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Abstract. Bronchial cancer is considered the leading cause of cancer-related mortality worldwide, in comparison

to survival rates of other cancer types. Lung cancer treatments aim to eliminate cancer cells, destroy them, or

prevent cancer cell division, using approaches such as immunotherapy. Despite the relatively better effectiveness

and tolerability of immunotherapy compared to other treatments, severe side effects related to liver dysfunction,

known as hepatotoxicity, can occur in patients. In this study, we evaluated the response of patients with non-small

cell lung cancer (NSCLC) to this treatment. These responses are modeled by a system of differential equations

based on cancer stage changes, which we analyzed both analytically and numerically. The study methodology en-

compasses model construction, establishing the existence and uniqueness of the solution, identifying equilibrium

points, analyzing stability of equilibrium points using Routh-Hurwitz Criteria, and numerical simulations. The

conducted dynamic analysis resulted in determining an asymptotically stable equilibrium point without any pre-

requisite conditions. The results of the analysis are validated using numerical simulations. This study can serve as

an early prediction of cancer progression within a hospital population undergoing immunotherapy. Its objective is

to monitor the disease’s behavior over time and to visualize the potential impact of this treatment on the incidence

of hepatotoxicity in these patients.
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1. INTRODUCTION

Lung cancer, frequently referred to as bronchial cancer, is the leading cause of cancer-related

deaths worldwide, where approximatly 85 % of all cases are attributed to smoking as the pri-

mary factor [1]. It develops and evolves from cells present in lung tissue. This occurs when

abnormal lung cells start to multiply in an unregulated and mutated fashion, leading to the for-

mation of cancerous cells. These cells proliferate uncontrollably and damage the surrounding

healthy lung tissue harm. This unregulated expansion has the potential to extend to nearby tis-

sues, lymph nodes, or other remote regions of the body. Broadly, lung cancer can be categorized

into two primary groups: non-small cell carcinoma (NSCLC) and small cell carcinoma (SCLC).

NSCLC is the most common type accounting for 85 to 90 percent of cases, it is more prevalent

and typically exhibits a slow development. On the other hand, SCLC, although less common,

tends to progress rapidly, making it a more aggressive form of the disease [2]. In this paper, our

focus is on non-small cell lung cancer.

Once the type of lung cancer has been identified, the subsequent phase in the diagnostic

process is staging, which involves utilizing a combination of test results and tissue samples

(physical exam, blood tests, imaging tests, or a biopsy,...) to accurately determine the stage of

lung cancer. Staging is pivotal in formulating the recommended treatment plan. Furthermore,

the stage of lung cancer is instrumental in discussing the overall prognosis for recovery. Medical

professionals can estimate the prognosis by drawing upon the experiences of individuals with

the same type and stage of cancer. It is crucial to recognize that predicting how cancer will

respond to treatment is uncertain because each individual responds differently. No doctor can

precisely predict the lifespan of a person diagnosed with lung cancer [3]. Different staging

systems are used for various types of cancer. The TNM staging system created and managed by

the American Joint Committee on Cancer (AJCC) [4] and the Union for International Cancer

Control (UICC) [5], is the utilized staging system for NSCLC. T stands for tumor’s size and

where it’s located in the lungs or body. N stands for node involvement, this means whether
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or not the cancer has spread to the nearby lymph nodes the lungs. M stands for metastasis,

this means whether or not the cancer has spread to distant organs such as the other lung, liver,

bones, brain, kidneys, or other parts of the body. The stage of the lung cancer is determined

by a combination of all of these factors. The grade is usually assigned a number from 1 to 4.

A higher number indicates denotes a faster pace of growth and a larger difference between the

appearance of cancer cells and healthy cells [6]. Therefore, the more advanced the stage, the

less chance of recovery.

The Treatment of lung cancer depends on the type and spread of the disease. Patients with

non-small cell lung cancer can be treated by using diverse therapeutic approaches: surgery,

chemotherapy, radiation therapy, targeted therapy, hormone therapy, immunotherapy, or a com-

bination of these treatments. These anticancer therapies are used to eliminate, eradicate, or

prevent cancer cells by interfering with their signals for cellular proliferation.

Usually, when our immune system functions properly, it has the ability to detect and destroy

cancer cells. However, some cancer cells manage to evade detection by our immune system

to avoid elimination. They then undergo transformation, adapt to their environment to exploit

it to their advantage, and continue their abnormal and uncontrollable multiplication, leading to

the formation of a malignant tumor. Over the past decade, cancer immunotherapy, also known

as immuno-oncology, has revolutionized the therapeutic arsenal in oncology by activating and

stimulating the patient’s immune system, which was paralyzed by the tumor, thereby rendering

it active again [7]-[8]. Indeed immunotherapy medications for lung cancer aid the body in

identifying the cancer as foreign and harmful, enabling the body to combat it and get rid of the

cancer cells.

The notable progress in immunotherapy for lung cancer primarily focus on immune check-

point inhibitors. Immune checkpoints are molecules located on immune cells that can trigger

or halt an immune response. The immune system uses these molecules to differentiate what is

normal from what needs to be attacked. In some cases, cancer cells are able to trick the immune

system by exposing these checkpoints, thereby protecting them from attack by the body. Im-

munotherapy drugs are specially designed to counteract this deception of the immune system

and encourage a response directed against cancerous cells [9]. Under normal circumstances,
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the PD-L1 protein (Programmed cell Death-Ligand 1), present on the surface of cells, can inter-

act with PD-1 (Programmed cell Death-1), a receptor located on the surface of T lymphocytes

(immune cells). This PD-L1/PD-1 interaction has a normal regulatory function in the body,

preventing excessive or inappropriate immune responses. In the context of cancer, some cancer

cells can express the PD-L1 protein. These cells bind to the PD-1 receptors on T lympho-

cytes, preventing them from activating and destroying tumor cells. Consequently, cancer cells

evade recognition by the immune system and can proliferate. This constitutes a mechanism

of immune system evasion, as the PD-L1/PD-1 interaction can induce inhibition of T lympho-

cytes, preventing them from targeting and attacking cancer cells. Many of these drugs, currently

approved by the U.S FDA (United States Food and Drug Administration) for lung cancer treat-

ment, block or ”inhibit” the interaction between the PD-L1 protein of cancer cells and the PD-1

receptor of immune cells [10]. Disrupting the PD-L1/PD-1 interaction enhances the ability of

T lymphocytes to recognize cancer cells and initiate an immune response. This reactivation

revitalizes immune cells and fortifies the immune system, aiding in the recognition and combat

of cancer cells. Approved medications target either the PD-L1 protein or the PD-1 receptor,

citing Pembrolizumab, Nivolumab and Atezolizumab as examples. Regardless of their target,

they share the same goal to block or ’inhibit’ the interaction between the PD-L1 protein and the

PD-1 receptor on T lymphocytes. This reactivates T cells and revitalizes the immune system,

helping it to combat cancer [9]-[11].

Immunotherapy, is generally better tolerated in comparison to other traditional and classi-

cal treatments in terms of adverse sides effects [12]. Nevertheless, the use of immunotherapy

treatment of non-small cell lung cancer may still result in various adverse sides effects different

from conventional therapies, including hepatotoxicity, which has been observed in a consider-

able number of patients undergoing this treatment [13]-[14]-[15]-[16]-[17]-[18]-[19].

Mathematical modeling is a versatile computational language employed to depict reality by

utilizing mathematical structures and equations. In the context of disease modeling in general,

it is frequently utilized to evaluate treatment responses, especially within infectious and onco-

logical scenarios, aiming to predict potential outcomes of specific treatments, offering valuable
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insights into the dynamics of diseases and the efficacy of different drugs [20]-[21]–[29]. Dur-

ing recent studies in the mathematical modeling of lung cancer, several research efforts are

centered on analyzing tumor growth to enhance and deepen our understanding of the cancer

development dynamics, particularly the interplay between cancer cells and immune cells within

the tumor microenvironment to define tumor immune dynamics [22]-[23].Furthermore, other

studies rely on mathematical modeling of fractional order applied to lung cancer. Several math-

ematical models have proposed new fractional modeling approaches to describe the growth and

spread of cancer [24]-[25]. Other studies also explore fractional methods to examine the effects

of chemotherapy on the growth of cancer cells, taking into consideration the interactions be-

tween cancer cells, chemotherapy drugs, and immune cells [26]-[27]. At present, the utilization

of mathematical modeling for lung cancer is undergoing significant development. This progress

reflects the ongoing research efforts aimed at refining and developing mathematical approaches

to understand the complex mechanisms involved in the development and progression of lung

cancer. These endeavors contribute to enhancing the precision of existing mathematical models

and offering new perspectives for a more comprehensive characterization of the different stages

of the disease.

Currently, there is no study exploring the mathematical model of immunotherapy in patients

with non-small cell lung cancer (NSCLC) at the scale of the population affected by this type

of cancer. Taking these considerations into account, in this study, we address a mathematical

model of immunotherapy at the population level for non-small cell lung cancer, where patient

grouping is based on the stage of cancer detected initially. The cancer can progress from one

stage to another as the tumor advances and treatment is administered. In section 2 of the ar-

ticle, we outline the design of the proposed model for non-small cell lung cancer, taking into

account the adverse effect of immunotherapy treatment on the liver, thereby introducing a dis-

ease known as hepatotoxicity. We describe the movements of patients between compartments

and formalize them using ordinary differential equations. In section 3, the proposed lung cancer

model undergoes a thorough analysis using mathematical tools. We demonstrate the existence

and uniqueness of the solution of the formulated model using the Cauchy-Schwartz theorem.

Then, we establish the existence and stability of equilibrium points using the Routh-Hurwitz
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criterion. The dynamics of the proposed lung cancer model are further explored by numerically

varying different input parameters noted in section 4.

2. MODEL FORMULATION

In this model, we consider a population of non-small cell lung cancer patients in a hospital.

At the time of the first medical report, the entire patient population is classified into subpopu-

lation corresponding to stage 1, stage 2, stage 3, or stage 4 . In addition, it was assumed that

all patients were treated with immunotherapy treatment (Pembrolizumab, Nivolumab, and Ate-

zolizumab), during which patients passed through different phases of treatment, during which

some patients recovered, others worsened and others developed hepatotoxicity. The model is

represented by a six-subpopulation compartment model, comprising four stages of non-small

cell lung cancer compartments represented by the variables A, B, C and D, one compartment

for cured patients (disease-free) indicated by E and one compartment containing patients who

experienced hepatotoxicity during the immunotherapy process denoted by the variable H. As

illustrated in the diagram below in FIGURE 1.

FIGURE 1. Diagram depicting the compartmental model of Non-Small Cell

Lung Cancer
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Parameter Meaning

ηi Number of new patients diagnosed with stage i of lung cancer where i=1,2,3,4

γ2 Mortality rate of hepatotoxicity patients

γ3 Mortality rate of stage 3 lung cancer patients

γ4 Mortality rate of stage 4 lung cancer patients

µAB The transition rate from stage 1 to stage 2

µBC The transition rate from stage 2 to stage 3

µCD The transition rate from stage 3 to stage 4

µAE Rate of stage 1 patients achieving a complete response to treatment

µBE Rate of stage 2 patients achieving a complete response to treatment

µCE Rate of stage 3 patients achieving a complete response to treatment

µDE Rate of stage 4 patients achieving a complete response to treatment

µEC Rate of disease-free patients returning to stage 3

µED Rate of disease-free patients returning to stage 4

µCH Rate of stage 3 cancer immunotherapy patients who presented hepatotoxicity

µDH Rate of stage 4 cancer immunotherapy patients who presented hepatotoxicity

µEH Rate of disease-free patients with hepatotoxicity

Patients who have received initial treatment and been diagnosed with stage 1 lung cancer

are classified in subpopulation A with an η1 rate. These patients face two possible outcomes:

they can either recover with a recovery rate µAE or encounter the most unfavorable option

disease progression, leading them to advance to stage B, governed by µAB rate. The previously

mentioned information is illustrated by the following equation:

(1)
dA
dt

= η1−µABA−µAEA

Patients who have been diagnosed with stage 2 lung cancer are bundled to subpopulation B

by an η2 rate. These patients also face two probable scenarios: they can either recover with

a recovery rate µBE , or suffer the most unfavorable course of the disease, which results in a

transition to stage C with a rate of µBC. The discussion above is depicted by the following



8 SIHAM DAOUANE, MARYEM EL KARCHANI, NADIA IDRISSI FATMI

equation:

(2)
dB
dt

= η2 +µABA−µBCB−µBEB

Patients diagnosed with stage 3 lung cancer are grouped into subpopulation C with η3 rate.

These patients may face mortality of disease, leading to a γ3 mortality rate. Following im-

munotherapy treatment with Pembrolizumab, they have the potential to recover from the dis-

ease with an µCE cure rate. However, they may also experience a deterioration in their state,

progressing from stage C to stage D, with a µCD rate. Due to the severity of stage 3, patients

in this category have undergone a more intensive dose Pembrolizumab treatment than those in

subpopulations A and B, which can result in hepatotoxicity with a µCH rate among stage C pa-

tients. The previously mentioned discussion can be formulated by the following mathematical

equation:

(3)
dC
dt

= η3 +µBCB+µECE−µCDC−µCEC−µCHC− γ3C

Patients diagnosed with stage 4 lung cancer are categorised as a part of the group of subpop-

ulation D with a rate of η4. These individuals may experience disease-related deaths, resulting

in a mortality rate of γ4. The cure of the disease is possible after immunotherapy with pem-

brolizumab, with a cure rate of µDE . This group of patient got more intense treatement with

Pembrolizumab than the others subpopulations and may have experienced hepatotoxicity with

µDH rate. The differential equation governing the population dynamics in this compartment is

provided by:

(4)
dD
dt

= η4 +µCDC+µEDE−µDED−µDHD− γ4D

The rate of disease-free in sub-population E is translated by The augmentation of patients

in sub-populations A, B, C, and D. The duration of this disease-free state can be indefinite or

short-term. Should this state persist indefinitely, then patients in the sub-population E can return

to be sub-populations of B and C with their respective rates µEC and µED. Subsequently, we

can express this discussion through the mathematical equation provided below:

(5)
dE
dt

= µAEA+µBEB+µCEC+µDED−µEHE
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Pembrolizumab-induced hepatotoxicity in patients following the treatment may face a risk

of hepatic death with γ2 rate. In view of the fact that the treatment dosage can impact the

hepatotoxicity of pembrolizumab, there is an increased likelihood of patients in compartments

C, D and E developing hepatic toxicity with rates µCH , µDH and µEH . This is illustrated by the

mathematical expression provided by:

(6)
dH
dt

= µCHC+µDHD+µEHE− γ2H

Using equations (1) to (6) which describe the dynamics of patients moving between compart-

ments, a system of differential equations is formed:

(7)



dA
dt = η1−µABA−µAEA

dB
dt = η2 +µABA−µBCB−µBEB

dC
dt = η3 +µBCB+µECE−µCDC−µCEC−µCHC− γ3C

dD
dt = η4 +µCDC+µEDE−µDED−µDHD− γ4D

dE
dt = µAEA+µBEB+µCEC+µDED−µECE−µEDE−µEHE

dH
dt = µCHC+µDHD+µEHE− γ2H

with the non-negative initial conditions:

A(0) = A0; B(0) = B0; C(0) =C0; D(0) = D0; E(0) = E0 and H(0) = H0.

3. MATHEMATICAL ANALYSIS OF THE MODEL

3.1. Existence and uniqueness: we represent the model (7) in the format provided by:

dA
dt = ϕ1(t,A,B,C,D,E,F)

dB
dt = ϕ2(t,A,B,C,D,E,F)

dC
dt = ϕ3(t,A,B,C,D,E,F)

dD
dt = ϕ4(t,A,B,C,D,E,F)

dE
dt = ϕ5(t,A,B,C,D,E,F)

dH
dt = ϕ6(t,A,B,C,D,E,F)

Note that the above system is a Cauchy problem that we can express in the following form:
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(8)


x′(t) = ϕ(t,x(t))

x(0) = x0

where:

x(t) =



A(t)

B(t)

C(t)

D(t)

E(t)

H(t)


and ϕ(t,x(t)) =



ϕ1(t,x(t))

ϕ2(t,x(t))

ϕ3(t,x(t))

ϕ4(t,x(t))

ϕ5(t,x(t))

ϕ6(t,x(t))


Theorem 3.1. For any non-negative initial condition, the system (7) has a unique solution for

all time t>0.

Proof. To establish the existence and uniqueness of the solution to the differential system

(7), we rely on the Cauchy-Lipschitz theorem. Initially, the (ϕi)i=1,..,6 functions exhibit local

continuity on R, and they are lipcshitizian. Indeed:

|ϕ1(t,A1,B,C,D,E,H)−ϕ1(t,A2,B,C,D,E,H)| ≤ δ1 |A1−A2|

|ϕ2(t,A,B1,C,D,E,H)−ϕ2(t,A,B2,C,D,E,H)| ≤ δ2 |B1−B2|

|ϕ3(t,A,B,C1,D,E,H)−ϕ3(t,A,B,C2,D,E,H)| ≤ δ3 |C1−C2|

|ϕ4(t,A,B,C,D1,E,H)−ϕ4(t,A,B,C,D2,E,H)| ≤ δ4 |D1−D2|

|ϕ5(t,A,B,C,D,E1,H)−ϕ5(t,A,B,C,D,E2,H)| ≤ δ5 |E1−E2|

|ϕ6(t,A,B,C,D,E,H1)−ϕ6(t,A,B,C,D,E,H2)| ≤ δ6 |H1−H2|

Where:

δ1 = µAB +µAE ; δ2 = µBC +µBE ; δ3 = µCD +µCE +µCH + γ3

(9) δ4 = µDE +µDH + γ4; δ5 = µEC +µED +µEH ; δ6 = γ2

The associated proof establishes that ϕ satisfies the conditions of the Cauchy-Lipschitz theorem;

thereby ensuring the existence of a unique solution for the model (7).
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3.2. Equilibrium Point.

Theorem 3.2. For all positive initial conditions, the equilibrium points of the system of non

small cell lung cancer exist without any specific condition.

Proof. The equilibrium points are determined by equating the system’s equations (7) to zero:

(10)



η1−δ1A = 0

η2 +µABA−δ2B = 0

η3 +µBCB+µECE−δ3C = 0

η4 +µCDC+µEDE−δ4D = 0

µAEA+µBEB+µCEC+µDED−δ5E = 0

µCHC+µDHD+µEHE−δ6H = 0

Where the parameters δ1, δ2, δ3, δ4, δ5, and δ6 are defined in (9) above.

After performing calculations by eliminating certain terms and substituting others, we result a

unique equilibrium point Peq = (Aeq,Beq,Ceq,Deq,Eeq,Heq). Where:

Aeq =
η1

δ1
, Beq =

α

δ1δ2
, Ceq =

β

δ1δ2δ3
+

µEC

δ3
Eeq

(11) Deq =
ν

δ1δ2δ3δ4
+

(
σ

δ3δ4

)
Eeq, Eeq =

θ

ρ
, Heq =

ρ

δ1δ2δ3δ4δ6
+

(
ξ

δ3δ4δ6
Eeq

)
And,

α = δ1η2 +µABη1

β = δ1δ2η3 +µBC(δ1η2 +µABη1)

ν = δ1δ2δ3η4 +µCD(δ1δ2η3 +µBC(δ1η2 +µABη1))

σ = µCDµEC +δ3µED

θ = δ2δ3δ4µAEη1 + δ3δ4µBE(δ1η2 + µABη1) + δ4µCE(δ1δ2η3 + µBC(δ1η2 + µABη1)) +

µDE(δ1δ2δ3η4 +µCD(δ1δ2η3 +µBC(δ1η2 +µABη1)))

ρ = δ1δ2µDE µEC(µCH +γ3)+δ1δ2µEC(µDH +γ4)(µCD+µCH +γ3)+δ1δ2δ3µED(µDH +γ4)+

δ1δ2δ3δ4µEH

ρ = µCHδ4(δ1δ2η3 + µBC(δ1η2 + µABη1)) + µDH(δ1δ2δ3η4 + µCD(δ1δ2η3 + µBC(δ1η2 +
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µABη1)))

ξ = δ4µCH µEC +µDH(µCDµEC +δ3µED)+δ3δ4µEH

When examining the system from the perspective of equilibrium points, it is evident that the

values of Aeq, Beq, Ceq, Deq, and Heq are all positive, with some of these values containing

the value of Eeq,which is also positive. Consequently, the existence of equilibrium points is

confirmed without imposing any conditions.

3.3. Equilibrium Point’s Stability.

Theorem 3.3. The equilibrium points of the system of lung cancer is locally asymptotically

stable without any condition.

Proof. In this demonstration, we employ the Routh-Hurwitz Criterion [30] to analyse the

stability of the equilibrium point. To accomplish this, we represent the corresponding equation

in matrix form:

J = K L +Φ

With,

J =



Ȧ

Ḃ

Ċ

Ḋ

Ė

Ḣ


;K =



−δ1 0 0 0 0 0

µAB −δ2 0 0 0 0

0 µBC −δ3 0 µEC 0

0 0 µCD −δ4 µED 0

µAE µBE µCE µDE −δ5 0

0 0 µCH µDH µEH −δ6


;L =



A

B

C

D

E

H


;Φ =



η1

η2

η3

η4

0

0


The characteristic polynomial associated to the matrix K is

P(λ ) = det(K −λ I) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−δ1−λ 0 0 0 0 0

µAB −δ2−λ 0 0 0 0

0 µBC −δ3−λ 0 µEC 0

0 0 µCD −δ4−λ µED 0

µAE µBE µCE µDE −δ5−λ 0

0 0 µCH µDH µEH −δ6−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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We get,

(12) P(λ ) = (λ +δ1)(λ +δ2)(λ +δ6)
(
λ

3 +a1λ
2 +a2λ +a3

)
where,

a1 = δ3 +δ4 +δ5 ;

a2 = δ3δ5 +δ3δ4 +δ4δ5−µEDµDE −µECµCE ;

a3 = δ3δ4δ5−δ3µEDµDE −δ4µECµCE −µECµCDµDE

It’s clear that characteristic polynomial equation possesses six eigenvalues λ1 =−δ1 < 0, λ2 =

−δ2 < 0, λ3 =−δ6 < 0, the reality of an eigenvalue is negative, and the rest of eigenvalues are

the roots of the following equation given by:

λ 3 +a1λ 2 +a2λ +a3 = 0

By using Routh-Hurwitz criterion’s stability, the three other eigenvalues have a strictly negative

real part if and only if a1 >, a3 > 0 and a1a2−a3 > 0. Obtained by:

a1 = δ3 +δ4 +δ5 > 0

a3 = δ3δ4δ5−δ3µEDµDE −δ4µECµCE −µECµCDµDE

= µDE µEC(µCH + γ3)+µEC(µDH + γ4)(µCD +µCH + γ3)+δ3µED(µDH + γ4)

+δ3δ4µEH > 0

a1a2−a3 = (δ3 +δ4)(δ3δ4 +µCE(µED +µEH)+δ5(µCD +µCH + γ3)+µDE(µEC +µEH)

+δ5(µDH + γ4))+δ5(µCE(µED +µEH)+δ5(µCD +µCH + γ3)+µDE(µEC +µEH)

+δ5(µDH + γ4))+δ3µEDµDE +δ4µECµCE +µECµCDµDE > 0

Therefore, the system is locally asymptotically stable without any conditions.

4. NUMERICAL SIMULATION

In this section of the article, we conduct numerical simulations using MATLAB to obtain a

more precise understanding of patients and to investigate the dynamics of the proposed model

(7) for non-small cell lung cancer.This includes consideration of the undesired complication of

hepatotoxicity associated with immunotherapy treatment. The numerical simulations conducted



14 SIHAM DAOUANE, MARYEM EL KARCHANI, NADIA IDRISSI FATMI

are obtained from the medical article [28] and the following specified parameters: η1 = 20;

η2 = 150; η3 = 200; η4 = 500; µAB = 0.5; µAE = 0.6; µBC = 0.46; µBE = 0.57; µCD = 0.6;

µCE = 0.3; µCH = 0.35; µDE = 0.2; µDH = 0.42; µEC = 0.52; µED = 0.6, µEH = 0.4; γ2 = 0.3;

γ3 = 0.23; γ4 = 0.87.

FIGURE 2. Model simulations with initial conditions

FIGURE 2. These simulation is conducted with the initial conditions (A0, B0, C0, D0, E0,

H0) = (386, 338, 1217, 3157, 157,0). Analyzing the graph reveals fluctuations in the population

over time, ranging from 0 to 13th. After time 13th, the population stabilizes at the endemic

equilibrium point (Aeq, Beq, Ceq, Deq, Eeq, Heq) = (18.18, 154.5, 224.6, 470.1, 109.4, 1076).

This graph illustrates the occurrence of equilibrium conditions from the 13th time period. In

equilibrium conditions, the stage 1 subpopulation, starting with an initial condition of 386 pa-

tients, decreased to 18 patients. Similarly, the stage 2 subpopulation, originating from the initial

condition of 338 patients, declines to 154 in equilibrium conditions.The stage 3 subpopulations

initially at 1217 patients decrease to 224 in the steady state. The stage 4 subpopulation wit-

nessed a decrease from 3157 to 470.The Disease-Free subpopulation remains relatively stable,

displaying minimal changes in population from the initial condition to equilibrium, decreasing

from 157 to 109. In contrast to the hepatotoxic subpopulation, which exhibited a substantial
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increase from the initial 0 patients to 1380 patients before stabilizing at 1052 patients in equi-

librium conditions.

FIGURE 3. Model simulation with reduced hepatotoxicity rates

FIGURE 3 is obtained by reducing the hepatotoxicity rates µCH and µDH to 0.1 for both. The

graph shows a significant decrease in the hepatotoxic sub-population to 495 patients at the time

of equilibrium, which is considered a positive outcome for NSCLC patients. Regarding the

sub-populations at stage 3, stage 4, and disease-free, they have slightly increased compared to

the initial simulation, while the other sub-populations remain relatively stable compared to the

first simulation. All these changes can be clearly observed by using different decreasing values

of hepatotoxicity rates, as illustrated in the figures [4-5-6-7] below.

FIGURE 4. FIGURE 5.
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FIGURE 6. FIGURE 7.

FIGURE 8. Model simulation with reduced replase rates

FIGURE 8. For this numerical simulation, we suggest to reduce the relapse rates at stages

3 and 4, µEC and µED, to 0.1 for both. The numerical results indicate a slight increase in the

hepatotoxic sub-population, reaching 1204 patients in a stable state. Similarly, the disease-free

sub-population shows a favorable increase, reaching 286 patients at equilibrium. The sub-

populations of patients at stages 1 and stage 2 exhibit no significant changes compared to the

initial simulation, while the sub-populations of patients at stages 3 and 4 decreased by 195 and

433 patients, respectively, at equilibrium.
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5. CONCLUSION

Research in mathematical modeling has played a crucial role in supporting and advancing

progress in the field of oncology for several decades. This contribution is enabled by moni-

toring and comprehending the intricate dynamic interactions between tumors and treatments,

coupled with notable advancements in computational science. The mathematical modeling em-

ployed in this study aimed to predict the progression of non-small cell lung cancer following

immunotherapy treatment over time and assess the likelihood of hepatotoxicity in these patients.

The dynamic analysis conducted in this study resulted in an asymptotically stable equilibrium

point without any condition. This stability originates from the system forming without any

interaction, exclusively involving the movement of the population from one stage to another

based on the patients’ responses to immunotherapy. The cancer response to immunotherapy

can manifest as a complete response, stabilization at a certain stage, no change, complications

of hepatotoxicity due to therapy, or even malignant intensification, resulting in an increase in

cancer after immunotherapeutic treatment.
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