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Abstract: The functionality of a statistical framework for unified multivariate vital signs data fusion is seen; its 

flexibility for switching between the two data spaces. This paper develops data recovery methods for data fusion built 

on composite similarity measures using three distinct variable specific weighting methods - mean, median, and 

Orthogonalized Gnanadesikan-Kettenring (OGK). Using spatial covariance parameters derived from empirical patient 

data, the method successfully exhibits the ability to accurately recover eight different vital signs from its fused 

counterpart. Performance evaluation using Root Mean Squared Recovery Error (RMSRE), Root Mean Absolute 

Recovery Error (RMARE), and Root Standardized Mean Absolute Fusion Error (RSMARE) demonstrated that all 

three weighting approaches achieved comparable and highly accurate results, with parameters converging within 

±0.01 of 1.0. The recovered signals closely matched the original data patterns, preserving both long-term trends and 

short-term fluctuations. Notably, the method proved computationally efficient and robust across different weighting 

approaches, suggesting broad applicability in clinical settings. This approach offers a promising solution for 

dimensionality reduction in complex physiological datasets while maintaining clinical relevance, with potential 

applications in patient monitoring systems and physiological modelling. 
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1. INTRODUCTION 

In contemporary healthcare systems, physiological vital sign monitoring has grown more and more 

important, especially in critical care units and situations involving remote patient monitoring. 

However, different kinds of noise, sensor malfunctions, and missing data frequently affect the 

accuracy and dependability of these measures, which can have a big influence on clinical decision-

making [1]. The human body's intricate systems are deeply interconnected, with vital organs 

working in concert to maintain homeostasis. This interconnectedness suggests that a more holistic 

approach to vital sign analysis could yield deeper insights into a patient's overall health status. By 

merging data from several sensors or data sources, data fusion techniques have become effective 

tools for overcoming these obstacles and producing more reliable and precise measurements [2], 

[3], [4], [5]. 

Traditional data fusion approaches, while effective in many scenarios, often struggle with the 

complex, non-linear relationships inherent in physiological signals. Moreover, these methods 

frequently rely on strict mathematical models that may not fully capture the intricate dynamics of 

biological systems [5], [6]. The need for more adaptive and empirically driven approaches has 

become apparent, especially when dealing with composite similarity measures that can better 

represent the multifaceted nature of physiological data [4]. 

From image processing to financial forecasting, recent developments in similarity-based fusion 

approaches have demonstrated encouraging outcomes in a variety of fields [7], [8], [9]. However, 

because of the temporal character of the data, the existence of artifacts, and the crucial significance 

of real-time processing in clinical settings, their application to physiological vital signs poses 

difficulties [10], [11]. Furthermore, complex techniques that can preserve signal integrity while 

successfully recovering missing or corrupted data points are needed for the integration of several 

vital signs, each of which has unique patterns and noise profiles.  

Early work in physiological data recovery primarily relied on statistical methods and interpolation 

techniques. [12] proposed basic linear interpolation methods for handling missing vital sign data, 

though these approaches often failed to capture the complex temporal dependencies in 

physiological signals. [13] advanced this field by introducing polynomial interpolation methods, 

demonstrating improved accuracy in heart rate variability analysis. 
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Recent developments have shifted toward more sophisticated empirical approaches. The landmark 

work by [14] introduced empirical mode decomposition (EMD) for physiological signal 

reconstruction, showing particular effectiveness in handling non-linear and non-stationary data. 

[15] further refined this approach by incorporating adaptive threshold techniques, achieving a 

remarkable improvement in recovery accuracy compared to traditional methods. 

The evolution of similarity measures has been crucial in fusion applications. Research by [1] 

established the foundation for composite similarity metrics, combining multiple features to 

improve fusion accuracy. Their work demonstrated an incredible improvement in fusion accuracy 

compared to single-feature approaches. 

This paper presents a novel empirical data recovery method specifically designed for composite 

similarity-based fusion of physiological vital signs. Our approach leverages the inherent 

relationships between different vital signs while accounting for their individual characteristics and 

measurement uncertainties.  

2. MATERIALS AND METHODS 

Data 

The data example here is based on the traumatic vital sign data employed by [16]. The data was 

sourced from the Komfo Anokye Teaching Hospital (KTH). We used a de-identified subset 

characterized by variables RR (Respiratory Rate), HR (Heart Rate), SBP (Systolic Blood Pressure), 

DBP (Diastolic Blood Pressure), TEP (Temperature), SPO2 (Oxygen Saturation), RBS (Random 

Blood Sugar), and MAP (Mean Arterial Pressure), of dimension 4064 × 8. 

Data fusion recovery model 

For correlated vital sign data generated by random variables 
1 2, , , qy y y , associated with time 

reference 
1 2, , , nt t t , [16] proposed a fusion approach for generating one-dimensional response 

say y  for easy modelling with the associated uncorrelated predictors. According to [16], based on 

the interrelationships, a mixture type model of the form (1)   

( )
1

                                                           (1)
q

i ij ij

j

y s y
=

=  
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where ( )ijs y  are original data based statistics and θ corresponding to weights allowing the data to 

adopt to data generating conditions to be naturally considered. The choice of statistic opens doors 

for exploration of various features of y in extracting tractable versions in the response. We 

modelled θ non-linearly using the Gaussian process ideas to allow more flexibility in adopting data 

to assumptions [17]. In particular, the weights were computed by considering them as either the 

mean or median or Orthogonalized Gnanadesikan Ketterning (OGK) [18], [19], of all the possible 

point-wise similarity metrics a given point has with all possible observation within a given data 

say, y. For example, θ11, with the mean measure is computed as 

( ) ( )11 1 2 3 1 2 3 1 1 11 1 1

1

1
, , , , , , ,  ,                                              (2)

n

l l l
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k a a a b b b y y
n

    −

=

= =  

By (2), a corresponding OGK θ11 is computed as 
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where b = 4.5, 
0  and 

0 denote the median and median absolute deviation (MAD) of 
1 j  

respectively. We considered 
ijy  as the fusion statistics for ( )ijs y  in model (1) where 

 1 1 12 13 1, , ,l ny y y y− =  and 

  ( ) ( ) ( ) ( )1 2 3 1 2 3 1 1 1 2 2 2 3 3 3, , , , , , , , , , , ,                 (4)k a a a b b b k a b k a b k a b   = + +  
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( ),i j i jy y y y = = −   define the spatial similarity measure. The parameters 
1 2 3 1 2, , , , ,a a a b b  

3and b  were empirically estimated via statistics 

  
( )

( )
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where (1),  (2), , ( )n    are the order statistics of 
2

( )
,  (y), and ( )

y
y

m


  =  are the mean and 

median of ( )y respectively. The ( )y  statistic is defined as  

   ( ) ( ),  2,                                                       (5)ky y h y k = =  

motivated by (4), 

   ( ) ,                                                             (6)k kE Y y h y dy  =    

where ( )h y  is the Kernel density (Scott, 2015, Silverman, 1986) of y  given by 

   
1

1
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Vital sign data recovery model 

Based on model (1), we can write  

1 1

2

( ) ( )                                                          (8)
q
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Solving for 
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where 1

1 1

2

( )
q

i i ij ij

j

s y  −

=

=   can be viewed as error due to the inclusion of 1q −  components 

(variables). the total error incurred in covering up the contributions from the remaining variables. 

Applying (9), 
( ) ( ) ( )2 3,  , ,i i iqs y s y s y

 can be derived sequentially. However, this approach may 

incur some computational burden for large n and q. An alternative approach can be derived by 

examining the components that constitute the y . This view becomes clear with the expansion of 

model (1), using a special matrix-vector system in which element-wise operation is utilized in 

order to preserve observation order and other vital original data features. Considering model (1) 

in its expanded form, reflecting the data components yields 

11 11 1 1 11 1 11 1
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Then by matching each column of A with y , intuitively, a simple quantification of how much of 

each column is in y   can be established. This generates a simplistic approach for formulating 

recovery models that may be faster than solving the system of equations. Thus, for the jth vital 

sign variable, 
jy  with statistic ( ) ,js y  the recovery model can be expressed as 

      
1( ) .                                                                (12)j js y y −=  



7 

DATA RECOVERY METHODS IN COMPOSITE SIMILARITY-BASED DATA FUSION 

where ( ) ( ) ( ) ( )1 2, , , ,j j j njs y s y s y s y =
   1 2, , , ,j j j nj    =    1,2, , .j q=  

( )1ˆ( ) ,   s .                                                       (13)j j j j j js y y y y −= =  

The computational expenses associated with the use of equation (13) will be relatively cheaper 

than that of equation (9).  

Recovery performance evaluation 

The quality of data recovery methods can be assessed as in the usual model fitting performance 

evaluations by considering the recovered data as the fitted and comparing it with the truth. With 

this view the usual measures of model fit becomes applicable and useful within the data fusion 

framework. In some cases, statistical measure of fit may not fully satisfy model evaluation 

purposes, thus can be complicated with some relative efficiency measures. For the assessment here, 

we define in addition to measures of fit, we device some relative efficiency measure. The fusion 

data recovery error statistics considered are the Root Mean Squared Recovery Error (RMSRE), 

Root Mean Absolute Recovery Error (RMARE) and Root Standard Mean Absolute Recovery Error 

(RSMAFE) defined for true data y and its recovered counterpart, ŷ  as follows. 
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In terms of recovery efficiency, we define statistics of the form  
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3. RESULTS AND DISCUSSION 

We examine the evaluation of our proposed empirical data recovery method for composite 

similarity-based fusion of physiological vital signs. We look at the recovered data based on two 

models (9 and 13), using three distinct weighting schemes: mean, median and OGK. Figures 1-6 

show the recovery results using the mean, median, and the OGK weighting method with the 

recovered data showing in red while the true data is in black lines. The first three (Figures 1-3) 

show the recovery using Model (9) and remaining three with Model (13). The visual comparison 

of the recovered data against true values for eight physiological vital signs demonstrated strong 

recovery capabilities. The result from the Figures 1-3 and 4-6 is evident that the three weighting 

methods (mean, median, OGK) as well as the two models perform well in recovering the original 

data patterns. The recovered data closely follows the true data for all 8 vital signs, preserving both 

the overall trends and the short-term fluctuations. Although there are some minor differences in 

recovery performance across different vital signs and weighting methods, but these differences 

appear to be small and insignificant. This is an indication that the proposed fusion and recovery 

method can effectively compress multiple vital signs into a single composite measure and then 

recover the individual signals with high reliability. 

 

Figure 1: Model (9): Recovered data based on mean weighting. Black: True data y and red: 

recovered data. From 1 to 8 are plots of RR, HR, SBP, DBP, TEP, SPO2, RBS, and MAP 

respectively 
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Figure 2: Model (9): Recovered data based on median weighting. Black: True data y and red: 

recovered data. From 1 to 8 are plots of RR, HR, SBP, DBP, TEP, SPO2, RBS, and MAP 

respectively 

 

Figure 3: Model (9): Recovered data based on OGK weighting. Black: True data y and red: 

recovered data. From 1 to 8 are plots of RR, HR, SBP, DBP, TEP, SPO2, RBS, and MAP 

respectively 
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Figure 4: Model (13): Recovered data based on mean weighting. Black: True data y and red: 

recovered data. From 1 to 8 are plots of RR, HR, SBP, DBP, TEP, SPO2, RBS, and MAP 

respectively 

 

 

Figure 5: Model (13): Recovered data based on median weighting. Black: True data y and red: 

recovered data. From 1 to 8 are plots of RR, HR, SBP, DBP, TEP, SPO2, RBS, and MAP 

respectively 
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Figure 6: Model (13): Recovered data based on OGK weighting. Black: True data y and red: 

recovered data. From 1 to 8 are plots of RR, HR, SBP, DBP, TEP, SPO2, RBS, and MAP 

respectively 

Table 1 compares the fusion error statistics for different weighting methods namely the Mean, 

Median, and OGK weights for both models. The error statistics are reported using Root RMSRE, 

RMARE, and RSMARE. 

Table 1: Recovery error statistics across weights 

 Fusion weight 

 Model (9) Model (13) 

Error Statistics Mean Median OGK Mean Median OGK 

RMSFE 0.7308 0.7308 0.7308 0.7308 0.7308 0.7308 

RMAFE 0.7308 0.7308 0.7308 0.7308 0.7308 0.7308 

RSMAFE 7.2003 7.2003 7.2003 7.2003 7.2003 7.2003 
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Interestingly, both models showed identical performance across all weighting schemes. The 

RMSFE and RMAFE were both 0.7308 and RSMAFE was 7.2003 across both models. The 

consistency of these values across different weighting schemes suggests that the choice of 

weighting method does not significantly impact recovery accuracy. 

Figures 7-12 shows the nature of recovery efficiency statistic, γ using the mean, median, and the 

OGK weighting scheme for both models. The close convergence of all parameters around 1.0 

(within ±0.01) is an indication of a very high confidence in the recovered signals. That is, for 

medical applications where precision is critical, the recovery process is steady and well-calibrated. 

This level of precision indicates that the recovery process is sure and consistent across different 

measurements. For medical monitoring, this level of convergence suggests the recovered vital 

signs can be trusted for clinical decision-making.  

The computational efficiency analysis (Table 2) showed that both models are highly efficient, with 

most operations completing in negligible time (≈0.00 seconds). This exceptional computational 

efficiency makes both models suitable for real-time medical monitoring applications. 

 

 

Figure 7: Model (9): Nature of recovery efficiency statistic, γ using Mean weighting scheme 
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Figure 8: Model (9): Nature of recovery efficiency statistic, γ using Median weighting scheme 

 

 

Figure 9: Model (9): Nature of recovery efficiency statistic, γ using OGK weighting scheme 
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Figure 10: Model (13): Nature of recovery efficiency statistic, γ using Mean weighting scheme 

 

 

Figure 11: Model (13): Nature of recovery efficiency statistic, γ using Median weighting scheme 
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Figure 12: Model (13): Nature of recovery efficiency statistic, γ using OGK weighting scheme 

 

 

 

Table 2: Computational Time for Model (9) and Model (13) 

 Fusion weight 

 Model (9) Model (13) 

Error Statistics t (sec) t (sec) t (sec) t (sec) t (sec) t (sec) 

Mean 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 0.00 

OGK 0.00 0.00 0.00 0.00 0.00 0.00 

The proposed method demonstrates a strong ability to recover fused multiple physiological vital 

signs from a single composite measure. This is evidenced by the low error statistics (RMSRE, 

RMARE, RSMARE) for the mean, median, and OGK weighting methods shown in Table 1. The 

fact that these three weighting methods produce identical error statistics suggests a robust recovery 

process that is not overly sensitive to the choice of weighting method. Again, Figures 1-6 visually 

confirm the high-quality recovery of individual vital signs from the fused composite measure. The 

recovered data (red lines) closely follow the original data (black lines) for all eight vital signs, 

regardless of the weighting method used (mean, median, or OGK). This demonstrates the method's 

ability to preserve essential information from each vital sign during the recovery process. 
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Also, the similar performance of mean, median, and OGK weighting methods suggests that the 

recovery approach is flexible and can adapt to different data characteristics. This could be 

particularly valuable when dealing with physiological data that may have outliers or non-normal 

distributions. Lastly, the proposed approximate recovery model is computationally efficient while 

still providing accurate results. This could be advantageous in real-time monitoring situations 

where quick data processing is crucial. The recovery method preserves both long-term trends and 

short-term fluctuations in the vital signs. This is critical for maintaining the clinical relevance of 

the recovered data. Also, dimensionality is crucial when dealing with multivariate data. By 

successfully fusing multiple vital signs into a single composite measure, this method offers a way 

to reduce the dimensionality of complex physiological datasets without significant loss of 

information. 

4. CONCLUSION 

The empirical data recovery method for composite similarity-based fusion presented in this study 

demonstrates a promising approach for handling multivariate physiological vital sign data. The 

method effectively recovers fused multiple vital signs that is in a single composite measure. It 

really allows for accurate recovery of individual vital signs from the fused measure, preserving 

important clinical information. In addition, it shows robustness across different weighting methods 

(mean, median, OGK), suggesting broad applicability to various types of physiological data. The 

method's ability to switch between multivariate and univariate representations offers flexibility in 

data analysis and modelling approaches. These results suggest that this recovery method could 

have valuable applications in clinical settings, particularly in areas such as patient monitoring, 

early warning systems, and physiological modelling. The ability to work with a simplified, fused 

representation of multiple vital signs while retaining the option to recover individual signals could 

streamline data processing and analysis in healthcare applications. 
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