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Abstract. Many animal species, including humans, display risk-taking behaviors that are evolutionarily beneficial

for survival, such as learning about predators or exploring high-stakes environments. However, the underlying

evolutionary mechanisms driving this behavior, especially its link to reproductive dynamics, are not well under-

stood. In this paper, we introduce a novel population dynamics model using Diophantine equations to reconstruct

evolutionary pathways. Our approach leverages integer partition and factorization techniques to model discrete

population changes in species exhibiting risk-taking and risk-averse behaviors. Unlike traditional continuous mod-

els, our framework allows multiple solutions, reflecting the diversity of evolutionary strategies. This model also

demonstrates how environmental pressures shape adaptive risk affinity, influencing reproductive rates and sur-

vival. The implications for understanding species adaptively, particularly in mammals, are profound, offering new

insights into evolutionary behavior beyond the constraints of classical game-theoretic approaches.
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1. INTRODUCTION

Risk-taking behaviors are widespread across animal species, ranging from predator explo-

ration in mammals to thrill-seeking activities in humans. These behaviors are traditionally ex-

plained by evolutionary advantages in learning, survival, and cognitive development (Rachman,

2004; Caro, 2005) in [5] and [2]. However, the precise evolutionary dynamics underlying risk

affinity remain largely unexplored, particularly in species with low birth rates where survival

hinges on adaptive learning and reproductive success. The interest in thrill-seeking activities,

such as haunted houses or extreme sports, is thought to stem from evolutionary mechanisms

that favor high-risk learning experiences (Zuckerman, 2007; Raghunathan and Corfman, 2006)

in [9], [6]. These experiences enhance cognitive flexibility and survival skills, providing long-

term evolutionary benefits. Additionally, altruistic risk-taking, such as defending kin or group

members, poses another dimension of adaptive behavior linked to social cooperation and group

survival (Nowak, 2006) in [4]. Another open question is the adaptivity of reproductive patterns

in humans and the gender dynamics linked with it. Humans are in the primate lineage where

many of human apes exhibit polygynous behavior, aiming for rapid reproduction. However,

humans are able to support monogamous mating behavior (Buss and Schmitt, 1993) in [1].

This paper will shed light on why the flexibility in reproductive patterns in humans exist and

give a glimpse of natural evolution of the sexes regarding risk-taking which is also examined

extensively in research literature (van Vugt, 2018) [8].

Current models in evolutionary dynamics, including game-theoretic approaches, predomi-

nantly assume continuous payoffs or frequency-dependent selection strategies (Maynard Smith,

1982; McNamara and Houston, 2009) in [7] and [3]. While effective in explaining strategic

interactions, these models struggle to capture the discrete, nonlinear dynamics inherent in low-

birth-rate species, where population changes occur in integer steps.

This paper models a scenario where an animal species can take two different phenotypes:

Risk-taking and risk averse. As a simplification, we assume that the phenotypic behavior in

risk-taking is depicted by a two-zone environment where the risk-averse individuals reside in

the low-stakes environment while high-stakes zone is populated by adventurous individuals.

From generation to generation, individuals can freely migrate between these environments.



ADAPTIVE RISK AFFINITY IN MAMMALIAN EVOLUTION 3

Evolutionary paths will be reconstructed by solving the integer-valued population dynamics

equations with varying reproductive rates reversely, i.e. by starting with an end state of popula-

tion numbers. Since these equations that need to be solved are Diophantine, multiple solutions

are possible, as long as some positivity constraints that ensure survival of the population are

satisfied. The connection between reproductive behavior and risk-taking will be explored, too.

2. MATHEMATICAL DETAILS

We consider two different types of populations in one species: One risk-averse (denoted by

superscript α) and one with risky behavior (denoted by superscript r) and these will reside the

corresponding environmental zones. Let the natural number t be the t-th generation and n is the

integer that denotes number of individuals. Then for example n(α)
t would denote the number

of risk-averse individuals in the t-th generation. A simple population model with a completely

risk-averse species would have the form

n(α)
t+1 = n(α)

t + r(α)
t n(α)

t − c(α)
t n(α)2

t (1)

where r(α)
t ∈Q is the reproduction rate in t-th generation, c(α)

t ∈Q is the competition constant

that accounts e.g. for resource depletion and (1) holds for every t ∈ [1, tmax] with the most

recent generation denoted by tmax. For the reproduction rate we set r(α)
t = p(α)

t
At

for some integers

p(α)
t ,At where we assume that At is a constant, we set At =A. In the same way we set c(α)

t = q(α)
t
At

for some integers q(α)
t . As a simplifying assumption we assume that the denominator At is the

same for both parameters and that the integer competition q(α)
t is also a constant. Multiplication

of (1) with A leads to

An(α)
t+1 = An(α)

t + p(α)
t n(α)

t −q(α)
t n(α)

t n(α)
t . (2)

In this paper we are not interested on giving an initial condition and iterate the population

dynamics forward, we will start with a given value n(α)
tmax at the most recent generation which is

ecologically easy to determine by counting a population and then reverse-engineer the possible

evolutionary path in the past that could have contributed to this population size. This means

that the first equation we pose if n(α)
tmax is given has the form
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An(α)
tmax =

(
A+ p(α)

tmax−1−q(α)
tmax−1n(α)

tmax−1
)

n(α)
tmax−1. (3)

Equation (3) is a Diophantine equation which we can easily solve for n(α)
tmax−1 by factoring

the integer An(α)
tmax . So one factor will be n(α)

tmax−1 and another one
(
A+ p(α)

tmax−1−q(α)
tmax−1n(α)

tmax−1
)
.

To ensure that (3) has a solution for every An(α)
tmax we must regard the reproductive parameter

p(α)
tmax−1 as a non-constant variable. For example, if A = 5,n(α)

tmax = 3,q(α)
tmax−1 = 1, we would not

have any solution if q(α)
tmax−1 would have the constant value of 2. It is important that we have

varying reproduction rates to admit a solution of (3). By recursive solution of (2) for all lower

values of t we will gain a possible path of population sizes n(α)
t and reproduction rates p(α)

t .

Multiple solutions of above Diophantine equation can exist since the factorization of a number

is not unique.

Even if An(α)
tmax is a prime number, we can assign one and the number itself in one order of

factors and additionally in the other order. However, it must hold

A+ p(α)
t −q(α)

t n(α)
t > 0 (4)

for any valid solution, population sizes cannot be negative and if these are zero these would

be permanently extinct. Equation (4) implies that the constraint p(α)
t > q(α)

t n(α)
t −A must hold,

in other words that sufficient reproduction must take place to ensure survival of the species.

This condition will prune many reverse calculated population dynamics. Computational solu-

tion of (2) will require backtracking with pruning according to (4). We conclude the simple

statement that a species that does not take risks has simple reproductive guidelines, namely

bearing sufficiently many off-springs without major variability in reproductive behavior.

The more interesting case is when the single Diophantine equation (1) is extended to a system

of Diophantine equations

n(α)
t+1 = n(α)

t + r(α)
t n(α)

t − c(α)
t n(α)2

t − It (5a)

n(r)t+1 = n(r)t + r(r)t n(r)t − c(r)t n(r)2t + It (5b)

where It denotes the immigration rate into a high-stakes territory in t-th generation. In the

two equations, the absolute value of It is the same, but with opposite sign due to continuity in

the population during migration (that what is lost in one region is gained exactly in the same
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quantity in another region). In a similar fashion we define r(r)t = p(r)t
At

and c(r)t = q(r)t
At

where

for simplicity all denominators At have the same value A, also the same as aforementioned

denominator values. It makes sense, that in the two different environments c(α)
t < c(r)t because

the high-stakes environment has more confrontational threats than the other one. Thus, we can

rewrite (5a, 5b) as

An(α)
t+1 =

(
A+ p(α)

t −q(α)
t n(α)

t
)

n(α)
t −AIt (6a)

An(r)t+1 =
(
A+ p(r)t −q(r)t n(r)t

)
n(r)t +AIt (6b)

To solve the system (6a, 6b) in case when we know the population sizes at most recent

generation, namely n(α)
tmax and n(r)tmax we proceed as follows:

1. Reformulate equations (6a) and (6b) as a system of linear Diophantine equations

An(α)
t+1 = x−AIt , An(r)t+1 = y+AIt (7)

for some unknown integers x,y and solve (7) efficiently using the Extended Euclidean Al-

gorithm, let the subscript 0 denote the solution found. Solutions always exist due to Bezout’s

Lemma and the fact that we have the greatest common divisor of the coefficients in (7) being

always one.

2. Generate all solutions by using the identities

x = x0 +Ak (8a)

y = y0−Ak (8b)

It = It0 + k (8c)

where k ∈Z is an arbitrary integer. While It can both have positive and negative values (since

net migration is positive when more individuals enter the high-stakes territory and negative

when individuals leave the high-stakes territory), both x and y must be positive. To ensure

positivity of left hand sides of (7) we must introduce the constraints

x > AIt , y >−AIt (9)

that will narrow the solution space and valid values of k which will be examined further.

3. For each of the solutions (8a) and (8b) for any valid k solve the factorization problem



6 OZEL, ALBELADI, LINKER, KOYUNCU

x =
(
A+ p(α)

t −q(α)
t n(α)

t
)

n(α)
t , y =

(
A+ p(r)t −q(r)t n(r)t

)
n(r)t (10)

for n(α)
t ,n(r)t , p(α)

t , p(r)t and accept only solutions that satisfy the positivity constraint

A+ p(α)
t −q(α)

t n(α)
t > 0, A+ p(r)t −q(r)t n(r)t > 0. (11)

4. Repeat from Step 1 for next lower value of t until the desired depth of evolutionary history

reconstruction is finished.

As a remark, to solve the system of Diophantine equations (6a) and (6b) more efficiently, we

could restrict the maximum of |It | (the bars denote absolute value) to some value which would

narrow the admissible solutions for n(α)
t ,n(r)t , p(α)

t , p(r)t even further. This makes sense partic-

ularly when simulating animal species that tend to be more cautious. If |It | takes high values,

possible reproductive rates are more likely to show more variability. Factorization problems

lead to more variability in solution if dealing with composite numbers (i.e. numbers that are

not prime). From basic number theory it is known that the density of prime numbers decreases

as the number gets larger. Thus, the higher the number range, the more different factorizations

we can achieve in (10). While minimum reproductive conditions stated by (11) prune several

factorizations, the likelihood that we obtain different valid reproduction rate histories with dif-

ferent values will increase if |It | takes larger values. So, species that are more adventurous may

show greater variability in mating and reproduction behavior. This is particularly important

when reconstructing evolutionary paths of humans.

3. EFFECTIVE EVOLUTIONARY PARAMETERS

Especially for high risk-taking species, a plenty of solutions of the population dynamical

equation can be expected. Therefore, effective statistical measures should be computed to es-

timate expected behavior and variance in risk-taking or reproductive behavior of the species.

Using above algorithm we define for any integer-valued quantity Xi, where the index i denotes

the i-th valid solution of (6a) and (6b) the mean value

µX =
1
m

m

∑
i=1

Xi (12)
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and the standard deviation

σX =

√
1
m

m

∑
i=1

X2
i −µ2

X (13)

Where m is the total number of valid solutions. Higher-order statistical moments are possible,

too, but mean (12) and standard deviation (13) are most important, particularly if many solutions

exist. This is due to the law of large numbers in statistics which states that when having a

very large number of samples, the samples will follow a Gaussian distribution that is uniquely

characterized by its mean and its standard deviation. Another metric that can be interesting is

the ratio

d =
µX

σX
(14)

which measures average reality with the ability to change the pattern. High risk-affinity

causes σX to increase, leading to lower ratio d when assuming similar values of µX . Thus,

species where high-volatility exposure is more common, e.g. humans, will blur behavioral

patterns way more than other species. Traditionally, females are assumed to be way more

risk averse than males. This is resembled due to the fact that females are the only group that

allow to bear off-springs and according to constraints (9) and (11), a minimum amount of off-

springs must be produced. However, even if this gender disparity is significant, the abundance

of solution in Diophantine equation solution paths will create more variability, allowing for

females also adapting risky behavior for certain cultures like participation in large-game hunting

or even warfare.

4. CONCLUSION

We have examined reverse population dynamics of species that take risks by a simplified

model. This reverse population dynamics is computed by recursively solving a system of Dio-

phantine equations. While the simplified single-equation model (3) showed very basic tendency

to survival of the species, the more general model (6a, 6b) for adventurous species showed much

richer dynamics in possible evolutionary paths including reproductive behavior. The latter is

important especially for humans, since they are extremely adaptive to the environment and are

able to enter high-stakes regions more easily than most other animal species e.g. by risking the
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life to help strangers out of a dangerous situation. We have found that reproduction rates are

varying the more adventurous a species is. This applies clearly for humans

that could aim for very fast reproduction in some cultures and very slow in other cultures.

Humans are unique in the variability of reproductive strategies compared to other primates,

they can adapt polygynous mating as well as monogamic mating. On the other hand, gender

roles are much more fluid than in other animal species and from above considerations it can

be assumed that despite the existence of sex differences in risk-taking or aggression shaped

by natural selection, the variability induced by the ability to take great risks e.g. for learning

from predators will enhance the variability in gender dynamics. These facts could have lead our

world towards more gender equality within the recent decades.

On the other hand, more thrill-seeking activities surged around the world from haunted

houses to bungee jumping emerged during the past decades, where the former activity can

appear in form of Extreme Haunted Houses where a high-volatility situation is simulated far

more realistic e.g. by incorporating sensation of pain than in normal haunted houses. This trend

could also resemble the link between reproductive and gender dynamics and general risk-taking

behavior.

Further investigations of this model will be performed in the future.
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