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Abstract: This study aims to improve the performance of the VGG16 model with fine tuning. The transfer learning 

method is adopted to accelerate the learning process. The fine tuning carried out includes adding layers to the VGG16 

model, freezing the initial layer during the training process, and using an adaptive learning rate and using dropout. 

The VGG16 model with fine-tuning is used for multi-class classification of five categories of driver behavior. The 

learning results show an increase in accuracy of up to 99.54%, with a decrease in the validation loss value to 0.0278, 

compared to the VGGNet baseline without fine-tuning which only achieved an accuracy of 96%. Layer freezing also 

reduces the number of trainable parameters by more than 50%. Fine-tuning has proven effective in improving model 

performance by adjusting parameters in the final layer so that the model is able to capture specific features of the 

target dataset and maintain basic features with the initial freeze layer. Testing using a confusion matrix shows a high 

level of prediction accuracy. This study underlines the importance of applying fine-tuning to CNN models to improve 

driver behavior detection capabilities. 

Keywords: driver behavior detection; CNN; VGG16; fine-tuning. 
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1. INTRODUCTION 

Distraction driving is a form of driver inattention and is one of the main causes of traffic 

accidents in the world [1-2]. Distraction driving is defined as ‘the diversion of attention away from 

activities for safe driving toward a competing activity’ [3]. There are three categories of distraction 

driving, namely visual, manual and cognitive [4-5]. Visual distractions such as taking your eyes 

off the road, changing your focus of vision such as looking at maps, videos and other objects on 

the road or in the car. Manual distractions such as taking your hands off the wheel for activities 

such as using a mobile phone [5-8], eating/drinking [9-10], smoking [11-12], and operating the 

radio [13-14]. Cognitive distractions include loss of focus, talking to other people in the car, 

listening to the audio system, daydreaming, fatigue and stress [15]. However, distraction driving 

can be a combination of these three categories [1].  

There has been a lot of research related to distraction driving. A machine learning approach 

using Random Forest (RF) has been carried out by [16-17]. Support Vector Machine (SVM) 

methods have been used in research [18-19]. The main problem in the machine learning approach 

is that the classification process involves features that must be extracted and selected using a 

separate method. This brings its own complexity to the study. 

Deep machine learning models offer more adaptive automatic feature extraction 

capabilities compared to manual methods. The Naturalistic Driving Study (NDS) approach is used 

to observe activities such as mobile phone usage, operating dashboard devices, and talking to 

passengers. Studies on NDS with mobile phone usage activities have been conducted by [20-21]     

using the Bi-LSTM architecture. Research [20] adds an attention mechanism to improve accuracy, 

and [21] enhances the feature vector from the image to improve accuracy. The RNN architecture 

has been used in research [22-23]. Research [22] improves the performance of RNN by adding 

hierarchical layers while [23] uses Forward Weight Adjusted (FWA). 

CNN architecture has also been commonly used in distracted driving detection, especially 

by utilizing pre-trained models. The advantages of each model are claimed in the following studies: 

ResNet [24-26], Xception [27], AlexNet [28], EfficientNet [29], MobileNet [30], and VGG16 [31]. 

With transfer learning and fine-tuning methods, the performance of pre-trained models can be 

improved. Various fine-tuning methods have been carried out in research such as dropout by 

turning off some neurons during the learning process [32], optimizer to reduce errors [33-34], early 

stopping to stop the learning process before overfit occurs [35], weight regularization as a form of 

penalty on weights to increase generalization [36] and changes in learning rate to produce faster 
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learning convergence [37-38].  

This study aims to maximize the performance of the VGG16 model which is famous for 

its architectural simplicity and image recognition capabilities [39] by performing transfer learning 

and empirical fine tuning on its architecture and learning process in detecting driving distractions 

using raw data without modeling specific characteristics. The contribution of this research is that 

model-based transfer learning is proposed for the case of distracted driving detection, modification 

of VGG16 architecture by adding layers at the end to recognize specific patterns of distraction 

such as mobile phone usage or distracted driving, freezing of early layers of VGG16 architecture 

to retain common features of distracted patterns, enhancement of model generalization ability by 

dropout, and changing learning rate to accelerate learning. 

 

2. PRELIMINARIES 

2.1 Research methodology 

 

Figure 1. Research process 

Figure 1 illustrates our research process; it involves several key steps, starting with 

selecting relevant datasets. This step is crucial because we can determine the quality and relevance 

of the research findings. Also, researchers can ensure accurate and reflective analyses by choosing 

appropriate datasets. Pre-processing data is to provide quality and consistency. This stage involves 

removing any outliers or errors from the dataset. The final step is to analyze the data and draw 

meaningful conclusions. We divide the dataset into training, validation, and testing datasets. The 

training dataset is used to train our model, while the validation dataset is utilized to evaluate the 

trained model. Finally, the testing dataset tests the model's accuracy and performance. 

Implementing a CNN network architecture for image classification. After training, model 

performance evaluation is based on accuracy, precision, recall, and F1-score metrics. Experimental 

results are analyzed to compare the performance of CNN models, including AlexNet, VGGNet, 

and ResNet34, in multi-class classification on a dataset consisting of five classes. 
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2.2 VGG16 CNN Architecture  

This study uses the VGG16 model architecture in image multiclass classification. 'VGG' 

refers to the Visual Geometry Group of the University of Oxford. The VGG16 model has simple 

and effective hierarchical structure [40]. It using 16 layers consisting of the convolutional layer to 

extract essential features from the image [41], ReLU activation to add non-linearity, pooling layer 

to reduce the dimensionality of features while retaining key information, and fully connected layer 

(as shown in Figure 2) [39]. Evaluation in several experiment shows that VGG16 with fine-tuning 

provides accuracy. Also, the VGG16 involves adjusting a model that has been trained on a large 

dataset such as ImageNet for a specific task using a smaller dataset [42]. 

 

Figure 2. Original VGG16 architecture 

Input tensor size in VGG16 is 224224 with 3 RGB channels, so it takes a 2242243 

input tensor-size input. In contrast to many hyper-parameters, VGG16 has a convolution layer of 

a 33 filter with stride one and always uses the same padding and maxpool layer of a 22 filter 

with stride 2. 

In this experiment, the initial layers that learn basic features are kept frozen, while the last 

layers are retrained so that the model can adapt to the new dataset. This condition allows the model 

to learn more complex features without being affected by the initial layers, resulting in a more 

accurate model. The retraining process also ensures that the model remains up-to-date and can be 

applied to new data. 

2.3 Empirical Fine-Tuning 

Fine-tuning is the process of adjusting a pre-trained model to be used on a specific dataset 

[43]. In this case, the VGG16 model that has been trained using ImageNet is adjusted for the task 

of detecting driver behavior. The empirical fine-tuning steps in this study include: 

1. Adjustment of the Final Layer 

Additional layers are added to the base model to support driver behavior classification. 

Adding layers to the final layer aims to improve the model's ability to recognize specific 

features from different domains. As a result, the model can learn to identify nuanced 
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features that indicate different driving styles or conditions. Also, this approach enhances 

the classification system's accuracy and robustness. 

2. Early Freeze 

The initial layers of the VGG16 model are maintained without retraining. This is done 

because the initial layers are already able to recognize common features such as basic 

patterns, edges, or textures. 

3. Hyperparameter Settings 

Several main parameters are determined during training: 

• Learning Rate to minimize large changes in weights 

• Batch Size to achieve a balance between speed and stability 

• Dropout Rate to prevent overfitting on small datasets 

• Epoch to ensure the model learns complex patterns without overfitting 

4. Dataset Division 

The model is trained using a dataset that has been divided as follows: 

• 90% of data for training 

• 10% of data for testing 

2.4 Confusion Matrix 

Confusion matrix is used to evaluate the model's ability to classify categories in driver 

behavior. This matrix presents the distribution of model prediction results in detail, including the 

number of correct predictions (both positive and negative) and incorrect predictions (positive and 

negative) [44-45]. 

 

3. MAIN RESULTS 

3.1 Dataset 

Table 1. Driver Behavior Dataset 

 

 

 

 

 

 

 

Class Driver Behavior Number of Images 

0 Safe Driving 2,203 

1 Talking on Phone 2,169 

2 Texting on Phone 2,203 

3 Other Activities 2,128 

4 Turning 2,063 

 Total Data 10,766 
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The dataset used in this study was taken from Driver Behavior Detection | CNN, available 

on Kaggle, accessed on September 23, 2024 [46]. It is an open dataset and is publicly available to 

ensure the transparency and reproducibility. This dataset contains images of car driver behavior 

while driving. It is divided into five classes with a total data of 10,766 images in Joint Photographic 

Group (JPG) format, as seen in Table 1. The dataset is divided into training data and test data. 

Training data consists of 9,689 data (90%), and test data consists of 1077 data (10%). 

Examples of images representing the five driving activity classes can be seen in Figure 3. 

These images show the various poses and objects associated with each activity class. The photos 

were chosen to represent multiple scenarios within each driving activity. Manual selection and 

algorithmic filtering were used to ensure that the images accurately depict typical poses and 

associated objects. This selection process aimed to provide a comprehensive visual representation 

of each class for better understanding and analysis. 

 

     

𝑐0(Safe 

Driving) 

𝑐1(Talking on 

Phone) 

𝑐2(Texting on 

Phone) 

 

𝑐3(Other 

Activities) 

𝑐4(Turning) 

 

 

Figure 3. Examples of driver behavior activity classes 

 

3.2 Final Layer Adjustment of VGG16 

The VGG16 model architecture is modified by adding a final layer to increase the model's 

capacity in recognizing specific features by adding layers to VGG16. These adjustments include: 

 

Figure 4. Our custom VGG16 architecture 
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As we can see in Figure 4, we replace the fully connected layer to custom layers that contain: 

• Global Average Pooling 2D, to reduce the output into a more straightforward vector 

• Dense layer with 512 units and ReLU activation to process deeper information 

• Batch normalization stabilizes the training process so that the model converges faster 

• Two dropouts of 0.5 are applied to reduce the possibility of overfitting 

• Output in the form of a softmax layer to produce classification probabilities for five 

behavioral classes 

By tailoring the architecture, we can improve model performance and achieve more 

accurate predictions or classifications. The final layers added are listed in Table 2. 

Table 2. VGG16 Architecture Modification Summary 

Layer (type) Output Shape Param # 

input_2 (InputLayer) [ (None, 224, 224, 3) ] 0 

vgg16 (Functional) (None, 7, 7, 512) 14714688 

global_average_pooling2d 

(GlobalAveragePooling2D) 

(None, 512) 0 

batch_normalization (Batch 

Normalization) 

(None, 512) 2048 

dropout (Dropout) (None, 512) 0 

dense (Dense) (None, 512) 262656 

batch_normalization_1 

(BatchNormalization)  

(None, 512) 2048 

dropout_1 (Dropout) (None, 512) 0 

dense_1 (Dense)  (None, 5) 2565 

Total params : 14984005 (57 .16 MB) 

Trainable params : 7346693 (28 . 03 MB) 

Non_trainable params : 7637312 (29 . 13 MB) 

 

The model starts with an input layer that receives an image with a size of 224224 pixels 

and 3 color channels (RGB). Then, the main part of the model uses the VGG16 base model that 

does not include the last classification part, only relying on convolutional and pooling layers for 

feature extraction, producing an output of size 77512. After that, Global Average Pooling is 

used to flatten the output and reduce the spatial dimension to a feature vector of size 512. Next, 
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there is a batch normalization that normalizes the data distribution, followed by dropout to prevent 

overfitting. The model then has a dense layer with 512 units, followed by batch normalization 1 

for training stability and dropout 1 for additional regularization. The last layer is the output layer 

(Dense 1) that produces predictions with 5 classes, according to the number of categories in the 

dataset. This model has been modified by fine-tuning certain layers to improve prediction accuracy. 

3.3 Early Freeze 

In the training stage, the early freeze method is applied by freezing the initial layers of the 

pre-trained model. Layers 1 to 12 are frozen during training so that the pre-trained weights can be 

maintained. In addition to maintaining the model's ability to recognize general features, early 

freeze also significantly reduces the number of trainable parameters by more than half the number 

of parameters of VGG16 [47]. Thus, the training complexity can be reduced and the transfer 

learning ability of the pre-trained model for high-level features can be improved. 

Freezing is applied by setting the trainable property to false for all layers except the last 

four layers. Meanwhile, additional layers added on top of VGG16, such as 

GlobalAveragePooling2D, BatchNormalization, and Dense layers, are trained completely from 

scratch to adjust the features extracted by VGG16 to the specific classes of the new dataset. One 

potential challenge with this approach is that freezing too many layers might hinder the model's 

ability to adapt to new, domain-specific features, especially if the new dataset is significantly 

different from the original one. Additionally, if the frozen layers do not capture relevant features 

for the new task, the model's performance may be suboptimal. 

3.4 Hyperparameter tuning 

The hyperparameters specifically set in this study include batch size = 16, dropout = 0.5 

and a learning rate that can be changed. Both initial hyperparameters are set fixed. Changes in 

learning rate during training use the decay learning rate method. In the early stages of training, the 

learning rate is set quite large, namely 0.001 to ensure the speed of steps towards convergence. 

Decay learning rate occurs when the model performance does not show improvement after each 

batch is run. Model performance is measured by validation loss and a reduction in learning rate by 

one-fifth of the previous learning rate. During the training process, the system experienced a 

decrease in learning rate which was initially 0.001 to 0.00004 at the end of training. 

3.5 Model Performance 

3.5.1 Training Performance 

The training stage uses the training set and the model performance is measured during the 
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training process. Model evaluation is conducted to measure the level of accuracy and loss of the 

model that has been trained using the VGG16 architecture. The results of the model accuracy 

evaluation can be seen more clearly in Figures 5 and 6. 

 

Figure 5. Training and Validation Accuracy 

 

Figure 6. Training and Validation Loss 

From the epoch configuration of 20 times, the validation accuracy rate slowly increased 

from 0.7386 at the beginning of training to 0.9997, indicating training results with almost perfect 

accuracy. The training loss decreased consistently from 0.8157 to 0.0015, while the validation loss 

also decreased from 5.0432 to 0.0278 at the 20th epoch. The validation accuracy increased from 

40.20% at the beginning of training to 99.54% at the 19th epoch, although it fluctuated at the 8th 

epoch. Adjusting the learning rate after the 10th epoch helped the model become more stable and 

effective, resulting in high accuracy without overfitting. The configuration with an initial learning 

rate of 0.001 and a batch size of 16 proved to be optimal. 

In Figure 5, the fine-tuning process plays a key role in improving model performance. By 

utilizing a pre-trained model such as VGG16, which was previously trained on a large dataset such 

as ImageNet, fine-tuning allows the model to be adjusted for more specific classification. The 

accuracy graph in Figure 5 shows a consistent increase of nearly 99.54%, indicating that the model 

can quickly adapt to new datasets through fine-tuning the last layers. The significant decrease in 

loss in Figure 6, with a value of 0.0278, indicates that fine-tuning is able to correct prediction 

errors and optimize model performance. 

3.5.1 Testing Performance 

Testing performance is done by testing the trained model using new data that has never 

been recognized by the model before, namely driver behavior data that is not included in the 

training data. This process involves predicting the image, analyzing its suitability to the trained 

model, and determining the behavior class that matches the image. From the confusion matrix in 

Table 3, it can be seen that the model performance in classification is very good. The level of 



10 

MOLA, OLE, KARNYOTO, UDJU, HIPIR, PARDAMEAN 

precision and recall in classes 3 and 4 is 100% indicating that the system can perform perfect 

classification for that class. While for class 2, the recall value of 98% indicates that from all data 

predicted as class 2, there is still an error of 2%. In general, the f1-score value of the model is very 

high which indicates a well-balanced performance, demonstrating that the model can concurrently 

attain high precision and high recall. The model accuracy is excellent at 99%. 

Table 3. Confusion Matrix of Model Performance 

 Srecision Recall F1-score Support 

0 0.99 1.00 0.99 221 

1 0.99 1.00 0.99 221 

2 0.99 0.98 0.99 212 

3 1.00 1.00 1.00 206 

4 1.00 1.00 1.00 217 

Accuracy   0.99 1077 

From Figure 7, it can be seen that the number of samples with actual label 0 as many as 

220 images were successfully predicted correctly, while 1 image was incorrectly predicted as class 

1. Similar errors also occur in other classes, but in general the model prediction shows a high level 

of accuracy with most of the values on the main diagonal, indicating correct predictions. Values

outside the diagonal reflects prediction errors for certain samples. 

 

Figure 7. Heat map visualization of model performance 
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3.4 Discussion 

3.4.1 Model Performance Comparison with VGGNet, AlexNet and RestNet34 

This study will be compared with the study [47] which also uses the same dataset, epoch 

but with a different CNN model. The study uses the VGGNet, AlexNet and Resnet34 architectures. 

Figures 8 and 9 show the performance of the VGGNet. It can be seen that the learning process on 

VGG16 with fine-tuning is smoother with smaller accuracy and loss ripple indicators for each 

epoch. This shows the positive influence of the decay learning rate method applied. The final 

accuracy at the 20th epoch with VGG16 with fine-tuning has an accuracy of 99.54%, higher than 

VGGNet at 96.65%. The loss on VGGNet is still quite large, namely 7.90%. Likewise, the loss 

during training can be suppressed using fine-tuning. The learning process using fine-tuning is 

superior to transfer learning without fine-tuning for the VGGNet architecture. 

 

Figure 8. Accuracy with VGGNet 

 

Figure 9. Loss with VGGNet 

 

The pre-trained AlexNet model has a training accuracy of 96.46% but has a smoother graph 

compared to VGGNet. The accuracy is still slightly lower than VGGNet. On the other hand, the 

loss on AlexNet is lower than VGG16 at the 20th epoch, this can be seen in Figures 10 and 11. 

 

 

Figure 10. Accuracy with AlexNet 

 

Figure 11. Loss with AlexNet 
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Figure 12. Accuracy with ResNet34 

 

Figure 13. Loss with ResNet34 

As can be seen in Figures 12 and 13, training using the ResNet34 model has not shown 

convergence in the 20th epoch. The ResNet34 model shows the worst training results of the other 

models. The training accuracy is only 33.89% and the loss is 43.15%. 

 

3.4.2 Computational Complexity 

In this study, computational complexity is measured by comparing the number of 

parameters in each model. Table 4 shows four models with their number of parameters, namely 

the VGG fine-tuned model, VGGNet, AlexNet and ResNet34. From the total parameters, it is 

known that the VGG16 fine-tuned model (with layer adjustment) has the lowest computational 

complexity followed by AlexNet. Simpler models tend to produce lower computational 

complexity. In addition, the application of the freezing layer to the VGG16 model makes a very 

large contribution to reducing the number of trainable parameters. The freezing layer cuts the 

number of trainable parameters by more than half. This will speed up the training time because the 

weights in the freezing layer will not be updated during training. By looking at the superiority of 

the number of parameters, it can be said that the VGG16 fine-tuned model is a lighter model even 

though there is an increase in the number of layers compared to the VGG16 model. 

 

Table 4. Number of Parameters in Each Model 

 VGG16 fine-

tuned 

VGGNet AlexNet ResNet34 

Total Params 14,984,005 194,312,261 24,748,805 160,858.117 

Trainable params 7,346,693 194,311,365 24,748,101 160,850,437 

Non-trainable params 7,637,312 896 704 7,680 
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CONCLUSIONS 

The results showed that the VGG16 model with fine-tuning gave the best performance, 

with a test accuracy reaching 99% and superior to the VGGNet, AlexNet and ResNet34 models. 

The use of transfer learning from ImageNet training weights resulted in a more adaptive model for 

application in detecting driving distractions. The early freezing method ensures an increase in the 

model's ability to recognize complex spatial features of the problem domain and maintains the 

general feature recognition capability of VGG16. In addition, the freezing layer also reduces 

computational complexity because it reduces the number of trainable parameters. The use of the 

decay learning rate method during the learning process results in an increase in accuracy and a 

smoother decrease in loss during the learning process. To improve the model's ability to recognize 

new features that have never been learned before, dropout is used during the training process. 

It should also be noted that the fine tuning conducted in this study is empirical. The focus 

of the research will be increased on more in-depth fine tuning, especially to explore the ability of 

each layer to recognize features. Optimization methods can be developed for fine tuning freezing 

layers and other hyperparameters. 
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