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Abstract. Rice is a staple food for most of the world’s population, making its sustainable production essential.

However, undetected outbreaks of rice leaf diseases often result in reduced production due to crop failure. Accurate

identification of rice leaf diseases is an important step in effective disease management. Machine learning (ML)

algorithms can be an effective solution for early classification of rice leaf diseases based on available data. This

study compares the performance of five ML algorithms, namely K-Nearest Neighbor (KNN), Support Vector

Machine (SVM), Random Forest, Decision Tree, and Naı̈ve Bayes, in classifying rice leaf diseases. The evaluation

uses metrics such as accuracy, precision, sensitivity, F1 score, and training and prediction time. In addition, the

analysis also includes ROC-AUC values and statistical tests such as Friedman test and Nemenyi post hoc test to

determine the best algorithm significantly. The results showed that Random Forest had the best performance among

the five algorithms with a ROC-AUC of 0.92 and an accuracy of 0.94, however, it is noteworthy that this particular

algorithm requires a longer duration for both training and prediction compared to its counterparts. Ultimately, this

study serves to provide invaluable insights and guidance for the selection of the most optimal machine learning

algorithm, thereby facilitating more efficient and sustainable practices in the classification of rice leaf diseases,

which is crucial for the advancement of agricultural productivity and food security.
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1. INTRODUCTION

Machine learning (ML) has revolutionized numerous industries, offering innovative solutions

for early and accurate detection of issues, which in turn leads to better decision-making and

improved efficiency across various domains [1]. Agriculture, a cornerstone of human civiliza-

tion, has greatly benefited from advancements in artificial intelligence (AI) and ML techniques.

These technologies are increasingly applied in crop management, particularly for early disease

detection and prevention, ensuring improved yield and quality [2, 3]. By reducing dependency

on harmful chemicals and improving resource utilization, ML promotes sustainable farming

practices, contributing to healthier crops and higher yields [4].

Rice, as a staple food for more than half of the global population, is vital for food security.

Its consumption is projected to grow by 0.9% annually over the next decade, with Asia con-

tributing to 65% of this increase due to population growth [5] shown in Figure 1. However,

rice production faces significant challenges from diseases like bacterial leaf blight, brown spot,

and blast, which can severely impact both yield and quality [6]. Detecting these diseases at an

early stage is crucial to safeguarding production and preventing economic losses for farmers

[7]. Despite advancements, achieving high accuracy in disease detection remains challenging

due to the diverse characteristics of rice diseases [8, 9].

FIGURE 1. Rice per capita consumption by region.
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However, amidst the optimism for increased rice production, a significant challenge persists

in the form of highly susceptible range of diseases that can substantially impact both yield

and quality of these crops. Due to limitations in human resources and expertise, farmers often

struggle to effectively address crop diseases such as brown spot, bacterial leaf blast, false smut,

and stem rot [10, 11]. This not only leads to incomplete disease coverage but also incurs high

costs. In response to this challenge, researchers have increasingly turned to the advancements

ML algorithms for the classification of rice leaf diseases. The algorithms here show promise in

accurately identifying and categorizing different rice leaf diseases. Damaged leaves affect the

plant’s growth and grain quality, leading to poor yields.

It is clear that the demand for rice will continue to rise in the future due to increasing needs

in various parts of the world. To prevent global food insecurity, it is crucial to ensure that

the quality of rice production is consistently safeguarded. One effective way to avoid such

issues is by protecting paddy leaves from diseases that could compromise the quality of the

harvested rice. Image processing, when developed properly, can become an essential solution

for detecting and providing early diagnoses of diseased paddy leaves. By identifying specific

details about the disease, it enables farmers to take immediate and informed action to protect

their crops. When diagnosing a disease, the most important task is to ensure the accuracy of the

diagnosis by thoroughly analyzing all the symptoms. Identifying the exact cause of the paddy’s

illness is our core mission, which requires the machine to be highly precise in recognizing and

segmenting the image. It must specifically focus on the areas of the leaf that indicate signs of

sickness to deliver reliable results. This paper aims to implement an image processing system

to enhance production quality using several method of preprocessing, feature extraction, and

traditional machine learning algorithm. Hence, enabling farmers to achieve higher yields during

harvest.

Recent years have seen a surge in research focusing on ML-based approaches for rice disease

detection. Traditional techniques such as support vector machines (SVM), K-nearest neigh-

bor (KNN), and Decision Tree have demonstrated considerable success in classifying diseased

leaves based on image data [12, 13, 14]. Phadikar et al. (2013) compared Naı̈ve Bayes and

SVM classifier for finding better accuracy in detection [8]. The images used were preprocessed
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into a grayscale image and Otsu’s image segmentation in order to prevent misclassification due

to the shadow effect and color distortion. Result of this comparison favored the Bayes classifier

with the highest success rate at 79.5%. Pinki et al. (2017) proposed a method using SVM clas-

sifier with preprocessed images with image segmentation using K-means clustering technique

[9]. Later after classified, the model will give suggestion of the related pesticides or fertilizers.

Result in this study presented an outcome of a high overall accuracy at 92.06%. Joshi et al.

(2016) applied MDC and KNN classifier to detect 4 types of diseases. Preprocessed using skel

operation to acquire a morphological cropped infected area of the images [12]. Each classifier

result in ranging accuracy according to the 4 diseases types. For MDC the accuracy ranges

from 87.87% to 90.62% and for KNN it ranges from 84.61%-90.62%. Prajapati et al. (2017)

identified rice leaf diseases using SVM learning approach [15]. The study preprocessed images

with converting from RGB images to HSV images, disease clustering with K-means clustering

using thresholding. The result presented accuracy in 93%. Ahmed et al. (2019) developed a

ML-based system to detect rice leaf diseases like bacterial blight, brown spot, and leaf smut

[7]. They utilized models such as SVM, Decision Tree, and KNN, employing features like

color, texture, and shape for classification. A unique aspect of their work is the combination of

multiple traditional ML models with handcrafted feature extraction techniques, achieving over

90% accuracy while maintaining computational efficiency. Hasan et al. (2019) conducted a

performance analysis of various machine learning models for rice disease detection, focusing

on diseases such as bacterial blight and brown spot [16]. They evaluated models like SVM,

Random Forest, and KNN, comparing their accuracy and efficiency. A distinctive feature of

their work is the thorough evaluation and comparison of multiple traditional machine learning

models to determine the optimal approach for rice disease detection. In their research they suc-

ceeded to achieve 87.5% accuracy. Katuwawala et al. (2023) proposed a system for detecting

and classifying rice plant diseases using image processing techniques using KNN and SVM

[17]. Their approach involved preprocessing, feature extraction, and classification of diseases

like bacterial blight and blast. A unique aspect of their work is the integration of image pro-

cessing for enhanced feature extraction, leading to improved accuracy in disease classification.

This leads to an accuracy of 94.89% for KNN and 94.04% for SVM.
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Advanced methods such as Random Forest and ensemble learning techniques have shown ro-

bust performance in multiclass disease classification tasks. Studies by Saminathan et al. (2023)

highlighted the effectiveness of Random Forest classifiers in detecting multiple diseases, lever-

aging features like color and texture for improved accuracy. Similarly, Saha et al. (2021) pro-

posed a novel feature extraction method using intensity moments, which was combined with

Random Forest and yielded a classification accuracy of 91.47% [6]. These advancements un-

derscore the potential of integrating traditional ML methods with innovative feature engineering

to enhance classification performance.

The application of deep learning (DL) further enhances the capabilities of rice disease de-

tection systems [18, 19, 20]. Convolutional neural networks (CNNs), such as DenseNet and

ResNet, have been successfully used to classify diseases with high precision and scalability

[21]. For instance, Arinichev et al. (2021) demonstrated the superior performance of DenseNet

in identifying rice diseases, achieving an accuracy of 95.6% [22]. The integration of DL with

image processing enables real-time, automated detection, offering scalable solutions for large-

scale agricultural deployments [23, 24, 25].

This paper is organized into four main sections. It begins by introducing the background,

the need for the study, and the contributions of the research. Section II provides the materials

and methodology for detecting rice leaf diseases starting from image data pre-processing, how

to extract color features, ML methods used to classify rice leaf diseases, and then how to eval-

uate the performance of these models. Section III presents and discusses the results obtained.

Finally, the last section concludes the research presented in this paper.

2. MATERIALS AND METHODOLOGIES

The methodology for rice leaf disease classification is structured into four primary steps, as

illustrated in Figure 2. The first step involves data preprocessing, which standardizes image

formats and minimizes variability in the input data. Next, color features are extracted from the

images to identify unique characteristics that differentiate diseased leaves from healthy ones. In

the third step, a machine learning model is applied to classify the images based on the extracted

features. Finally, the model’s performance is evaluated to ensure its accuracy, effectiveness, and

reliability in detecting diseases within the images.
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FIGURE 2. Overview of the steps of the proposed model.
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2.1. Image Acquisition. The rice leaf image dataset used in this study was compiled from two

publicly available Kaggle repositories: Paddy Leaf Disease [26] and Rice Leaf Diseases [27],

combined with existing images from the authors’ repository. To enhance analytical precision,

high-resolution images were divided into smaller patches, enabling granular analysis of disease-

specific features. The dataset was partitioned into training and testing subsets, with stratification

to maintain proportional representation of disease classes. The final distribution of samples

across categories is summarized in Table 1.

TABLE 1. Dataset of images (I) number of original images, (II) number of im-

ages used for training, (III) number of images used for testing.

Leaf Diseases I II III

Bacterial Blight 369 296 73

Blast 262 210 52

Brownspot 226 181 45

Leaf Smut 274 220 54

Total 1131 907 224

2.2. Data Preprocessing. Raw datasets often contain missing values, redundant information,

or implausible data, which can compromise the integrity of analytical outcomes. To address

these challenges, data preprocessing is employed to cleanse and refine datasets, thereby enhanc-

ing their reliability. This study focuses on preprocessing techniques for image data, specifically

resizing, background removal, and noise reduction.

First, images are resized to a standardized resolution while preserving their aspect ratio,

ensuring uniform dimensions for computational consistency. Subsequent noise reduction is

achieved via Gaussian blur, a spatial averaging technique that prioritizes proximal pixels to

suppress high-frequency noise while retaining critical structural features.

Finally, contrast limited adaptive histogram wqualization (CLAHE) is applied to enhance

image contrast. Unlike conventional histogram equalization, CLAHE operates on localized

image regions and imposes contrast constraints to prevent noise amplification. This method

improves visibility in underexposed or overexposed areas, yielding balanced and interpretable
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images. Collectively, these steps optimize data quality, facilitating robust feature extraction and

analysis.

2.3. Feature Extraction. In the feature extraction process, this study employs the HSV his-

togram as the sole primary feature for dataset analysis, selected for its effectiveness in class

distinction, computational efficiency, and robustness to lighting variations. The HSV model

consists of three components: hue (H), which identifies dominant colors for object differentia-

tion; saturation (S), which quantifies color intensity to distinguish vivid from dull regions; and

value (V), which represents brightness, providing insights into overall illumination. To enhance

classification performance and stability, image features undergo min-max normalization before

being processed by the classifier. The image conversion process is illustrated in Figure 3.

FIGURE 3. RGB to HSV color channel.

2.4. Classification using Machine Learning Algorithms. The subsequent phase involves

predictive analysis using extracted features from the dataset. Multiple supervised machine

learning algorithms: KNN, SVM, Naı̈ve Bayes, Random Forest, and Decision Tree are em-

ployed to classify rice leaf diseases based on training data. These models will predict whether

a leaf exhibits a specific disease and will later be evaluated and compared based on prediction

accuracy.

KNN, a non-parametric algorithm suitable for classification or regression tasks [28], operates

by calculating the Euclidean distance between a query sample and all training instances in the
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feature space. The algorithm identifies the ’k’ nearest neighbors and assigns the disease class

via major voting. the predicted class ŷ, derived directly from this process, is expressed in (1).

As an instance-based learner, KNN requires no explicit training, relying instead on proximity-

based inference for classification.

(1) ŷ = argmax
c ∑

i∈Nk(x)
δ (yi,c),

where Nk(x) is set of KNN of x, yi is class label of the i-th neighbor, c is candidate class, δ (yi,c)

is indicator function that equals 1 if yi = c, and 0 otherwise.

SVM is a supervised learning algorithm commonly used for classification tasks. As a non-

probabilistic binary linear classifier, SVM categorizes data points into one of two classes by

evaluating their position relative to a decision boundary [29, 30]. For linearly separable data,

SVM identifies an optimal hyperplane that maximizes the margin—the distance between the

closest training samples (termed support vectors) of each class. This hyperplane is defined by

the linear equation:

(2) w · x+b = 0,

where w is the weight vector (perpendicular to the hyperplane), x is the feature vector of the

new data point, b is the bias term. If the result of w · x+b is positive, the data point is classified

as belonging to one class, and if the result is negative, the data point is classified as belonging

to the other class.

The Naı̈ve Bayes model works on the paddy disease dataset by calculating the likelihood of

each feature for all disease classes using the training data [31]. The Bayes’ Theorem assumes

that the features are independent of each other and multiplies the probabilities of each feature

given the classes. The class with the highest probability is then chosen as the final prediction.

This makes Naı̈ve Bayes a quick and straightforward method for classification, especially when

dealing with lots of features, as it relies on probabilistic reasoning while maintaining computa-

tional simplicity. The Naı̈ve Bayes classifier is based on Bayes’ theorem and can be expressed

as:

(3) P(Ck | x1,x2, . . . ,xn) =
P(Ck) ·P(x1,x2, . . . ,xn |Ck)

P(x1,x2, . . . ,xn)
.
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Under the assumption of conditional independence of features given the class, this simplifies

to:

(4) P(Ck | x1,x2, . . . ,xn) ∝ P(Ck)
n

∏
i=1

P(xi |Ck),

where P(Ck) is prior probability of class Ck, P(x1,x2, . . . ,xn | Ck) is likelihood of the features

given the class, P(x1,x2, . . . ,xn) is evidence or marginal likelihood (often omitted since it is con-

stant for all classes), P(Ck | x1,x2, . . . ,xn) is posterior probability of class Ck given the features.

To classify a new instance, compute P(Ck | x1,x2, . . . ,xn) for each class Ck, and select the class

with the highest posterior probability.

A Decision Tree classifies data by splitting images into smaller subsets based on the most

relevant features. By selecting the best suitable attribute at the root, this algorithm partitions

the dataset into subsets. The primary goal of these partitions is to unmix the dataset, making

it easier to classify [32]. The goal is to reduce the mixture of classes in each subset, making

it easier to classify the data. In this implementation, the algorithm uses Gini impurity as the

criterion to evaluate the quality of each split, ensuring that the most informative features are

chosen at each node. This criterion allows the model to fully explore the data and capture

patterns without constraints.

The Gini impurity used is calculated using the following formula:

(5) Gini(t) = 1−
C

∑
i=1

p2
i ,

where Gini(t) is the Gini impurity for a given node t, C is the number of classes in the target

variable, pi is the probability (or proportion) of the class i at the node.

The Random Forest model uses the paddy disease dataset by training multiple Decision Tree,

each on a random subset of the data and features (a process known as bagging) [33]. Each tree

produces a classification output for a new sample. The final output is determined by aggregating

the predictions from all trees, typically using majority voting. This ensemble approach reduces

overfitting and improves the model’s accuracy and robustness in handling complex datasets.

For classification, the Random Forest predicts the class label ŷ as the mode (most frequent

class) of the predictions from individual Decision Tree:
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(6) ŷ = mode{ht(x) | t = 1,2, . . . ,T} ,

where ht(x) is prediction of the t-th Decision Tree, T is total number of trees in the forest, mode

is function that selects the most frequent class label.

2.5. Evaluation of Machine Learning Model. The classifiers in this study were compared

based on performance metrics such as accuracy, sensitivity, and precision. The evaluation will

be using confusion matrix and area under curve (AUC).

Using the confusion matrix is needed in evaluating how well the model is performing. It

provides a comprehensive summary of the model’s predictions compared to the actual class

labels in the dataset. The matrix is organized into a table which displays four categories, true

positive (TP), true negative (TN), false positive (FP), and false negative (FN). The performance

measurement using this matrix will calculate metrics such as accuracy, precision, sensitivity,

and F1-score. With this information, important metrics like accuracy, precision, sensitivity, and

the F1-score can be calculated. These metrics will assess the model performance, highlighting

the strengths and pointing out areas that might need improvement or fine-tuning. The confusion

matrix measurements are expressed below [34].

(7) Accuracy =
T P+T N

T P+FP+T N +FN

(8) Sensitivity =
T P

T P+FN

(9) Precision =
T P

T P+FP

(10) F1−Score =
2×Sensitivity× precision

Sensitivity+Precision
.

In this research, ROC are employed to visualize the trade-off between a classifier’s true posi-

tive rate (TPR, sensitivity) and false positive rate (FPR, 1 - precision) across varying classifica-

tion thresholds. This graphical representation enables a nuanced evaluation of a model’s ability

to discriminate between positive and negative classes. To complement this analysis, the area

under the ROC curve (AUC) is calculated as a scalar performance metric. The AUC quantifies
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the classifier’s overall diagnostic capability, where a value of 1 denotes perfect separation of

classes, while 0.5 reflects random guessing.

To understand more of how well the model worked, we also use learning curves as it pro-

vides a critical diagnostic tool for assessing ML model performance as training data scales.

These curves plot the relationship between training dataset size and model accuracy (or other

performance metrics) for both training and validation sets. By analyzing trends in these curves,

researchers can diagnose issues such as underfitting (high bias) or overfitting (high variance),

informing adjustments to model complexity or data strategies.

2.6. Statistical Comparison of Models. The Friedman test, a non-parametric statistical

method, was employed to determine whether significant differences exist among the perfor-

mance of multiple models evaluated on the same dataset [35]. The test ranks each model’s

performance across dataset instances (or cross-validation folds) and analyzes the collective

rankings. For this study, it was applied to compare the five ML models, generating two key

metrics: a test statistic and a p-value. The test statistic quantifies variability in the models’

relative rankings, while the p-value estimates the probability of observing such variability un-

der the null hypothesis (H0), which assumes no performance differences between models. The

alternative hypothesis (H1) posits that at least one model differs significantly.

A significance threshold of α = 0.05 was adopted: if the p-value < 0.05, H0 is rejected,

indicating statistically significant disparities; otherwise, insufficient evidence exists to conclude

differences. When the Friedman test detects significant differences, post-hoc analysis using

the Nemenyi test [36] is conducted to identify pairwise discrepancies between models. This

test adjusts for multiple comparisons to mitigate Type I errors, providing adjusted p-values for

each model pair. For instance, a p-value < 0.05 implies a statistically significant difference.

Results are visualized through critical difference diagrams, which highlight significant pairwise

comparisons, offering granular insights into model performance hierarchies.
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3. RESULT AND DISCUSSION

This section presents the comprehensive result of each performance comparison of five tra-

ditional ML models: Decision Tree, Random Forest, SVM, Naı̈ve Bayes, and KNN for the

classification of rice leaf diseases. The evaluation will cover for multiple dimensions, which

include confusion matrix, performance metrics (accuracy, precision, sensitivity, and F1-score),

training and prediction times, ROC curves, learning curves, and statistical analyses using the

Friedman test and post-hoc comparisons.

FIGURE 4. Confusion matrix of Random Forest.

Figure 4 shows the confusion matrix of one of the evaluated algorithms, Random Forest.

From the results of our research it shows that the Decision Tree achieved 53 true positives for

bacterial blight, indicating moderate classification accuracy. The SVM improved upon this re-

sult, recording 67 true positives for the same category. The KNN model demonstrated stronger

performance, achieving the highest true positives for bacterial blight (70) and smut (51), sug-

gesting superior discriminative capability for these classes. In contrast, the Naı̈ve Bayes model

exhibited the weakest performance, with frequent misclassifications evidenced by elevated false
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positives across multiple categories. The Random Forest model outperformed all others, attain-

ing 73 true positives for bacterial blight and 52 for smut, while maintaining balanced classifica-

tion accuracy across all disease types.

FIGURE 5. Performance metrics comparison.

Figure 5 presents a bar chart comparing the performance of the five models across four evalu-

ation metrics: accuracy, precision, sensitivity, and F1-score. The Decision Tree model achieved

a consistent score of 0.71 across all metrics. The SVM model recorded accuracy and precision

scores of 0.77, while its sensitivity and F1-score were 0.76. The KNN model demonstrated

strong performance, achieving a uniform score of 0.89 across all metrics. In contrast, the Naı̈ve

Bayes model exhibited the lowest performance, with an accuracy of 0.55, precision and sensi-

tivity at 0.50, and an F1-score of 0.51. Among all models, the Random Forest model achieved

the highest performance, with scores of approximately 0.94 across all metrics.
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FIGURE 6. Training and prediction time comparison.

Figure 6 illustrates a comparison of the training and prediction times of five machine learning

models. The Random Forest model exhibited the longest training time, significantly exceeding

that of the other models. This aligns with its ensemble structure, as it involves training multiple

Decision Trees and aggregating their outputs. The SVM model required a moderate amount of

training time, reflecting the computational complexity involved in optimizing the hyperplane

in high-dimensional spaces. In contrast, Decision Tree, Naı̈ve Bayes, and KNN demonstrated

relatively short training times, with Naı̈ve Bayes being the fastest due to its straightforward

probabilistic approach and the absence of iterative optimization. Prediction times were gener-

ally low across all models, with no notable variations. While KNN had the shortest training time

overall, it exhibited slightly higher prediction times compared to other models. This is attributed

to its instance-based approach, where predictions rely on searching through the dataset for the

nearest neighbors. Meanwhile, Naı̈ve Bayes and Decision Tree achieved the fastest prediction

times, making them well-suited for real-time applications.
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FIGURE 7. ROC curve comparison across models.

Figure 7 presents the ROC curves for the five machine learning models, along with their re-

spective AUC values. The AUC score is a key indicator of a model’s ability to differentiate

between classes. The Naı̈ve Bayes model attained an AUC of 0.80, signifying moderate per-

formance, though its assumption of feature independence limits its effectiveness in handling

complex decision boundaries. The SVM model achieved an AUC of 0.87, placing it slightly

below KNN and Random Forest. KNN demonstrated strong classification capability with an

AUC score of 0.90. Conversely, the Decision Tree model recorded the lowest AUC at 0.77,

indicating a weaker ability to distinguish between disease classes. Among all models, Random

Forest exhibited the highest performance, attaining an AUC of 0.92, highlighting its superior

classification ability with a high true positive rate and a low false positive rate.
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FIGURE 8. Random Forest learning curve.

Figure 8 illustrates the learning curve for the Random Forest model, showing the relationship

between training set size and model accuracy. The x-axis represents the number of training

samples, while the y-axis indicates accuracy based on cross-validation scores. Initially, with

smaller training set sizes, accuracy remains low, fluctuating around 0.3. However, as the train-

ing set size increases beyond 200 samples, accuracy begins to rise steadily, demonstrating the

model’s ability to learn more effectively with additional data. Around 500 samples, the ac-

curacy reaches approximately 0.75, followed by a gradual improvement beyond 0.9 as more

training samples are incorporated. The shaded region around the curve represents variability

in the cross-validation scores, which narrows as the dataset grows, indicating increased model

stability. Overall, this learning curve suggests that Random Forest benefits significantly from

larger training datasets, leading to improved performance and generalization.
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FIGURE 9. Post-hoc Nemenyi test results.

To further evaluate model performance, statistical tests were conducted using the Friedman

and Nemenyi tests. The Friedman test identified significant differences among the classifiers

(χ2 = 19.36, p = 0.0007) indicating that the models did not perform equally. The post-hoc

Nemenyi test (Figure 9) provided insights into pairwise differences between classifiers. Specif-

ically, the Random Forest model demonstrated a statistically significant advantage over Naı̈ve

Bayes (p = 0.0006) and SVM (p = 0.0227), confirming its superior performance. However, no

significant difference was observed between Decision Tree and KNN (p = 0.9751), suggesting

that these models had similar effectiveness in this classification task. These findings reinforce

that Random Forest is the most discriminative model, while Decision Tree and KNN exhibit

comparable classification capabilities.
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4. CONCLUSION

This study highlights the effectiveness of machine learning in rice disease classification.

Among the five models evaluated, Random Forest consistently outperformed the others, demon-

strating superior accuracy and robustness in distinguishing rice leaf diseases. The model’s high

classification performance can be attributed to its ensemble nature, which effectively reduces

overfitting and enhances generalization. The statistical significance of these results was con-

firmed by rigorous analysis, including the Friedman and Nemenyi post hoc tests, which iden-

tified Random Forest as the most effective model for this task. The model significantly out-

performed Naı̈ve Bayes and SVM, while Decision Tree and KNN showed comparable perfor-

mance. These results highlight the importance of selecting a well-suited algorithm for disease

classification, as different models vary in their ability to handle complex decision boundaries

and dataset characteristics. Furthermore, the learning curve analysis showed that increasing the

training data improves model performance, with Random Forest showing a steady increase in

accuracy as more samples are included. This suggests that larger datasets can further improve

classification reliability, making data collection and augmentation critical for future improve-

ments. In practical applications, the efficiency of a model also plays a key role. While Random

Forest provided the best classification results, Naı̈ve Bayes and Decision Tree showed the short-

est prediction times, making them suitable for real-time disease detection systems where rapid

decision making is required. These findings provide valuable guidance for deploying ML-based

solutions in precision agriculture, where timely and accurate identification of rice diseases can

help reduce crop losses and optimize disease management strategies. Future research could

explore deep learning approaches, hybrid models, or advanced feature engineering techniques

to further improve classification accuracy. In addition, expanding the dataset to include dif-

ferent environmental conditions and disease variations would strengthen model generalization

and ensure its effectiveness in different rice-growing regions. Ultimately, this study demon-

strates the potential of machine learning in modern agriculture and provides a foundation for

the development of intelligent, automated plant disease monitoring systems.
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