ
∗ T (s) = δC(s)−αT (s),

the treatment success rate α , which indicates the remission rate, can be approximated

as 65% of treated women achieving remission.

(5) Treatment to Death: The mortality rate determines the transition from treatment to death

(µ), i.e.,

Dσ
∗ T (s) = δC(s)− (α +µ)T (s),

for which the mortality rate from breast cancer in Jordan might be approximated by

10% of treated women die from the disease.
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FIGURE 1. The compartmental model of the breast cancer for the healthcare

system of Jordan.

(6) Remission to Recurrence: It should be mentioned that some women in remission may

face cancer recurrence. This can be described using a recurrence rate (ρ), i.e.,

Dσ
∗ R(s) = αT (s)−ρR(s),

the recurrence rate ρ can be approximated as 0.2, given that 20% of women in remission

experience recurrence.

(7) Death: The compartment of death accumulates people who have died of breast cancer,

i.e.,

Dσ
∗D(s) = µT (s).

Based on the previous discussion, we can create the compartmental model for breast cancer

progression for the Jordanian healthcare system, as shown in Figure 1.

In conclusion, the fractional-order model of breast cancer progression for a Jordanian health-

care system can be provided by

(12)

Dσ
∗ S(s) = (1−θ)−βS(s),

Dσ
∗ P(s) = βS(s)− γP(s),

Dσ
∗C(s) = γP(s)−δC(s),

Dσ
∗ T (s) = δC(s)− (α +µ)T (s),

Dσ
∗ R(s) = αT (s)−ρR(s),

Dσ
∗D(s) = µT (s),
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where θ is the recruitment factor that represents a constant or rate at which new individu-

als enter the susceptible population (for example, through birth or immigration). To express

the recruitment factor for breast cancer in Jordan, we could use the annual incidence rate per

100,000 women. Based on available data, a reasonable estimate for Jordan would be 50 cases

per 100,000 women per year (i.e. 50/100,000).

It is critical to specify many key assumptions in regard to model (1). The assumptions are:

(1) The population size of women N is about 5 million for Jordan. This value represents the

initial susceptible population S0, i.e. S0 = 5000000.

(2) The estimated annual chance of having breast cancer among women is 0.1%. This value

represents the initial clinical population P0, i.e. P0 = 0.001.

(3) The rest of the initial values are given in Table 1.

TABLE 1. caption
Parameter Value

C0 1250
T0 2100
R0 12750
D0 2250

4. STABILITY ANALYSIS

In this section, we aim to examine the primary characteristics of model (12) in terms of

numerous aspects including as basic reproduction number, the disease-free equilibrium point

(DFEP), its stability, the endemic equilibrium point (EEP).

4.1. Basic reproduction number (R0). The next-generation matrix approach (NGM) is used

to evaluate the R0, considering our infectious compartments are P, C, and T . Therefore, the

infected subsystem can be formulated and written as follows:

Y = (P,C,T )T,

dY
ds

= M(Y )−N(Y ).
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Where we have:

M(Y ) =


βS(s)

0

0

 and N(Y ) =


γP(s)

−γP(s)+δC(s)

−δC(s)+(α +µ)T (s)


And find the Jacobian of both matrices around the DFEP yields:

M (Y ) =


βS0 0 0

0 0 0

0 0 0

 and N (Y ) =


γ 0 0

−γ δ 0

0 −δ α +µ


Thus, the R0 is the spectral radius of MN −1:

R0 = ρ(MN−1) = ρ




βS0 0 0

0 0 0

0 0 0

 ·


αδ+δ µ

αγδ+γδ µ
0 0

αγ+γµ

αγδ+γδ µ

αγ+γµ

αγδ+γδ µ
0

γδ

αγδ+γδ µ

γδ

αγδ+γδ µ

γδ

αγδ+γδ µ




=
βS0

γ
.

Figures 2 and 3 illustrate the effects of key parameters, γ (diagnosis rate) and β (incidence

rate), on the basic reproduction number R0 within the proposed fractional-order breast cancer

model. These visualizations demonstrate the sensitivity of R0 to variations in these parameters,

emphasizing their role in disease dynamics.
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FIGURE 2. Code Effect of γ parameter on R0.
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FIGURE 3. Code Effect of β parameter on R0.

In light of the above discussion, we observe that Figure 2 shows the inverse relationship

between the diagnosis rate γ and the basic reproduction number R0. As γ increases, R0 de-

creases sharply, indicating that higher rates of diagnosis can significantly curb the disease’s

reproductive potential. This outcome aligns with the model’s expectation that early and ef-

ficient detection reduces the susceptible population transitioning to advanced stages, thereby

lowering overall disease prevalence. On the other hand, we note that Figure 3 demonstrates the

direct proportionality between the incidence rate β and R0. As β increases, R0 rises exponen-

tially, underscoring the impact of higher breast cancer incidence on the potential spread within

the population. This behavior highlights the importance of public health measures aimed at

reducing the risk factors associated with breast cancer development, as even slight increases in

β substantially elevate R0.

4.2. The disease-free equilibrium point (DFEP) and its stability. The disease-free equilib-

rium point reflects the case where the human body has no cancer infection. Thus, the infection

compartments should be equalized with zero value. Solving System in 12 for the healthy body

yields the following DFEP:

DFEP = (S0,P0,C0,T0,R0,D0) = (S0,0,0,0,0,0)

Evaluating the Jacobian matrix for the system at the DFEP yields:
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(13) J(S0,P0,C0,T0,R0,D0) =



−β 0 0 0 0 0

β −γ 0 0 0 0

0 γ −δ 0 0 0

0 0 δ −α−µ 0 0

0 0 0 α −ρ 0

0 0 0 µ 0 0


.

Then, we have the following Theorem for Local stability of the DFEP:

Theorem 4.1. The disease-free equilibrium point DFEP of the proposed model 12 is considered

to be a local asymptomatic stable if the following condition:

λi ≤ 0, is satisfied for all eigenvalues of the matrix 13, where λi, i ∈ {1,2,3,4,5,6}.

Proof. Under the condition that all applied parameters hold non-negative values, one can easily

find the eigenvalues of the lower triangular Jacobian matrix to be evaluated as follows:

λ1 =−β < 0,λ2 =−γ < 0,λ3 =−δ < 0,λ4 =−(α +µ)< 0,λ5 =−ρ < 0,and λ6 = 0. Con-

sidering that λ6 reflects the death compartment and ensures that there is no inflow or outflow

for this compartment and, consequently, does not affect the stability. �

4.3. The endemic equilibrium point (EEP). The endemic or steady state equilibrium point

exists when the disease persists within the community, assuming that infectious compartments

hold non-zero values. Solving our system 12 where we have P 6= 0, C 6= 0, and T 6= 0, yields

the following EEP:

(S∗,P∗,C∗,T ∗,R∗,D∗) =
(

1−θ

β
,
1−θ

γ
,
1−θ

δ
,

1−θ

α +µ
,

α(1−θ)

ρ(α +µ)
,

µ(1−θ)

α +µ

)
Global stability of the EEP can be investigated by applying Ulam-Hyers approach [37] of the

fractional model system defined in 12.

Theorem 4.2. The System 12 is globally stable in the sense of Ulam-Hyers if and only if there

∃ a constant C > 0 such that

‖X̃(s)−X(s)‖ ≤C · max
i=1,...,6

sup |εi(s)|.
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Where X̃(s) is the perturbed solution of the system and X(s) is the unperturbed solution.

Proof. Let assume our perturbed system to be defined as:

(14)

Dσ
∗ S̃(s) = (1−θ)−β S̃(s)+ ε1(s),

Dσ
∗ P̃(s) = β S̃(s)− γP̃(s)+ ε2(s),

Dσ
∗ C̃(s) = γP̃(s)−δC̃(s)+ ε3(s),

Dσ
∗ T̃ (s) = δC̃(s)− (α +µ)T̃ (s)+ ε4(s),

Dσ
∗ R̃(s) = αT̃ (s)−ρR̃(s)+ ε5(s),

Dσ
∗ D̃(s) = µT̃ (s)+ ε6(s),

assuming that εi(s) where i ∈ 1,2,3,4,5,6 are small perturbations.

Let X̃(s) and X(s) represent the approximate and exact solutions of the perturbed and unper-

turbed solutions of the system. Then we have:

X̃(s) = (S̃(s), P̃(s),C̃(s), T̃ (s), R̃(s), S̃(s))

X(s) = (S∗(s),P∗(s),C∗(s),T ∗(s),R∗(s),D∗(s)).

Our aim in the following analysis is to show that the absolute error between the approximate

and exact solution (e(s) = X̃(s)-X(s)) remains bounded and small over time. Then the error

functions will be founded as:

(15)

eS(s) = S̃(s)−S∗(s),

eP(s) = P̃(s)−P∗(s),

eC(s) = C̃(s)−C∗(s),

eT (s) = T̃ (s)−T ∗(s),

eR(s) = R̃(s)−R∗(s),

eD(s) = D̃(s)−D∗(s).

Then, the system controlling the error terms will be as follows:

Dσ
∗ eS(s) =−βeS(s)+ ε1(s),

Dσ
∗ eP(s) = βeS(s)− γeP(s)+ ε2(s),
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(16)

Dσ
∗ eC(s) = γeP(s)−δeC(s)+ ε3(s),

Dσ
∗ eT (s) = δeC(s)− (α +µ)eT (s)+ ε4(s),

Dσ
∗ eR(s) = αeT (s)−ρeR(s)+ ε5(s),

Dσ
∗ eD(s) = µeT (s)+ ε6(s).

Solving the last Equation 16, by the Mittag-Leffler function for the six compartments, one can

easily find the constant C that depends on the parameters, fractional order, maximum value

of the perturbation (εi(s)) error terms initial conditions. The general error of the system is

represented by:

e(s) = (eS(s),eP(s),eC(s),eT (s),eR(s),eD(s)).

Hence, the error is bounded and can be represented by the following inequality:

‖e(s)‖ ≤C · max
i=1,...,6

sup |εi(s)|.

�

5. NUMERICAL FINDINGS

In the next content, we plan to utilize the numerical method MFEM to get the approximate

solutions of the fractional-order Mpox system (12). In fact, these method represent fractional

version of the conventional Euler method. A person can read the paper [38] in order to get

clear idea about such method. In this context, Theorem 2.6 can lay the foundation to recall the

MFEM, which are considered for the following fractional problem:

(17) CDσ
∗ω(x) = Ψ(s,ω(s)) , ω(0) = ω0, s > 0, 0 < σ ≤ 1.

To solve problem (17), we use [0,a] as the interval to acquire the necessary numerical solution.

In general, we are unable to identify ω(s), which reflects the analytical solution to the problem

at hand. Alternatively, we may create a set of points (si,ω(si)) and use them to construct an

approximate solution [39, 40]. To simplify, we split [0,a] into k sub-intervals, [si,si+1]. with

h = a
k via si = ih, where i = 0,1,2, · · · ,k. We assume that ω(s), CDσ

∗ω(s), and CD2σ
∗ ω(s) are

continuous on (0,a]. Using Theorem 2.6, we may extend ω(s) around s = si as follows
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(18) ω(s) = ω(si)+
(s− si)

σ

Γ(σ +1)
CD

σ

∗ω(si)+
(s− si)

2σ

Γ(2σ +1)
CD

2σ

∗ ω(ζ ),

for some ζ ∈ (si, si+1). Thus, if we substitute si+1 instead of s in (18), we obtain

(19) ω(si+1) = ω(si)+
hσ

Γ(σ +1)
CD

σ

∗ω(si)+
(si+1− si)

2σ

Γ(2σ +1)
CD

2σ

∗ ω(ζ ),

for some ζ ∈ (si, si+1). Now, if one chooses h = si+1− si too small, then the last term of (19)

can be eliminated to obtain

(20) ω(si+1) = ω(si)+
hσ

Γ(σ +1)
CD

σ

∗ω(si).

Actually, Equation (20) represents the primary formula of the FEM. In the same regard, if one

substitutes

CDσ
∗ω(si+1) = Ψ

(
si +

hσ

Γ(σ +1)
,ω(si)+

hσ

Γ(σ +1)
Ψ(si,ω(si))

)
instead of (20), the result of ω(si+1) will be consequently yielded. In other words, we obtain

(21) ω(si+1) = ω(si)+
hσ

Γ(σ +1)
×Ψ

(
si +

hσ

Γ(σ +1)
,ω(si)+

hσ

Γ(σ +1)
Ψ(si,ω(si))

)
,

for i = 0,1,2, · · · ,k− 1. Equation (21) is the main formula of the MFEM, which will be com-

pared with the FEM’s formula. In the following, we attempt to implement only the MFEM on

the fractional-order Mpox system (12), as the FEM and MFEM are identical. To do this, we

must evaluate such a system as

(22)

Dσ
∗ S(s) = Ψ1 (s,S(s),P(s),C(s),T (s),R(s),D(s))

Dσ
∗ P(s) = Ψ2 (s,S(s),P(s),C(s),T (s),R(s),D(s))

Dσ
∗C(s) = Ψ3 (s,S(s),P(s),C(s),T (s),R(s),D(s))

Dσ
∗ T (s) = Ψ4 (s,S(s),P(s),C(s),T (s),R(s),D(s))

Dσ
∗ R(s) = Ψ5 (s,S(s),P(s),C(s),T (s),R(s),D(s))

Dσ
∗D(s) = Ψ6 (s,S(s),P(s),C(s),T (s),R(s),D(s)) ,
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where

(23)

Ψ1 (s,S(s),P(s),C(s),T (s),R(s),D(s)) = (1−θ)−βS(s)

Ψ2 (s,S(s),P(s),C(s),T (s),R(s),D(s)) = βS(s)− γP(s)

Ψ3 (s,S(s),P(s),C(s),T (s),R(s),D(s)) = γP(s)−δC(s)

Ψ4 (s,S(s),P(s),C(s),T (s),R(s),D(s)) = δC(s)− (α +µ)T (s)

Ψ5 (s,S(s),P(s),C(s),T (s),R(s),D(s)) = αT (s)−ρR(s)

Ψ6 (s,S(s),P(s),C(s),T (s),R(s),D(s)) = µT (s).

More precisely, with the view to obtaining (sk,S(sk)) in relation to compartment S, it should

be assumed that S(s), CDσ
∗ S(s) and CD2σ

∗ S(s) are continuous on (0,T ]. From this point of view,

if it can be supposed that

Ψ1 (s,S(s),P(s),C(s),T (s),R(s),D(s)) =−βS(s),

so that

Dσ
∗ S(s) = Ψ1 (s,S(s),P(s),C(s),T (s),R(s),D(s)) ,

then, with the use of (21), one might obtain

(24) S(si+1) = S(si)+
hσ

Γ(σ +1)
×Ψ1

(
si +

hσ

Γ(σ +1)
,S(si)+

hσ

Γ(σ +1)
Ψ1(si,S(si))

)
,

for i = 0,1,2, ...,k−1.

Likewise, for the other classes the same approach might be used to arrive at an approximation

of the solutions classes. In the long run, we can infer the following approximations of model

(12):

(25)

S(si+1) = S(si)+
hσ

Γ(σ +1)
×Ψ1

(
si +

hσ

Γ(σ +1)
,S(si)+

hσ

Γ(σ +1)
Ψ1(si,S(si))

)
,

P(si+1) = P(si)+
hσ

Γ(σ +1)
×Ψ2

(
si +

hσ

Γ(σ +1)
,P(si)+

hσ

Γ(σ +1)
Ψ2(si,P(si))

)
,

C(si+1) =C(si)+
hσ

Γ(σ +1)
×Ψ3

(
si +

hσ

Γ(σ +1)
,C(si)+

hσ

Γ(σ +1)
Ψ3(si,C(si))

)
,

T (si+1) = T (si)+
hσ

Γ(σ +1)
×Ψ4

(
si +

hσ

Γ(σ +1)
,T (si)+

hσ

Γ(σ +1)
Ψ4(si,T (si))

)
,
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R(si+1) = R(si)+
hσ

Γ(σ +1)
×Ψ5

(
si +

hσ

Γ(σ +1)
,R(si)+

hσ

Γ(σ +1)
Ψ5(si,R(si))

)
,

D(si+1) = D(si)+
hσ

Γ(σ +1)
×Ψ6

(
si +

hσ

Γ(σ +1)
,D(si)+

hσ

Γ(σ +1)
Ψ6(si,D(si))

)
,

where Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6 are already outlined in (23), i = 0,1,2, ...,k−1.

The following content presents numerical findings that show the dynamics of the fractional-

order Mpox system (12). In this connection, we consider Table 2, which draws very close

data to certain accessible data gathered out of the Indian community, on the basis of reference

[41, 42].

TABLE 2. Parameters of system

Parameter Value

S(0) 5000000

P(0) 0.001

C(0) 1250

T(0) 2100

R(0) 12750

D(0) 2250

β 0.0006

γ 0.8

δ 0.7

α 0.65

µ 0.1

ρ 0.2

Figures 4, 5, 6, 7, 8, and 9 depict the temporal evolution of various compartments in the

fractional-order breast cancer model for different fractional orders σ = 0.2,0.4,0.6,0.8,1.

These figures illustrate the dynamic changes in population sizes for the compartments: Sus-

ceptible, Preclinical, Clinical, Treatment, Remission, and Death over time.
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FIGURE 4. Size of the susceptible women with σ = 0.2,0.4,0.6,0.8,1
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FIGURE 5. Size of the Preclinical women with σ = 0.2,0.4,0.6,0.8,1
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FIGURE 6. Size of the clinical women with σ = 0.2,0.4,0.6,0.8,1
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FIGURE 7. Size of the Treatment women with σ = 0.2,0.4,0.6,0.8,1
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FIGURE 8. Size of the Remission women with σ = 0.2,0.4,0.6,0.8,1
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FIGURE 9. Size of the Death women with σ = 0.2,0.4,0.6,0.8,1

Figure 4 shows a gradual decline in the susceptible population over time, with slower de-

creases observed at lower fractional orders σ = 0.2,0.4. Higher fractional orders σ = 0.8,1

result in a steeper decline, reflecting more rapid transitions out of the susceptible compartment

due to the disease’s progression. In Figure 5, we observe that the preclinical compartment peaks
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initially before declining, demonstrating the transition from undiagnosed cases to diagnosis and

subsequent treatment. Higher fractional orders σ = 0.8,1 result in faster transitions, shortening

the time preclinical cases remain undetected.In Figure 6, we observe that the clinical com-

partment increases and then stabilizes or decreases depending on the fractional order. Faster

progression (higher σ ) leads to quicker movement to treatment or death, reflecting the efficacy

of diagnosis and therapy. In Figure 7, the treatment compartment experiences a steady increase

and then stabilizes, with the rate of stabilization varying by σ . Higher fractional orders signify

more women being treated earlier, showcasing the model’s ability to simulate improved inter-

vention timelines. In Figure 8, we note that the remission compartment grows over time, with

higher σ leading to earlier and larger accumulations of women achieving remission. This trend

underscores the model’s potential for evaluating treatment efficacy and recovery rates. Finally,

in Figure 9, we observe that the death compartment shows a gradual increase over time, with

lower σ leading to slower growth. This trend indicates that fractional dynamics can delay or

accelerate mortality, reflecting the interplay between diagnosis, treatment success, and disease

severity.

Figures 10, 11, 12, and 13 present the temporal dynamics of the model’s compartments

grouped as ”active states” (Preclinical, Clinical, Treatment, and Remission) and ”extreme

states” (Susceptible and Death). They compare these dynamics under fractional orders σ = 0.5

and σ = 1 to highlight the effects of fractional calculus on population transitions.
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FIGURE 10. All states except S and D when σ = 0.5
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FIGURE 11. All states except S and D when σ = 1
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In Figure 10, we observe that the Preclinical state peaks first, followed by peaks in Clini-

cal and Treatment states, with the Remission state showing a continuous rise. This indicates

a slower disease progression and prolonged transitions between compartments due to the frac-

tional dynamics at σ = 0.5. In Figure 11, for σ = 1, the transitions between states are quicker,

leading to earlier stabilization of the active compartments. This reflects a scenario with more

deterministic dynamics where intervention measures are implemented more efficiently. In Fig-

ure 12, the susceptible population decreases gradually, while the death state grows steadily but

remains subdued, reflecting slower disease spread and mortality under fractional dynamics at

σ = 0.5. In Figure 13, the susceptible population shows a steeper decline, while the death com-

partment grows faster than in Figure 12. This highlights the impact of integer-order dynamics

σ = 1 in accelerating disease progression and mortality.

6. CONCLUSION

This study presents a fractional-order mathematical model for breast cancer progression

within the healthcare system of Jordan, incorporating compartments for different disease stages.

The model leverages fractional calculus to capture non-linear dynamics and long-memory ef-

fects, providing a realistic representation of disease behavior. Stability analysis confirms the

model’s capability to predict disease-free and endemic equilibrium points. Numerical findings

demonstrate the impact of key parameters, including fractional order, on population dynamics

across compartments. The results highlight the potential of early diagnosis and effective treat-

ment to reduce disease burden. The flexibility of fractional-order models makes them valuable

for understanding complex biological systems and optimizing healthcare strategies. This work

provides insights for policymakers to enhance resource allocation and intervention planning for

breast cancer management.
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