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Abstract: This study aims to provide a stochastic mathematical model of the growth of cancerous tumors with targeted 

chemotherapy, where the cells were divided into three types of normal cells, cancer cells and responsive cells. The 

stability and long-terms behavior of the given system was studied. It has been shown, under certain conditions, that 

the tumor-free equilibrium state is almost globally stable. Accordingly, we conclude that the prescribed therapy can 

terminate cancer cells and thus the value of the tumor growth rate is obtained. What was also concluded during the 

study is that if the tumor is small, targeted chemotherapy drugs can be used in a smaller amount to eliminate the tumor 

from the body with less damage to other healthy cells. And vice versa. Finally, in order to verify our results, we 

conducted a numerical simulation. 

Keywords: random dynamical systems; stability; stochastic differential equation; targeted chemotherapy; the 

cancerous tumor. 
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1. INTRODUCTION 

One of the causes of human death is the abnormal growth of body cells, which is called cancer. In 

order to find new ways to treat cancerous tumors, researchers have been interested in studying the 
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dynamics of the growth of cancerous tumors. One of the most important tools used for this purpose 

is mathematical models. Various of mathematical models describing the development of cancerous 

tumors and their interactions with other cells have been studied by many researchers [1-4]. In [5] 

a mathematical model based on tumor growth rate, responsive cell activity, and carrying capacity 

was presented. In [6], the stability of the immunological reaction to cancer was studied, with the 

hope of the effect of antibodies that can kill cancer cells directly. Common types of treatment for 

cancerous tumors are chemotherapy, targeted chemotherapy, radiation therapy, immunotherapy 

and surgery. It should be noted that targeted chemotherapy is a typical treatment that eliminates 

cancer cells deprived of any important effect on responsive healthy cells [7]. 

In order to investigate the efficacy of a chemical drug targeted for the treatment of cancerous 

tumors, we first construct a system of stochastic differential equations (SDE) that corresponds to 

the system of ordinary (deterministic) differential equations given in [8]. Next, we investigate the 

stability of the random dynamic system (RDS) generated from the assumed system of SDE's 

Finally, we performed a numerical simulation of the system in order to illustrate the theoretical 

results. 

Definition 1.1 [9, 10] 

Let (Ω,𝓕, ℙ) be a probability space. The measurable action 𝜃:ℝ × Ω⟶ Ω is said to be metric 

dynamical system (MDS) on (Ω,𝓕, ℙ) whenever 𝜃 verify ℙ(𝜃𝑡𝐵) = ℙ(𝐵) for every 𝐵 ∈ ℱ 

and 𝑡 ∈ ℝ. The MDS is denoted by 𝜃. 

Definition 1.2 [9, 10]  

The measurable function 𝜑:𝕋 × Ω × 𝑋 ⟶ 𝑋 is said to be co-cycle over the MDS θ if it is verify: 

𝜑(0,𝜔) = 𝑖𝑑, 𝜑(𝑡 + 𝑠, 𝜔) = 𝜑(𝑡, 𝜃𝑠𝜔) ∘ 𝜑(𝑠, 𝜔),   (1) 

where 𝑡, 𝑠 ∈ ℝ and 𝜔 ∈ Ω. 

If, in addition, the functions 𝜑(∙, 𝜔,∙):ℝ × 𝑋 ⟶ 𝑋 is continuous for every    𝜔 ∈ Ω, then the co-cycle 

with the MDS 𝜃 called random dynamical system (RDS) over 𝜃. 

Definition 1.3 [9, 10] 

The affine RDS is a pair (𝜃, 𝜑) wherever 𝑋 is a Banach space and: 

𝜑(𝑡, 𝜔)𝑥 = 𝛷(𝑡, 𝜔)𝑥 + 𝜓(𝑡, 𝜔)   (2) 

 

where 𝛷(𝑡, 𝜔)  verify Eq. (1) and 𝜓 ∶ ℝ ×  Ω ⟶ 𝑋  is a measurable function. In case of  

𝜓(𝑡, 𝜔) ≡ 0, then (𝜃, 𝜑) is called linear and it is written by LRDS. 

Definition 1.4 [9, 10] 
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Let (𝑋, 𝑑) be a metric space. The multi-valued map 𝑀:Ω ⟶ 2𝑋/{∅} is said to be a random set 

if 𝜌: Ω ⟶ ℝ+, where 𝜌(𝜔 ) ≔ 𝑑𝑖𝑠𝑡𝑋(𝑥,𝑀(𝜔)) is measurable function for every 𝑥 ∈ 𝑋. When 

𝑀(𝜔) is closed (compact) in 𝑋 for each 𝜔 ∈ Ω, then 𝑀(𝜔) is called a closed (resp. compact) 

random set. 

Definition 1.5 [9, 10] 

Consider the RDS (𝜃, 𝜑) . If the random variable 𝑢: Ω ⟼ 𝑋  satisfy 𝑢(𝜃𝑡𝜔) =

𝜑(𝑡, 𝜔)𝑢(𝜔) where 𝑡 ≥ 0, ω ∈ Ω then it is called an equilibrium of (𝜃, 𝜑). 

Definition 1.6 [9, 10] 

Consider the LRDS (𝜃, 𝜑). If there is Ω∗ ∈ ℱ with ℙ(Ω∗) = 1, then the smallest number 𝜆 

satisfy: 

𝜆(𝜔, 𝑥) ∶= 𝑙𝑖𝑚
𝑡→+∞

1

𝑡
𝑙𝑜𝑔  ‖𝜑(𝑡,𝜔)𝑥‖ , 𝜔 ∈ Ω∗, 𝑡 > 0 

(3) 

is called the Lyapunov exponent for (𝜃, 𝜑). 

2. MODEL FORMULATION 

Traditional chemotherapy drugs cause side effects such as hair loss, fatigue, anemia, and others, 

because these drugs eliminates all types of cells at different rates. As for targeted chemotherapy, 

it mainly targets cancer cells so that there are few side effects. The description of this by −𝑘𝑇𝐶, 

𝑘 represents the rate of attachment of chemotherapeutic drugs targeted at cancer cells. As in [7], 

we introduce the parameter η, in order to quantity the efficiency of targeted chemotherapy on 

competent and normal immune cells, so: 

𝑑𝐼

𝑑𝑡
= 𝑠 +

𝜌𝐼𝑇

𝜎 + 𝑇
− 𝑐1𝐼𝑇 − 𝑑1𝐼 − 𝑎1(1 − 𝜂)𝐶𝐼, 

𝑑𝑇

𝑑𝑡
= 𝑟1𝑇(1 − 𝑏1𝑇) − 𝑐2𝐼𝑇 − 𝑐3𝑇𝑁 − 𝑎2𝐶𝑇, 

 

𝑑𝑁

𝑑𝑡
= 𝑟2𝑁(1 − 𝑁) − 𝑐4𝑇𝑁 − 𝑎3(1 − 𝜂)𝐶𝑁, 

(4) 

𝑑𝐶

𝑑𝑡
= 𝑢 − 𝑑2𝐶 − 𝑘𝑇𝐶, 

 

and 𝐼(0) = 𝐼0 > 0, 𝑇(0) = 𝑇0 > 0, 𝑁(0) = 𝑁0 > 0  and  𝐶(0) = 𝐶0 > 0  are the initial 

conditions.  𝐼(𝑡)   show the effector cell densities at time 𝑡, 𝑇(𝑡) represent tumor cells at time 𝑡, 

𝑁(𝑡) represent normal cells at time 𝑡  and 𝐶(𝑡) represent  amount of targeted chemo drug 

managed at time 𝑡 .  The stochastic model that corresponding to Eq.(4) can be formulated as 

follows: 

The natural death rate (𝑑1), intrinsic growth rate (𝑟1), maximum carrying capacity (1/𝑏1), growth 
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rate (𝑟2) of normal cells, and decay rate (𝑑2) of the targeted chemo-drug of effector cells may not 

all be known and may be influenced by random environmental factors. so that from Theorem 7.1 

and Lemma 8.2 in [4], we have 𝑑1(𝑡) ⟼ 𝑑1(𝑡) + 𝜎1�̇�1 , 𝑟1(𝑡) ⟼ 𝑟1(𝑡) + 𝜎2�̇�2 , 𝑏1(𝑡) ⟼

𝑏1(𝑡) + 𝜎3�̇�3, 𝑟2(𝑡) ⟼ 𝑟2(𝑡) + 𝜎4�̇�4 and 𝑑2(𝑡) ⟼ 𝑑2(𝑡) + 𝜎5�̇�5,  where the exact behavior 

of the noise terms 𝜎𝑖�̇�𝑖, (such that 𝐵𝑖(𝑡) represent the customary independent Brownian motions 

and 𝜎𝑖 > 0 , 𝑖 = 1,2,3,4 ) are unknown only their probability distribution. The functions 

𝑑1(𝑡), 𝑟1(𝑡), 𝑏1(𝑡), 𝑟2(𝑡), and 𝑑2(𝑡) are assumed to be nonrandom and constants. Thus Eq. (4) 

becomes: 

𝑑𝐼 = (𝑠 +
𝜌𝐼𝑇

𝜎 + 𝑇
− 𝑐1𝐼𝑇 − 𝑑1𝐼 − 𝑎1(1 − 𝜂)𝐶𝐼) 𝑑𝑡 − 𝜎1𝐼𝑑𝐵1 

 

𝑑𝑇 = [𝑟1𝑇(1 − 𝑏1𝑇) − 𝑐2𝐼𝑇 − 𝑐3𝑇𝑁 − 𝑎2𝐶𝑇]𝑑𝑡 + 𝜎2𝑇𝑑𝐵2 − 𝜎2𝑏1𝑇
2𝑑𝐵2 (5) 

𝑑𝑁 = [𝑟2𝑁(1 − 𝑁) − 𝑐4𝑇𝑁 − 𝑎3(1 − 𝜂)𝐶𝑁]𝑑𝑡 + 𝜎3𝑁(1 − 𝑁)𝑑𝐵3  

𝑑𝐶 = (𝑢 − 𝑑2𝐶 − 𝑘𝑇𝐶)𝑑𝑡 − 𝜎4𝐶𝑑𝐵4  

In the following sections the long-term behavior  of Eq. (5) will be studied. 

3. BIOLOGICALLY ACCEPTABLE 

In this section we will show whether the solutions of Eq. (5) are realistic or not, for all parameters 

adopted in the model. In order to make sure that the solutions are positive and constrained, we will 

use the principle of random comparison [9], so we have: 

𝑑𝐼

𝑑𝑡
= 𝑠 +

𝜌𝐼𝑇

𝜎 + 𝑇
− 𝑐1𝐼𝑇 − (𝑑1 + 𝜎1�̇�1)𝐼 − 𝑎1(1 − 𝜂)𝐶𝐼 ≤ 𝑠 − (𝑑1 + 𝜎1�̇�1)𝐼 

So, 𝑑𝐼 ≤ 𝑑1 (
𝑠

𝑑1
− 𝐼)𝑑𝑡 + 𝜎1𝐼𝑑𝐵1 . Now, the solution of the SDE 𝑑𝐼∗ = 𝑑1 (

𝑠

𝑑1
− 𝐼∗) 𝑑𝑡 +

𝜎1𝐼
∗𝑑𝐵1 is provided by: 

𝐼∗(𝑡) = 𝛷(𝑡) {𝐼∗(0) + 𝑠∫ 𝛷−1(𝜏)𝑑𝜏
𝑡

0

}, 

where 𝛷(𝑡) = 𝑒𝑥𝑝 {−(𝑑1 +
𝜎1
2

2
)𝑡 + 𝜎1𝐵1(𝑡)}. Then: 

𝐼(𝑡) ≤ 𝐼∗(0) 𝑒𝑥𝑝 {−(𝑑1 +
𝜎1
2

2
)𝑡 + 𝜎1𝐵1(𝑡)} 

+𝑠∫ 𝑒𝑥𝑝 {−(𝑑1 +
𝜎1
2

2
) (𝑡 − 𝜏) − 𝜎1(𝐵1(𝑡) − 𝐵1(𝜏))} 𝑑𝜏

𝑡

0

 

Hence, lim
𝑡⟶∞

sup 𝐼(𝑡, 𝜔) ≤
𝑠

(𝑑1+
𝜎1
2

2
)

. 
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Equation in the right hand side models a process which naturally falls back to its equilibrium level 

of 𝑠. 

𝑑𝑇

𝑑𝑡
= (𝑟1 + 𝜎2�̇�2)𝑇(1 − 𝑏1𝑇) − 𝑐2𝐼𝑇 − 𝑐3𝑇𝑁 − 𝑎2𝐶𝑇 ≤ (𝑟1 + 𝜎2�̇�2)𝑇(1 − 𝑏1𝑇) 

Then 𝑑𝑇 ≤ 𝑟1𝑏1𝑇 (
1

𝑏1
− 𝑇)𝑑𝑡 + 𝜎2𝑇𝑑𝐵2. Now, consider the SDE: 

𝑑𝑇∗ = 𝑟1𝑏1𝑇
∗ (

1

𝑏1
− 𝑇∗)𝑑𝑡 + 𝜎2𝑇

∗𝑑𝐵2  

Then 

𝑇∗(𝑡) =
𝑒𝑥𝑝 {(𝑟1 −

1
2𝜎2

2) 𝑡 + 𝜎2𝐵2(𝑡)}

(𝑇∗(0))−1 + 𝑟1𝑏1 ∫ 𝑒𝑥𝑝 {(𝑟1 −
1
2𝜎2

2) 𝜏 + 𝜎2𝐵2(𝜏)}
𝑡

0
𝑑𝜏

 

So 

𝑙𝑖𝑚
𝑡⟶∞

𝑠𝑢𝑝 𝑇(𝑡) ≤
(𝑟1 −

1
2𝜎2

2)

𝑟1𝑏1
 

Similarly, the SDE: 

𝑑𝑁 = [𝑟2𝑁(1 − 𝑁) − 𝑐4𝑇𝑁 − 𝑎3(1 − 𝜂)𝐶𝑁]𝑑𝑡 + 𝜎3𝑁(1 − 𝑁)𝑑𝐵3, 

implies that 𝑑𝑁 ≤ 𝑟2𝑁(1 − 𝑁)𝑑𝑡 + 𝜎3𝑁𝑑𝐵3. Consider the SDE: 

𝑑𝑁∗ = 𝑟2𝑁
∗(1 − 𝑁∗)𝑑𝑡 + 𝜎3𝑁

∗𝑑𝐵3, 

this equation has the exact solution given by: 

𝑁∗(𝑡) =
𝑒𝑥𝑝 {(𝑟2 −

1
2𝜎3

2) 𝑡 + 𝜎3𝐵3(𝑡)}

𝑁−1 + 𝑟2 ∫ 𝑒𝑥𝑝 {(𝑟2 −
1
2𝜎3

2) 𝜏 + 𝜎3𝐵3(𝜏)}
𝑡

0
𝑑𝜏

 

So 

𝑙𝑖𝑚
𝑡⟶∞

𝑠𝑢𝑝 𝑁(𝑡) ≤
(𝑟2 −

1
2𝜎3

2)

𝑟2
 

Finally, 

𝑑𝐶

𝑑𝑡
= 𝑢 − (𝑑2 + 𝜎5�̇�5)𝐶 − 𝑘𝑇𝐶 ≤ 𝑢 − (𝑑2 + 𝜎5�̇�5)𝐶 

So, we have 𝑑𝐶 ≤ 𝑑2 (
𝑢

𝑑2
− 𝐶)𝑑𝑡 + 𝜎5𝐶𝑑𝐵5. Now, the solution of the SDE: 

𝑑𝐶∗ = 𝑑2 (
𝑢

𝑑2
− 𝐶∗) 𝑑𝑡 + 𝜎4𝐶

∗𝑑𝐵4, 

is given by: 
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𝐶∗(𝑡) = 𝛷(𝑡) {𝐶∗(0) + 𝑠∫ 𝛷−1(𝜏)𝑑𝜏
𝑡

0

} 

where: 

(𝑡) = 𝑒𝑥𝑝 {∫ [−𝑑2 −
𝜎4
2

2
]

𝑡

0

𝑑𝜏 + ∫ 𝜎4

𝑡

0

𝑑𝐵4(𝜏)} 

= 𝑒𝑥𝑝 {−(𝑑4 +
𝜎4
2

2
)𝑡 + 𝜎4𝐵4(𝑡)} 

Then: 

(𝑡) ≤ 𝐶(0) 𝑒𝑥𝑝 {−(𝑑2 +
𝜎4
2

2
)𝑡 + 𝜎4𝐵4(𝑡)} 

+𝑢∫ 𝑒𝑥𝑝 {−(𝑑2 +
𝜎4
2

2
) (𝑡 − 𝜏) − 𝜎4(𝐵4(𝑡) − 𝐵4(𝜏))} 𝑑𝜏

𝑡

0

 

Hence, 

lim
𝑡⟶∞

sup𝐶(𝑡, 𝜔) ≤
𝑢

(𝑑2+
𝜎4
2

2
)

. 

Equation in the right hand side models a process which naturally falls back to its equilibrium level 

of 𝑢. So, we have: 

∆= {(𝐼, 𝑇, 𝑁, 𝐶) ∈ ℝ4: 𝐼 ≤ 𝜆1, 𝑇 ≤ 𝜆2, 𝑁 ≤ 𝜆3, 𝐶 ≤ 𝜆4} 

where 

𝜆1 ≔
𝑠

(𝑑1+
𝜎1
2

2
)

, 𝜆2 ≔
(𝑟1−

1

2
𝜎2
2)

𝑟1𝑏1
, 𝜆3 ≔

(𝑟2−
1

2
𝜎3
2)

𝑟2
, and 𝜆4 ≔

𝑢

(𝑑2+
𝜎4
2

2
)

 . 

We conclude from the above discussion that the domain region ∆ is positive, and this indicates 

that the model in Eq. (2) is biologically acceptable. 

4. STABILITY ANALYSIS 

Here we will discuss the long-term behavior of the RDS generated by Eq. (5) and examine the 

random attractors. 

The equation 𝑑𝐼∗ = (−𝑑1𝐼
∗ + 𝑠)𝑑𝑡 + 𝜎1𝐼

∗𝑑𝐵1 generates the affine RDS (𝜃, 𝜑∗), where 𝜑∗ is 

provided by: 

𝜑∗(𝑡, 𝜔)𝐼∗ = 𝛷∗(𝑡, 𝜔)𝐼∗ + 𝜓∗(𝑡, 𝜔) (6) 
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where: 

𝛷∗(𝑡, 𝜔)𝐼∗ = 𝐼∗ 𝑒𝑥𝑝 {−(𝑑1 +
𝜎1
2

2
) 𝑡 + 𝜎1𝐵1(𝑡)} (7) 

and 

𝜓∗(𝑡, 𝜔) = 𝑠∫ exp {−(𝑑1 +
𝜎1
2

2
) (𝑡 − 𝜏) + 𝜎1(𝐵1(𝑡) − 𝐵1(𝜏))} 𝑑𝜏

𝑡

0

 (8) 

Since the (topological) Lyapunov exponent 𝜆 ≔ −(𝑑1 +
𝜎1
2

2
)  for (𝜃,Φ∗)  is negative, then 

(𝜃,Φ∗) is dissipative [10]   inside the universe made up of all tempered 𝑅 subsets. Thus from 

Definition 3.13 and Remark 3.14 in [11] the RDS (𝜃,Φ∗)   is  strong dissipative. From 

Proposition 1.9.2 and Remark 1.9.2 in [10] we can conclude that (𝜃, Φ∗)  admits a unique 

equilibrium. 

𝑢(𝜔) = 𝑠∫ 𝑒𝑥𝑝 {(𝑑1 +
𝜎1
2

2
) 𝜏 − 𝜎1𝐵1(𝜏)}

0

−∞

𝑑𝜏 (9) 

From Proposition 1.9.3 in [10] 𝑢(𝜔) is exponentially stable. Now, since 𝑑𝐼 ≤ 𝑑𝐼∗ , so 𝑢  is 

super-equilibrium of RDS (𝜃, 𝜑). Now: 

𝑇(𝑡) =
𝑒𝑥𝑝 {(𝑟1 −

1
2𝜎2

2) 𝑡 + 𝜎2𝐵2(𝑡)}

𝑇−1 + 𝑟1𝑏1 ∫ 𝑒𝑥𝑝 {(𝑟1 −
1
2𝜎2

2) 𝜏 + 𝜎2𝐵2(𝜏)}
𝑡

0
𝑑𝜏

 (10) 

By Proposition 6.6.1 [10], Eq. (10) induce the RDS (𝜃, 𝜑) where: 

𝜑(𝑡, 𝜔)𝑇 =

{
 

 𝑒𝑥𝑝 {(𝑟1 −
1
2𝜎2

2) 𝑡 + 𝜎2𝐵2(𝑡)}

𝑇−1 + 𝑟1𝑏1 ∫ 𝑒𝑥𝑝 {(𝑟1 −
1
2𝜎2

2) 𝜏 + 𝜎2𝐵2(𝜏)}
𝑡

0
𝑑𝜏
, 𝑇 > 0

0 𝑇 = 0

 

This RDS is strictly order-preserving in ℝ+. From Corollary 6.6.1 [10], we conclude that the 

random set 𝐴(𝜔) = [0, 𝑢(𝜔)] is a random attractor for (𝜃, 𝜑) in ℝ+, where 𝑢(𝜔) ≥ 0 is a 

random equilibrium. 

Consequently, 

𝐴(𝜔) = {
{0}, 𝑟1 < 0

[0, 𝑢𝛼,𝛽,𝑁(𝜔)], 𝑟1 > 0
  

where: 
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𝑢𝛼,𝛽,𝑁(𝜔) ≔ 𝑟1𝑏1∫ 𝑒𝑥𝑝{𝑟1𝜏 + 𝜎2𝐵2(𝜏, 𝜔)}
0

−∞

𝑑𝜏 

In addition, based on Proposition 1.9.3 [10], it can be shown that there exists a 𝛾 > 0 with: 

𝑙𝑖𝑚
𝑡⟶∞

𝑒𝛾|𝜑(𝑡, 𝜃−𝑡𝜔)𝑥 − 𝑢𝛼,𝛽,𝑁(𝜔)| = 0, ∀ 𝑥 > 0,𝜔 ∈ 𝛺 (11) 

Eq. (11) induces the RDS (𝜃, �̅�) in ℝ (which is strictly order-preserving) when 𝑁 = 2𝑚 + 1 

is odd for every 𝑚 ≥ 1 (by Proposition 6.6.1 in [10]). The random set: 

𝐴(𝜔) = {
{0}, 𝛼 < 0

[−𝑢𝛼,𝛽,𝑁(𝜔), 𝑢𝛼,𝛽,𝑁(𝜔)], 𝛼 > 0
 

is the random attractor of (𝜃, �̅�). In the latter case 𝑢𝛼,𝛽,𝑁(𝜔) (resp. −𝑢𝛼,𝛽,𝑁(𝜔)) is globally 

stable random equilibrium and 𝑢0 ≡ 0 is an unstable random equilibrium. So, as 𝛼 increases 

through 0, we detect a pitchfork bifurcation [9]. 

5. NUMERICAL RESULTS  

Here, we conduct a numerical simulation so as to make our conclusions more realistic and verify 

the results obtained and find out how much they correspond to reality. The analogous estimation 

equations are: 

𝐼𝑘+1 = 𝐼𝑘 + (𝑠 +
𝜌𝐼𝑘𝑇𝑘
𝜎 + 𝑇𝑘

− 𝑐1𝐼𝑘𝑇𝑘 − 𝑑1𝐼𝑘 − 𝑎1(1 − 𝜂)𝐶𝑘𝐼𝑘)𝛥𝑡 − 𝜎𝑖𝐼𝑘√𝛥𝑡𝜉𝑘,𝑖 −
𝜎𝑖
2𝐼𝑘
2

(𝜉𝑘,𝑖
2 − 1)𝛥𝑡 

𝑇𝑘+1 = 𝑇𝑘 + [𝑟1𝑇𝑘(1 − 𝑏1𝑇𝑘) − 𝑐2𝐼𝑘𝑇𝑘 − 𝑐3𝑇𝑘𝑁𝑘 − 𝑎2𝐶𝑘𝑇𝑘]∆𝑡 

+𝜎2𝑇𝑘√𝛥𝑡𝜉𝑘,𝑖 +
𝜎2
2𝑇𝑘
2

(𝜉𝑘,𝑖
2 − 1)𝛥𝑡] − 𝜎2𝑇𝑘

2√𝛥𝑡𝜉𝑘,𝑖 −
𝜎2
2𝑇𝑘

2

2
(𝜉
𝑘,𝑖
2 − 1)𝛥𝑡] 

𝑁𝑘+1 = 𝑁𝑘 + 𝑟2𝑁𝑘(1 − 𝑁𝑘) − 𝑐4𝑇𝑘𝑁𝑘 − 𝑎3(1 − 𝜂)𝐶𝑘𝑁𝑘 + 𝜎3𝑁𝑘𝑑𝐵3 

        −𝜎3𝑁𝑘
2𝑑𝐵3 + 𝜎3𝑁𝑘√𝛥𝑡𝜉𝑘,𝑖 +

𝜎3
2𝑁𝑘

2
(𝜉𝑘,𝑖
2 − 1)𝛥𝑡] 

                      −𝜎3𝑁𝑘
2√𝛥𝑡𝜉𝑘,𝑖 −

𝜎3
2𝑁𝑘

2

2
(𝜉𝑘,𝑖
2 − 1)𝛥𝑡] 

𝐶𝑘+1 = 𝐶𝑘 + (𝑢 − 𝑑2𝐶𝑘 − 𝑘𝑇𝑘𝐶𝑘)𝛥𝑡 − 𝜎4𝐶𝑘√𝛥𝑡𝜉𝑘,4 +
𝜎4
2𝐶𝑘
2

(𝜉𝑘,4
2 − 1)𝛥𝑡 

We used the parameter values in Table 1 as in [12, 13] in conducting all numerical simulations. 

Parameter units were selected arbitrarily. 
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TABEL 1. Values of the parameter that are used in the simulation. 

Parameters Definition Values  

𝑠 The body has a steady population of effector cells. 0.05 

𝜌 Maximum number of tumor cells staffing effector cells 1 

𝜎 Decrease in half of the spread term's capability 0.4 

𝑑1 Effector cells' rate of natural death 0.2 

𝑟1 Necessary tumor cell growth rate 0.4 

𝑟2 Standard rate of cell growth 0.35 

1/𝑏1 Maximal tumor cell carrying capacity 1/1.5 

𝑑2 Target chemotherapy drug's rate of degradation 0.05 

𝑎1 Kill rate of the targeted chemotherapy drug's effector cell 0.2 

𝑎2 Tumor cell death rate from a targeted chemotherapy medication 0.5 

𝑎3 Kill rate of a targeted chemotherapy medication on a normal cell 0.25 

𝑐1 Tumor cells' growth rate in effector cells 0.2 

𝑐2 Immune cells' contribution to the tumor cells' rate of demise 0.3 

𝑐3 Degradation rate of tumor cells as a result of normal cells 0.2 

𝑐4 The pace at which tumor cells destroy normal cells 0.25 

𝜂 Efficacy of the specific chemotherapy medication 0.01 

𝑘 
Percentage of tumor cell adhesion to certain chemotherapy 

medications 
0.01 

𝑢 Drug parameter 

0.019 

or 

0.020 

or 

0.021 

 

We consider three cases in order to examine the effects of drugs on responsive cells, cancer cells 

and normal cells. In each case we will use the initial values are: 𝐼(0) =  0.6 ; 𝑇(0) = 0.4 ; 

𝑁(0) = 0.9 and 𝐶(0) = 0.1 with tumor growth rate, 𝑟1 =  0.4. 

• 𝑢 =  0: 019, 𝜎 = (𝜎1 = 0.1, 𝜎2 = 0.7, 𝜎3 = 0.2, 𝜎4 = 0.05) as shown in Figure 1. 
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Figure 1 Numerical simulations of Eq. (4) with drug dose 𝑢 = 0.019. 

 

• 𝑢 = 0: 020, 𝜎 = (𝜎1 = 0.1, 𝜎2 = 0.7, 𝜎3 = 0.2, 𝜎4 = 0.05) as shown in Figure 2.  

 

Figure 2 Numerical simulations of Eq. (4) with drug dose 𝑢 = 0.020. 

• 𝑢 = 0: 021, 𝜎 = (𝜎1 = 0.1, 𝜎2 = 0.7, 𝜎3 = 0.2, 𝜎4 = 0.05) as shown in Figure 3. 
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Figure 3 Numerical simulations of Eq. (4) with drug dose, 𝑢 = 0.021. 

 

6. DISCUSSION  

As it is known that the enzymatic reactions of proteins are affected by environmental changes in 

the biochemical system, this is what prompted us to integrate the effects of white noise into the 

immunological model of tumors, in order to arrive at an accurate discussion of the fluctuations of 

cell dynamics.  

7. CONCLUSION 

We examined a mathematical model involving of a system of SDE describing the growth rate of 

cancerous tumors, taking into account the responsive cells, the reaction of normal cells under the 

influence of targeted chemotherapy. First, we showed that the model is biologically acceptable, 

then performed a stability analysis of the system so as to discover the dynamic behavior of the 

targeted chemotherapy. Finally, from numerical simulations we conclude that if the tumor size is 

small, then the prescribed treatment can kill cancer cells without significant effect on other healthy 

cells and vice versa. 
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