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Abstract: Breast cancer accounts for approximately 30% of cancer-related deaths among women globally. Recent 

advancements in data science have enabled in-depth analysis of various diseases, including breast cancer, through the 

field of bioinformatics. This study aims to analyze gene expression data from breast cancer patients using the 

OPTricluster method and to evaluate the biological interpretation of the results through Gene Ontology analysis. To 

reduce the complexity of breast cancer data, gene filtering techniques are applied. Triclustering, a bioinformatics 

approach, is particularly effective for processing three-dimensional gene expression data. One such method, Order-

Preserving Triclustering (OPTricluster), classifies genes based on similar expression orders across patients over 

multiple time points. In this research, OPTricluster was employed across various scenarios, utilizing gene filtering 

simulations with δ parameters in comparison to the TD Score. The optimal scenario was identified with an interquartile 

range (IQR) < 0.75 and δ = 1.1. The OPTricluster analysis identified a total of 68 triclusters, consisting of 7 constant 

triclusters, 46 conserved triclusters, and 15 divergent triclusters. Functional analysis revealed that constant and 

divergent patterns were associated with protein transport within the Biological Process category. Conserved patterns 

were linked to apoptotic processes. Furthermore, the Cellular Component analysis highlighted cytosol involvement, 



2 

APRILIANA, SISWANTINING, PRAMANA, ANDIKA 

while the Molecular Function category consistently identified protein binding across all patterns. 

Keywords: bioinformatics; gene filtering; triclustering approaches; gene expression analysis; tricluster diffusion. 

2020 AMS Subject Classification: 62P10. 

 

1. INTRODUCTION 

Breast cancer is the most common type of cancer in Indonesia and is the leading contributor 

among all cancer types. In addition to its high mortality rate, delayed treatment for cancer patients 

results in increased costs. According to global cancer statistics, breast cancer accounts for a 

significant proportion of new cancer cases and deaths annually [1] [2]. Between 2019 and 2020, 

the Social Health Insurance Administration Body (BPJS) in Indonesia spent over IDR 7.6 trillion 

on cancer treatment [3]. Furthermore, in 2020, there were 68,858 new breast cancer cases out of 

396,914 new cancer cases in Indonesia. This high incidence necessitates technological 

advancements to facilitate the diagnosis and treatment of breast cancer. Despite advancements in 

early detection and treatment, the complexity and heterogeneity of breast cancer remain significant 

challenges [4]. One of the existing technologies used for this purpose is DNA microarrays. 

In the field of molecular biology, DNA microarray technology is used to simultaneously monitor 

gene expression [5]. This technology generates genetic information by employing high-density 

arrays of DNA or oligonucleotide probes. These arrays are affixed to a semiconductor substrate, 

commonly referred to as chips [6]. DNA microarrays have a wide range of biological applications, 

including binding studies, gene expression profiling, and genotyping [7]. 

Genomics studies genome function, structure, evolution, mapping, and editing. This will 

enable us to understand biological phenomena such as the role the genome plays in disease [8]. 

Gene expression profiling has become a cornerstone of cancer research, providing insights into the 

molecular mechanisms underlying tumor progression and therapy resistance [9]. High-throughput 

techniques, such as DNA microarrays and RNA sequencing, have enabled researchers to identify 

gene expression patterns that distinguish cancer subtypes and predict therapeutic responses [10]. 

However, as the passage of time, Genome analysis generates and requires large data, so the data 

mining approach is required. The data mining concept used in this research is triclustering.  

Triclustering is an advancement of the clustering technique. It necessitates a three-dimensional 

data matrix, capable of forming a group that includes observation, attribute, and context 

concurrently [11]. In the realm of gene expression data, the frequently utilized data concept is 

gene-sample-time (GST). 



3 

OPTRICLUSTER FOR 3-DIMENSIONAL GENE EXPRESSION DATA 

In 2006, Carroll et al. conducted an extensive study on the binding sites of estrogen receptors 

throughout the entire genome. MCF-7 cells were exposed to 100 nM estrogen for 0, 3, 6, or 12 

hours. The latest probe mapping data were analyzed using the RMA Algorithm. Additionally, the 

differential expression levels at each time point compared to 0 hours were calculated using the 

Welch t statistic [12]. In 2012, Tchagang et al. introduced the OPTricluster method, which was 

successfully applied to four research cases, demonstrating its ability to resist noise and detect 

similarities and differences between biological samples [13]. In 2020, Siska et al. utilized the 

OPTricluster triclustering method to investigate the effects of the yellow fever vaccine. This 

research employed Java programming developed by Tchagang et al. [14]. In 2021, 

Swathypriyadharsini and Premalatha used a hybrid cuckoo search with clonal selection to identify 

co-expressed genes over samples and times using a triclustering solution for breast cancer gene 

expression data [15]. In 2022, Apriliana et al. researched the application of OPTricluster to breast 

cancer gene expression data using Java programming developed by Tchagang et al. 

This research extends the work of Apriliana et al. (2022) and Siska et al. (2020). There are 

several key differences between this research and the study by Apriliana et al. (2022). First, in this 

research, Gene Ontology (GO) has been fully implemented, whereas in Apriliana et al. (2022) it 

was only partially implemented. Second, Apriliana et al. (2022) did not utilize an evaluation 

method to test the tricluster results, while this research includes such a method. Third, this research 

developed the OPTricluster program using the Python programming language, in contrast to 

Apriliana et al. (2022), which used a Java program developed by Tchagang et al. (2012). 

Additionally, this research employs more extensive simulations compared to Apriliana et al. 

(2022), which used only one simulation. The differences between this research and Siska et al. 

(2020) are also evident in several aspects. Firstly, Siska et al. (2020) did not employ gene filtering, 

whereas this research uses gene filtering to select genes with more relevant information. Secondly, 

the simulations in this research are based on gene filtering with a different range of delta selection, 

ranging from 1.1 to 2.0, while Siska et al. (2020) used a delta range between 1.1 and 1.5. Thirdly, 

the OPTricluster program in this research was developed using the Python programming language, 

in contrast to Siska et al. (2020), which used a Java program developed by Tchagang et al. (2012). 

Therefore, we conducted a study using OPTricluster, a triclustering method, to identify similar 

patterns in gene expression data relevant to breast cancer patients. The data, obtained on March 2, 

2022, is available from the National Center for Biotechnology Information (NCBI) website: 

https://www.ncbi.nlm.nih.gov/. This dataset focuses on MCF-7 cells, which were stimulated with 
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100 nm estrogen and observed at the 0th, 3rd, 6th, and 12th hours to monitor the effects of estrogen 

in 3 patients. MCF-7 cells, a widely used breast cancer cell line, offer more relevant patient care 

data compared to other breast cancer cell lines [15]. The goal of this research is to examine the 

changes in breast cancer patients following estrogen treatment. OPTricluster is particularly 

suitable because it can handle 3-dimensional gene expression data, which includes gene, time, and 

sample dimensions. 

2. MATERIAL AND METHOD 

2.1 Data Description 

In this study, we used data originally created by Carroll et al., which was updated in 2019. 

This data set is valuable for gaining insights into biological processes, disease mechanisms, and 

potential therapeutic targets, making it an excellent resource for research and analysis in fields 

such as molecular biology, genetics, and medicine. The data consists of three-dimensional gene 

expression information from breast cancer patients, featuring a matrix with 54,675 probe IDs, 3 

patients, and 4 time points (0th, 3rd, 6th, and 12th hours). It was obtained from the Gene 

Expression Omnibus (GEO) with the serial number GSE11324 and the GPL570 platform. This 

data can be accessed via https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE11324 and was 

imported using RStudio tools. 

The description of the data can be seen in Table 1. 

Table 1. Description of the data 

Experimental Condition Time Point(s) 

Patient-1 (𝑃1) 

0 hour 

3 hour 

6 hour 

12 hour 

Patient-2 (𝑃2) 

0 hour 

3 hour 

6 hour 

12 hour 

Patient-3 (𝑃3) 

0 hour 

3 hour 

6 hour 

12 hour 

 

https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE11324
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Table 1 shows a detailed overview of the experimental conditions with the respective time 

points used in this study. The table classifies all data into the three groups of the three patients 

diagnosed with breast cancer and identified as Patient-1 (𝑃1), Patient-2 (𝑃2), and Patient-3 (𝑃3). 

Each patient underwent measurements at four distinct time points: 0th hour, 3rd hour, 6th hour, and 

12th hour. This framework facilitates the analysis of gene expression patterns over time, allowing 

investigation of temporal changes and biological processes associated with breast cancer 

progression. By aligning these time points across all patients, the dataset supports comparative 

analyzes and triclustering approaches to uncover significant biological insights. 

2.2 Gene Filtering 

Gene Filtering was a method to eliminate the ID Probe to reduce noise and selecting genes 

that had more relevant information. Also, programming time was shorter since the performed ID 

Probe gene was smaller. This research employed the inter-quartile range (IQR). 

The inter-quartile range (IQR) measure of the expression values is used in the data filtering 

stage to identify probes with smaller expression ranges. Generally, an empirical analysis or past 

knowledge-based threshold q is chosen, and any probes with an IQR < q are removed. The number 

of genes that pass the filter steadily decreases as IQR rises [16]. In this study, our total genes are 

54,675. We employed three IQR approaches for gene filtering, which are IQR < 0.25, IQR < 0.50, 

and IQR < 0.75. 

2.3 Silhouette Coefficient Method 

The silhouette coefficient method is used to determine the delta value for each slice using the 

k-means clustering method. In this study, the utilized delta is determined based on the obtained 

coefficient values [17]. The interpretation of the silhouette coefficients can be seen in Table 2. 

Table 2. Silhouette Coefficients Interpretation 

Silhouette Coefficient Interpretation 

0.7 < 𝛿 ≤ 1  Strong structure 

0.5 < 𝛿 ≤ 0.7 Medium structure 

0.25 < 𝛿 ≤ 0.5 Weak structure 

𝛿 ≤ 0.25 No structure 

In this study, we filtered 54,675 genes with IQR < 0.25, IQR < 0.50, and IQR < 0.75 

respectively. According to IQR filtering, we get Silhouette Coefficient 0.5592 for IQR < 0.25, 

0.5767 for IQR < 0.50, and 0.5318 for IQR 0.75. These indicates our triclusters have a medium 

structure. 



6 

APRILIANA, SISWANTINING, PRAMANA, ANDIKA 

2.4 Triclustering 

Triclustering was a development of clustering and biclustering method. Triclustering could be 

used for three-dimensional data defined in Definition 1, and the definition of triclustering in 

Definition 2. 

Definition 1. Three-dimensional dataset 𝐴 was defined by 𝑛 observation 𝑋 = {𝑥1, … , 𝑥𝑛}, 𝑚 

attribute 𝑌 = {𝑦1, … , 𝑦𝑚}, and 𝑝 context 𝑍 = {𝑧1, … , 𝑧𝑝} by 𝑎𝑖𝑗𝑘 ∈  𝑅, 𝑎𝑖𝑗𝑘 ∈  ∑ (∑ was a 

set of nominal data or ordinal data), integer (𝑎𝑖𝑗𝑘 ∈  𝑍), or non-identically distributed (𝑎𝑖𝑗𝑘 ∈  𝐴𝑗, 

where 𝐴𝑗 was the domain of 𝑦𝑗) 

Definition 2. Given a 3D dataset 𝐴 , where 𝑋  represented 𝑛  observations, 𝑌  was 𝑚 

attributes, and 𝑍 was 𝑙 context. Triclustering aimed to find a tricluster set of 𝐵 =  {𝐼, 𝐽, 𝐾} 

where 𝐼 ⊆  𝑋, 𝐽 ⊆  𝑌, and 𝐾 ⊆  𝑍. 

The illustration of Triclustering can be seen in Figure 1. 

FIGURE 1. Illustration of Triclustering [13] 

Triclustering identifies sub-space within a three-dimensional data structure consisting of 

observations, attributes, and contexts. The full structure represents the entire dataset, while the 

tricluster highlights a smaller, meaningful sub-space where consistent patterns emerge across these 

three dimensions simultaneously. This approach is particularly effective for analyzing complex 

datasets with interrelated elements, such as those in temporal or multi-condition studies. 

In the context of bioinformatics, as applied in this research, the observations represent genes, the 

attributes correspond to time points, and the contexts are samples. Triclustering helps uncover 

patterns of gene expres- sion that are consistent across specific time intervals and samples, making 

it a powerful tool for studying dynamic biological processes and sample-specific behaviors. 

2.5 Order Preserving Triclustering (OPTricluster) 

Order Preserving Triclustering (OPTricluster) is a pattern-centric approach for analyzing 

three-dimensional gene expression data, particularly tailored for short time-series datasets. 

Developed to identify genes with analogous patterns of expression alterations across various time 

points and experimental conditions, the OPTricluster algorithm groups genes with similar 
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expression dynamics and corresponding time points within each subset of experimental conditions 

[14]. This technique excels in pinpointing subsets of data that display consistent patterns across all 

three dimensions: rows, columns, and layers, thus offering a notable advantage in pattern 

recognition across multiple dimensions [13]. By focusing on these subsets, OPTricluster can 

effectively reduce the data’s dimensionality while still capturing relevant patterns, which is 

beneficial for visualization, analysis, and understanding of complex datasets. In this study, we 

developed the OPTricluster program using the Python programming language. A visual 

representation of the OPTricluster algorithm is shown in Figure 2. 

 

 

FIGURE 2. Flowchart of OPTricluster’s Algorithm [9] 

 

There are an explanation regarding the OPTricluster flowchart: 

1) Quantization: The implementation of quantization diminishes noise and enhances the 

precision of triclustering outcomes [13]. OPTricluster employed quantization to partition the 

values of 𝒇𝒊𝒌 (𝑻) into multiple subintervals, with the centroid of each subinterval utilized in the 

triclustering process. The initial step in quantization involved determining the threshold (𝛿), which 

plays a role in establishing the total number of subintervals for each 𝒇𝒊𝒌 (𝑻). The total subintervals 

are determined by Equation (1). 

(1) 𝐸𝑖𝑘 = ⌈
𝑏𝐸 − 𝑏0

𝛿
⌉ , 𝛿 ≠ 0 

where, 

𝐸𝑖𝑘: total of sub-intervals for each 𝒇𝒊𝒌(𝑻), 
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𝑏𝐸 : maximum value of 𝒇𝒊𝒌(𝑻), 

𝑏0 : minimum value of 𝒇𝒊𝒌(𝑻), 

𝛿 : threshold. 

The interval [𝑏0, 𝑏𝐸] was divided into several sub-intervals based on the results of 𝐸𝑖𝑘 

using Equation (2). 

(2) [𝑏0, 𝑏𝐸] = [𝑏0, 𝑏0 + 𝛿), [𝑏0 + 𝛿, 𝑏0 + 2𝛿), … , [𝑏𝑒−1, 𝑏𝐸] 

where 𝑏𝑒 = 𝑏0 + 𝑒𝛿 and 𝑒 = 1,2, … , 𝐸𝑖𝑘. 

 

2) Generate Ranking Matrix: The next step after quantization is to transform the quantization 

result matrix into a ranking matrix. The ranking matrix was transformed into 2D matrix defined as 

[𝑟𝑖 (𝑇, 𝐶)] = [𝑟𝑖𝑗𝑘]. The illustration of the ranking matrix of the quantization results can be seen in 

Figure 3. 

 

FIGURE 3. Illustration of generating ranking matrix from quantization result [10] 

 

Figure 3 represents a ranking matrix based on the quantization results of each gene across time 

points and for each condition. From this matrix, the patterns of gene expression can be observed, 

which may increase, decrease, or fluctuate for each time point of a specific condition. 

3) Pattern Identification for Each Sub-Interval: OPTricluster recognized rank patterns present 

in matrix 𝑅  for every combination of experimental conditions. Experimental conditions in 

triclustering typically include various biological or environmental factors, such as different time 

points, treatments, or combinations of experimental variables. The set of all potential combinations 

is represented by 𝛺, while the total number of combinations is denoted as 𝛤, as specified in 

Equation (3). 

(3) 𝛤 = 2𝑙 − 1 

where 𝑙 is a total of experimental conditions. 
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4) Create the Tricluster According to the Pattern: The final step of the OPTricluster was a 

grouping of each gene that had similar rank based on pattern type. Thus, the types of the pattern 

from Tricluster were: 

1. Constant Tricluster (CO) 

Constant Tricluster is a gene cluster which have expression level or rank did not change 

along time points in each subset of the experimental condition, such as 𝒇𝒊𝒌 (𝑻) =

[1   1   1],   𝒇𝒊𝒌(𝑻) = [0.5   0.5   0.5] , and other similar patterns. The illustration of 

constant tricluster can be seen in Figure 4. 

 

FIGURE 4. Illustration of constant tricluster 

 

2. Conserved Tricluster (CP) 

A Conserved Tricluster is a gene cluster found in each subset condition based on rank 

pattern. To determine the total number of triclusters showing the conserved pattern (CP) 

within each subset of experimental conditions, one can subtract the number of constant 

rank patterns from the total number of rank patterns identified in each subset condition. It 

represented by Equation (4). 

(4) 𝐶𝑃(𝛺𝑝) =  ℎ𝑝 − 𝐶𝑂(𝛺𝑝) 

where ℎ𝑝 represents the total number of different rank patterns in the subset of condition 

in the rank matrix 𝑟𝑖(Ω𝑝, 𝑇). Triclusters with conserved patterns signify groups of genes 
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that exhibit similar patterns across a subset of experimental conditions over time. An 

illustration of a conserved tricluster is shown in Figure 5. 

 

FIGURE 5. Illustration of conserved tricluster 

 

3. Divergent Tricluster (DP) 

A Divergent Tricluster (DP) represents a set of genes that consistently exhibit the same 

rank pattern across multiple experimental conditions but display a distinct rank pattern 

under a specific condition. This divergence highlights a group of genes that behave 

uniformly in the majority of conditions while demonstrating a unique behavior in one 

particular condition. Mathematically, this can be expressed as shown in Equation (5). 

(5) 𝐷𝑃 = 𝐶𝑃{𝑎} − 𝐶𝑃{𝑏} = {
𝐼𝑎 − 𝐼𝑏

𝐾𝑎 − 𝐾𝑏
} 

where,  

𝐶𝑃{𝑎} : group of gene that have same rank pattern in (𝑙 –  1) experimental conditions. 

𝐶𝑃{𝑏} : group of gene that have same rank pattern in 𝑙 experimental conditions. 
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The illustration of divergent tricluster can be seen in Figure 6. 

 

FIGURE 6. Illustration of divergent tricluster 

 

2.6 Evaluation 

The evaluation of triclustering performance was necessarily conducted to determine the 

quality of the resulting triclusters. In this study, the evaluation of Tricluster Diffusion (TD) was 

used. The evaluation using the Tricluster Diffusion (TD) score could be done by dividing the mean 

square residual (MSR) by the tricluster volume [19], which can be seen in Equation (6). 

(6) 𝑇𝐷 =
𝑀𝑆𝑅

|𝐺| × |𝑇| × |𝐶|
 

where, 

𝑀𝑆𝑅 = 
1

|𝑮||𝑻||𝑪|
∑(𝑚𝑔𝑡𝑐 − 𝑚𝑔𝑇𝐶 − 𝑚𝐺𝑡𝐶 − 𝑚𝐺𝑇𝑐 + 2𝑚𝐺𝑇𝐶)2, 

𝑚𝑔𝑡𝑐 =  g-th obsevation, t-th attribute, and c-th context, 

𝑚𝑔𝑇𝐶 =  
1

|𝑻||𝑪|
∑ 𝑚𝑔𝑡𝑐𝑡∈𝑻,𝑐𝜖𝑪 ,  mean of g-th observation, 

𝑚𝐺𝑡𝐶 =  
1

|𝑮||𝑪|
∑ 𝑚𝑔𝑡𝑐𝑔∈𝑮,𝑐𝜖𝑪 ,  mean of t-th attribute, 

𝑚𝐺𝑇𝑐 =  
1

|𝑮||𝑻|
∑ 𝑚𝑔𝑡𝑐𝑔∈𝑮,𝑡𝜖𝑻 ,  mean of c-th context. 
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2.7 Gene Ontology 

The Gene Ontology (GO) database was created to systematically describe the functional 

properties of gene products across various species and to aid in the computational prediction of 

gene functions [20]. GO offers a framework and set of concepts for describing the functions of 

gene products in all organisms, specifically designed to support computational representations of 

biological systems. A GO annotation links the product of a specific gene to a GO concept, thus 

making statements about the function of that gene [21]. 

There are three aspects of GO [18]: 

1. Molecular Function (MF) describes the specific activity performed by a gene or its 

product at the molecular level, such as binding to other proteins or catalyzing chemical 

reactions. 

2. Biological Process (BP) refers to a series of biological activities performed by genes, such 

as cell division or programmed cell death (apoptosis). 

3. Cellular Component (CC) indicates where the genes or their products are located within 

the cell, such as in the cytoplasm, nucleus, or cell membrane. 

3. MAIN RESULTS 

The number of remaining genes using the IQR < 0.25, IQR < 0.50, and IQR < 0.75 were 

41,006; 27,337; and 13,669; respectively. According to this research, there were 3 patients as 

experimental condition. The subsets of the experimental condition can be seen in Equation (7). 

 

(7) Ω = {{𝑃1}, {𝑃2}, {𝑃3}, {𝑃1, 𝑃2}, {𝑃1, 𝑃3}, {𝑃2, 𝑃3}, {𝑃1, 𝑃2, 𝑃3}} 

 

The OPTricluster algorithm formed tricluster based on rank patterns within the subset of the 

experimental condition on Equation (7), such as constant, conserved, and divergent patterns. In 

this research, 15 scenarios were performed to find the best tricluster for every gene filtering’s 

scenarios, i.e. 𝛿 =  1.1;  𝛿 =  1.2;  𝛿 =  1.3;  𝛿 =  1.4;  𝛿 =  1.5;  𝛿 =  1.6;  𝛿 =  1.7;  𝛿 =

 1.8;  𝛿 =  1.9;  𝛿 =  2.0;  𝛿 =  2.1;  𝛿 =  2.2;  𝛿 =  2.3;  𝛿 =  2.4;  𝛿 =  2.5, also 𝛿 based on 

Silhouette Coefficient method. We developed a Python Program to execute these scenarios. The 

comparison of all scenarios can be seen in Figure 7. 
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FIGURE 7. Comparison of TD Scores’s Average for Each Scenarios 

Figure 7 shows the smallest TD score when IQR < 0.25, IQR < 0.50; and IQR < 0.75 are 𝛿 =

 1.5;  𝛿 =  1.9 ; and 𝛿 =  1.1 , respectively. Furthermore, we got 𝛿 =  2  with Silhouette 

Coefficient 0.5592;  0.5767; and 0.5318, respectively, so that our triclusters have a medium 

structure when we choose 𝛿 =  2. As we can see, the TD Score of 𝛿 =  2 is not a minimum 

value, so we can choose 𝛿 =  1.5 for IQR < 0.25, 𝛿 =  1.9 for IQR < 0.50, and 𝛿 =  1.1 for 

IQR < 0.75. The comparison of the minimum TD score can be seen in Figure 8. 

 

FIGURE 8. Comparison of Minimum TD Scores’s for Each IQR Selection 
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Figure 8 shows the comparison of minimum TD Score’s for each IQR Selection. We can see 

that the minimum TD Score’s were found where IQR < 0.75 and δ = 1.1. This scenario produced 

7 constant triclusters, 46 conserved triclusters, and 13 divergent triclusters, which the total was 66 

triclusters. 

3.1 Constant Tricluster Result 

The evaluation results based on the constant-patterned tricluster for each subset of the 

experimental condition are shown in Figure 9. 

 

FIGURE 9. Number of genes and TD Score in constant tricluster 

Figure 9 shows that the subset of {𝑃1, 𝑃2, 𝑃3} patient had the lowest TD Score (4.28E-07) in 

the constant tricluster. It means that the tricluster which formed by the subset of patients 

{𝑃1, 𝑃2, 𝑃3} has a better quality compared to tricluster in other patient subsets and comprises 

11,828 genes. The gene expression level was relatively unchanged in 𝑃1, 𝑃2, and 𝑃3 body until 

12 hours after estrogen stimulation. So, in this case, 11,828 genes in 𝑃1, 𝑃2, and 𝑃3 body is 

insignificantly affected by the estrogen stimulation. Figure 10 shows a heatmap of genes of the 

patient {𝑃1, 𝑃2, 𝑃3}. 

 

FIGURE 10. Heatmap for constant tricluster on subset of patient {𝑃1, 𝑃2, 𝑃3} 
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Figure 10 presents the heatmap for the constant tricluster derived from the subset of patients 

{𝑃1, 𝑃2, 𝑃3}. The heatmap illustrates the consistent gene expression patterns across all experimental 

conditions and time points (0h, 3h, 6h, and 12h). The uniformity in expression levels, as indicated 

by similar color intensities across the matrix, confirms that the identified tricluster maintains 

constant gene expression regardless of the experimental condition or time. This stability highlights 

the robustness of the gene subset in the specified tricluster under varying experimental conditions. 

3.2 Conserved Tricluster Result 

The evaluation results based on the conserved-patterned tricluster for each subset of the 

experimental condition are shown in Figure 11. 

 

FIGURE 11. Comparison of Minimum TD Score for Each Subset of Patient of Conserved 

Tricluster 

Figure 11 shows that the subset of patient {𝑃1, 𝑃3} had the lowest TD Score in conserved 

tricluster. It means the tricluster in subset of patient {𝑃1, 𝑃3} has a better quality compared to 

tricluster of another patient subset. In other word, patient 𝑃1  and 𝑃3  has a similar gene that 

affected by estrogen stimulation. Figure 12 shows the number of genes and the TD Score for each 

rank pattern in subset of patient {𝑃1, 𝑃3}. 

 

FIGURE 12. Number of Genes and TD Score for Each Rank Pattern of Conserved Tricluster at 

Subset of Patient {𝑃1, 𝑃3} 
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Figure 12 shows the rank pattern 1112 have the lowest TD Score (1.8E-05) in the subset of 

patient {𝑃1, 𝑃3} of conserved tricluster. It means that the tricluster with rank pattern 1112 has a 

better quality compared to other rank pattern in patient 𝑃1 and 𝑃3. These tricluster and comprises 

335 genes. In other words, 335 gene expression level was relatively unchanged in 𝑃1 and 𝑃3 

body until 6 hours after estrogen stimulation but increased at 12 hours after estrogen stimulation. 

Figure 13 shows a heatmap of genes of the subset of patient {𝑃1, 𝑃3} with 1112 rank pattern. 

 

FIGURE 13. Heatmap of Conserved Tricluster at Subset of Patient {𝑃1, 𝑃3} with 1112 Rank 

Pattern 

Figure 13 displays the heatmap for the conserved tricluster derived from the subset of patients 

{𝑃1, 𝑃3} with a 1112 rank pattern. Unlike the constant tricluster, the gene expression levels in this 

tricluster show noticeable variations across different experimental conditions and time points (0h, 

3h, 6h, and 12h). The heatmap reveals that while the expression levels remain relatively stable in 

earlier time points, there is a tendency for the pattern to change more significantly at the final time 

point (12h), as reflected by the 1112 rank pattern. 

3.3 Divergent Tricluster Result 

The evaluation results based on the divergent-patterned tricluster for each subset of the 

experimental condition are shown in Figure 14. 

 

FIGURE 14. Comparison of Minimum TD Score for Each Subset of Patient of Divergent 

Tricluster 
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Figure 14 shows that the subset of patient {𝑃1, 𝑃2} – {𝑃1, 𝑃2, 𝑃3} has a lowest TD Score in 

divergent tricluster. It means the tricluster in subset of patient {𝑃1, 𝑃2} – {𝑃1, 𝑃2, 𝑃3}  has a better 

quality compared to tricluster of another patient subset. In other word, patient 𝑃1 and 𝑃2 has a 

similar gene expression level’s change, but patient 𝑃3 has a different gene expression level’s 

change. Figure 15 shows the number of genes and the TD Score for each rank pattern in subset of 

patient {𝑃1, 𝑃2} – {𝑃1, 𝑃2, 𝑃3}. 

 

FIGURE 15. Number of Genes and TD Score for Each Rank Pattern of Divergent Tricluster at 

Subset of Patient {𝑃1, 𝑃2} – {𝑃1, 𝑃2, 𝑃3} 

 

Figure 15 illustrates that there is only one pattern present in the divergent tricluster of patient 

{𝑃1, 𝑃2} – {𝑃1, 𝑃2, 𝑃3}, specifically the 1111 pattern. This tricluster comprises 895 genes with a TD 

Score of 1 × 10⁻⁵. In other words, the gene expression levels in patients 𝑃1  and 𝑃2  remain 

relatively constant across all time points, whereas they differ in patient 𝑃3. Figure 16 provides a 

heatmap representation of this tricluster, highlighting the distinct expression dynamics. 

 

 

FIGURE 16. Heatmap of Divergent Tricluster at Subset of Patient {𝑃1, 𝑃2} − {𝑃1, 𝑃2, 𝑃3} with 

1111 Rank Pattern 
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Figure 16 illustrates the heatmap of the divergent tricluster. The heatmap reveals that while 

the gene expression patterns in 𝑃1 and 𝑃2 remain relatively constant across all time points, 𝑃3 

demonstrates a noticeably divergent pattern. The expression levels in 𝑃3 vary significantly over 

time, deviating from the stable trends observed in 𝑃1 and 𝑃2. This suggests that the genes in this 

tricluster behave consistently in 𝑃1 and 𝑃2, whereas 𝑃3 exhibits dynamic changes that could be 

attributed to unique regulatory mechanisms or differing experimental responses. 

3.4 Gene Ontology Result 

Based on the constant tricluster results, we can see that the best tricluster is obtained within 

the patient subset {𝑃1, 𝑃2, 𝑃3 }. Then, according to the conserved tricluster results, the best 

tricluster is found in the pattern (1112) within the patient subset {𝑃1, 𝑃3}. Meanwhile, based on 

the divergent tricluster results, the best tricluster is found in the pattern (1112) within the patient 

subset {𝑃1, 𝑃2}  −  {𝑃1, 𝑃2, 𝑃3}. Table 3 illustrates the biological interpretation of each tricluster 

result. 

Table 3. Gene Ontology’s Results 

Tricluster’s 

Pattern 

GO 

Biological Process Celullar Component Molecular Function 

ID Name ID Name ID Name 

Constant GO:0015031 
Protein 

transport 
GO:0005829 Cytosol GO:0005515 

Protein 

binding 

Conserved GO:0006915 
Apoptotic 

process 
GO:0005829 Cytosol GO:0005515 

Protein 

binding 

Divergent GO:0015031 
Protein 

transport 
GO:0005829 Cytosol GO:0005515 

Protein 

binding 

 

Table 3 presents the triclustering results, which reveal biologically relevant patterns among 

breast cancer-associated genes. Specifically, the analysis identified several key processes and 

functions. Protein transport (BP) was highlighted as it plays a critical role in the movement of 

proteins essential for cellular functions, which can become dysregulated in cancer [20] [21] [22]. 

Apoptotic processes (BP) were also identified, emphasizing genes involved in programmed cell 

death, a mechanism that can either suppress or promote cancer progression depending on the 

context [20] [21 [23]. Additionally, the cytosol (CC) was identified as a crucial cellular component, 

serving as the site of various metabolic and regulatory processes that are often disrupted in breast 

cancer cells [20] [21] [24]. Lastly, protein binding (MF) was noted, reflecting interactions that 
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regulate cellular signaling pathways and may influence cancer development, such as those 

involving hormone receptors in estrogen-sensitive breast cancer [20] [21] [25]. 

4. CONCLUSIONS 

Based on the findings of this study, several conclusions were drawn in alignment with the 

research objectives. First, gene expression data with gene-sample-time (GST) dimensions were 

successfully analyzed using the OPTricluster method, which efficiently grouped genes exhibiting 

similar expression patterns across samples and time points. Second, the performance of the 

OPTricluster method was assessed using the TD Score and Silhouette Score. The optimal scenario 

was achieved under the condition of IQR < 0.75 with δ = 1.1, yielding triclusters of the highest 

quality. Third, the triclustering results were biologically interpreted using Gene Ontology (GO), 

revealing that the identified genes were involved in specific biological processes, cellular 

components, and molecular functions. Specifically, these included protein transport and apoptotic 

processes (Biological Processes), localization in the cytosol (Cellular Components), and protein 

binding activities (Molecular Functions). This study offers significant insights into gene 

expression patterns in breast cancer patients and their underlying biological functions, contributing 

to advancements in diagnostic and therapeutic strategies. 
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