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Abstract. Various sources of uncertainty are involved in malaria modelling, arising from intricate interplay be-

tween parasite biology, vector ecology, human factors and environmental variables. These uncertainties are mag-

nified by data constraints, the spread of drug and insecticide resistance and the difficulties associated with reliably

accounting for intervention effects and long-term climate impacts. It is imperative to employ complicated statis-

tical techniques, ensemble modelling approaches and consistently improve models as new information becomes

available for purposes of offering strong guidance to public health decision-making about the inherent complexity

and fluctuation in transmission dynamics of malaria. To assess the impact of intervention measures put in place, it

is important to quantify the uncertainty and take it into account when making decisions. Bayesian inference makes

this possible in the sense that the posterior parameter inference can characterize uncertainty in the estimates of

unknown parameter values and indeed the uncertainty over a set of candidate models.

In this work, we apply Bayesian inference based on Markov chain Monte Carlo (MCMC) sampling to a com-

partmental models (SIR) Ross’ original model. We define a ground truth, subject it to actual data and infer the

posterior distribution of the initial state and the parameters of the model. We investigate several scenarios for the
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observations generated corresponding to realistic situations. This way, we can contrast the inferred posterior to the

ground truth and the amount of uncertainty injected in the observations.

Keywords: Bayesian inference; SIR models; malaria transmission; parameter estimation; Markov Chain Monte

Carlo.
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1. INTRODUCTION

Malaria remains a significant public health challenge in Kenya. The World Health Orga-

nization [1] reports that approximately 3.5 million new clinical cases and 10,700 deaths are

reported annually. The disease primarily affects children under five years and pregnant women.

This disease is endemic in certain regions, particularly along the coastal areas and around Lake

Victoria, [2] while other areas experience seasonal transmission or are largely malaria-free.

Several measures have been introduced to tackle the diseases by various stakeholders includ-

ing the Kenyan government, international organizations, NGOs, and other stakeholders. Some

key strategies put in place include indoor residual spraying, distribution of insecticide-treated

bed nets, and the use of rapid diagnostic tests. Despite these efforts, the effectiveness of these

interventions and their influence on malaria transmission patterns remain uncertain. This un-

certainty highlights the need for mathematical models to forecast outcomes and evaluate the

impact of these interventions.

One commonly used model to study infectious diseases such as malaria is the Susceptible-

Infected-Recovered (SIR) model. This compartmental model divides the population into dis-

tinct groups (susceptible, infected, and recovered) and describe the transitions between these

states using differential equations [3]. However, applying the SIR model to malaria in Kenya

presents several challenges, particularly due to limited data on prevalence in humans and even

less data on mosquito populations [4].

In addition, heterogeneity of malaria transmission across different Kenyan regions compli-

cates model design. Transmission patterns can be extremely varied from one coastal, lake, or

highland area to another, as well as between rural and urban settings [5]. This space heterogene-

ity combined with temporal heterogeneity due to seasonal fluctuations and long-term patterns

in climate enhances parameter uncertainty and prediction uncertainty within models.
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In order to address such uncertainties, researchers employ Bayesian inference methods. Un-

like frequentist methods based on point estimates from information at hand, Bayesian inference

allows for incorporation of prior beliefs and provides a probability distribution for all parameters

considered [6]. The method is most applicable in the scenario of malaria modelling in Kenya,

where parameter uncertainties and data limitations are significant. The Bayesian framework

enables researchers to quantify uncertainties in model parameters and predictions, providing

a more comprehensive understanding of the range of possible outcomes. This is crucial for

informing policy decisions and designing effective intervention strategies, as it allows decision-

makers to consider the full spectrum of potential scenarios rather than relying on potentially

misleading point estimates.

In this paper, we aim to demonstrate how Bayesian inference can be performed on the Ross

model. First, we will introduce the Ross model and its relevance to malaria transmission in

Kenya. Next, we will explain the principles of Bayesian inference and how it can be applied to

estimate the posterior distribution of the parameters of the Ross model. We will then describe

the implementation of the Bayesian inference procedure. We will specify prior distributions,

define a likelihood function, and the setup the Markov Chain Monte Carlo (MCMC) sampler

to estimate the posterior distributions of the model parameters. After obtaining the posterior

samples, we will analyze the results and compare them with the ground truth values. We will

assess the convergence of the MCMC sampler using diagnostic plots. We will display the

uncertainties associated with the parameter estimates and their implications for understanding

malaria transmission dynamics.

The rest of the paper is structured as follows: Section 2 introduces the Ross-Macdonald

model and its mathematical formulation. Section 3 explains the principles of Bayesian inference

and its application to the Ross model. Section 4 describes the implementation of the Bayesian

inference procedure and presents the results of the analysis and discusses the implications for

malaria transmission dynamics in Kenya. Finally, we conclude the paper and outlines future

research directions.



4 SHARON, MAINA, ODHIAMBO, MWALILI

2. SIR MODELS FOR MALARIA

WHO [7], describes malaria as a disease caused by plasmodium parasites and transmitted

to humans through the bites of infected female Anopheles mosquitoes. The spread of malaria

involves a complex interaction between the mosquito vectors, parasites and the human hosts,

making it a challenge to accurately model the disease. To solve this problem SIR models have

been widely used to capture the essential dynamics of malaria transmission [3].

The basic malaria transmission cycle can be summarized as follows:

• An infected mosquito (parasite) bites a susceptible human, potentially transmitting the

parasite.

• If transmission from the parasite occurs, the human host goes through an incubation

period before becoming infectious.

• An uninfected mosquito may bite an infectious human, potentially becoming infected

itself.

• The infected mosquito goes through a sporogonic cycle (parasite multiplication in

malaria), after which it can transmit the parasite to other humans.

To model this process, researchers have adapted the classic SIR model to include both human

and mosquito populations [8]. A basic SIR malaria model includes the following compart-

ments:

For humans:

• Sh: Susceptible humans.

• Ih: Infected (and infectious) humans.

• Rh: Recovered humans with temporary immunity.

For mosquitoes:

• Sm: Susceptible mosquitoes.

• Im: Infected (and infectious) mosquitoes.

These models help researchers and public health officials to understand the dynamics of malaria

transmission in different settings, forecast the effect of interventions like bed nets, indoor resid-

ual spraying, and drug therapy, examine malaria control and elimination strategy scenarios as
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well as study how climate change is expected to affect malaria transmission. However, it’s

important to note that while these models provide valuable insights, they also come with lim-

itations and uncertainties, particularly due to the complexity of malaria transmission and the

variability in human and mosquito populations across different regions [9].

2.1. SIR Malaria Models. We focus on the original Ross model. We call it M0. The Ross-

model, M0, is historically the first and also the simplest malaria model [10]. It only considers

infections in the human (Ih) and mosquito population (Im). The change in these infections is

given by ODEs cf. Eq. (1).

M0 model considers two interacting populations: humans and mosquitoes. The model de-

scribes the dynamics of malaria transmission by considering factors such as the biting rate of

mosquitoes, the duration of the infectious period, the probability of transmission from infected

mosquitoes to humans and vice versa, and the mortality rates of both humans and mosquitoes.

SIR models, such as the M0 model, are typically formulated as a system ODEs that describe

the flow of individuals between the different compartments over time [11]. The ODEs capture

the key processes of disease transmission, including the rate at which susceptible individuals

become infected, the rate at which infected individuals recover, and the rate at which recovered

individuals lose immunity (if applicable) [12].

A key property of ODE models is that, given a set of initial conditions for each compartment

(S(0), I(0),R(0)) and fixed parameter values, there exists a unique solution to the system of

ODEs. This means that the model can predict the trajectory of the disease over time, starting

from the specified initial state. The unique solution property is important for understanding the

deterministic behaviour of the model and for comparing the model’s predictions with observed

data.

The M0 model, as a specific instance of an SIR model, also possesses this unique solution

property. The model’s ODEs describe the dynamics of malaria transmission between humans

and mosquitoes, and the solution to these equations provides insights into the progression of

the disease over time [8] . By specifying the initial conditions for the human and mosquito

populations and the relevant parameters, such as biting rates and transmission probabilities,
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[13], the Ross-Macdonald model can be used to simulate the spread of malaria and to evaluate

the impact of different control strategies.

However, it is important to note that the unique solution property of SIR models, including

the M0 model, relies on the assumption of fixed parameter values. In reality, the parameters

governing disease transmission may vary over time or across different populations [14]. To

account for this variability, researchers often use statistical methods, such as Bayesian inference,

to estimate the parameters from observed data and to quantify the uncertainty associated with

these estimates as shown by [3].

2.2. Basic Ross Model. The foundation of mathematical modelling in malaria epidemiology

was laid by Ronald Ross in the early 20th century. Ross introduced the term ”pathometry”

to describe the ”quantitative study of a disease either in the individual or in the community”

[10]. His groundbreaking work demonstrated that reducing mosquito populations below a crit-

ical threshold could effectively control malaria transmission [15]. This concept, known as the

transmission threshold, was revolutionary for its time and set the stage for future developments

in malaria control strategies.

M0 , while simplistic by modern standards, captured the essential dynamics of malaria trans-

mission between humans and mosquitoes. It laid the groundwork for understanding the basic

reproductive number (R0) in vector-borne diseases, a concept that would later be formalized and

expanded upon [16]. The M0 only considers infections in humans and mosquito population.

The change in these infections is given by the ODEs [3]

İh = abmIm(1− Ih)− rIh

İm = acIh(1− Im)−µmIm(1)

There are two compartments; (Ih) for the human population and (Im) for the mosquito pop-

ulation. a,b,c,m,r,µ are parameters of M0 in Eq. (1) with plausible ranges shown in Table

1.
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TABLE 1. Table showing typical parameter ranges of M0 model, [3].
Parameter Description Typical Range Value

a Man biting rate/day [0.01,0.5] 0.2

b Proportion of bites that produces an infection in humans [0.2,0.5] 0.5

c Proportion of bites by which one susceptible mosquito becomes infected [0.5] 0.5

m Female mosquito-human ratio [0.5,40] 2.0

r Average recovery rate/day of humans [0.005,0.05day] 0.05

µ Per capita rate/day of mosquito mortality [0.05,0.5] 0.05

In this model the basic reproductive number is given by R0 = ma2bc/rµ . R0 is an important

parameter to make predictions. If R0 > 1 we get exponential growth of the diseases in the

population and if R0 < 1 we experience exponential decay.

3. BAYESIAN INFERENCE

Bayesian inference is a statistical approach that combines prior knowledge with observed

data to update our understanding of model parameters and make probabilistic predictions. This

method is particularly useful in the context of complex systems like malaria transmission, where

uncertainty is inherent and data may be limited [6].

3.1. Bayesian Inference in SIR Malaria Models. In the context of SIR malaria models,

Bayesian inference can be applied to estimate model parameters, quantify uncertainties, and

make predictions about disease spread [17]. The process typically involves:

(1) Prior Specification: Defining prior distributions for parameters such as transmission

rates, recovery rates, and mosquito lifespan based on existing literature or expert knowl-

edge. For example:

β ∼ Gamma(α,β ) // transmission rate

γ ∼ Uniform(a,b) // recovery rate

(2) Likelihood Function: Defining a likelihood function that quantifies the probability

of observing the malaria incidence data given the SIR model parameters. This often

involves solving the SIR differential equations and comparing the model output to the

observed data.
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(3) Posterior Computation: Using MCMC methods or other sampling techniques to ap-

proximate the posterior distribution of the parameters [6]. This step often requires so-

phisticated computational tools due to the complexity of SIR models.

(4) Inference and Prediction: Analyzing the posterior distributions to make inferences

about parameter values, assess the effectiveness of interventions, and make probabilistic

predictions about future malaria spread.

In M0, the parameters of interest may include the biting rate of mosquitoes (a), the proba-

bility of transmission from infected mosquitoes to humans (b), the probability of transmission

from infected humans to mosquitoes (c), the recovery rate of humans (r), and the mortality rate

of mosquitoes (µ). Prior distributions for these parameters can be specified based on existing

knowledge from literature, expert opinion, or previous studies.

The likelihood function, which quantifies the probability of observing the data given the

model parameters, plays a central role in Bayesian inference [6]. In the case of the M0, the

likelihood function describes the probability of observing the reported malaria cases or other

relevant data, such as mosquito infection rates, given the model parameters and the assumed

observation process.

3.2. Markov Chain Monte Carlo (MCMC). MCMC methods are crucial for sampling

from complex, high-dimensional probability distributions, such as the posterior distributions

in Bayesian inference for SIR malaria models [6]. The fundamental principle of MCMC is to

construct a Markov chain that converges to a stationary distribution, which in our case is the

desired posterior distribution.

In the context of the M0 for malaria transmission, MCMC is employed to generate a large

number of samples from the posterior distribution of the model parameters. These samples

can then be used to estimate the parameters and quantify their uncertainties [3]. The process

involves:

(1) Defining a Markov chain whose stationary distribution is the posterior distribution of

interest.

(2) Running the chain for a sufficient number of iterations to ensure convergence.
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(3) Using the generated samples to approximate the posterior distribution and derive pa-

rameter estimates.

3.3. Bayesian Inference for Malaria models. Once convergence and adequate mixing have

been established, the samples from the MCMC algorithm can be used to estimate the poste-

rior distributions of the M0 model parameters, along with their uncertainties. These posterior

distributions can then be used to make inferences about the malaria transmission dynamics, to

compare different intervention strategies, and to guide public health decision-making.

The key distinction in Bayesian inference is between the unknown quantities, θθθ , which follow

a probability distribution (the prior), and the observed data D, which are used to update the prior

and obtain the posterior distribution. One challenge in Bayesian inference for SIR models lies

in defining a suitable likelihood function. The likelihood quantifies the probability of observing

the data given the model parameters and plays a crucial role in updating the prior beliefs to

obtain the posterior distribution [6]. In the context of SIR models, the likelihood function

should capture the stochastic nature of the disease transmission process and the observational

noise in the data, [18].

3.3.1. Bayesian Inference for M0. To apply Bayesian inference to M0 we have to define a

prior and a generative model. From those we derive the posterior. It is conditioned on synthetic

observations D.

A clear distinction between parameters of the ODEs and those in Bayesian inference is made.

In Bayesian inference, the parameters are what we are uncertain about, and we express that

uncertainty as a probability distribution, i.e. degree belief in their values. This is the case for

the parameters of M0 when we do not know their values exactly. (Part of) the initial state

is also a Bayesian parameter if we lack complete information. Unknowns are represented as

Θ = (θ1, · · · ,θd) when there are d unknowns, e.g. Θ = (a,b,c,m,r,µ, Ih(0), Im(0)) in case of

M0.

Unknowns refers to Bayesian inference parameters while the mathematical models under

consideration also has parameters which will be referred to as parameters cf. Section 3.3.1. In

the case of SIR model the unknowns are usually the parameters of the ODEs, the basic repro-

ductive number, the initial state or variance of Gaussian noise. One approach is to estimate the
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unknowns using the data and use this values in the ODEs (The frequentist approach). Another

approach, is to use Bayesian inference. These unknowns are estimated using the available data

on the prevalence of malaria in some region. Often, they are few and biased. Hence, we are

uncertain about the values of the unknowns and the reliability of our models’ predictions.

We incorporate domain knowledge into the prior cf. Section 2.2. e.g. the proportion of bites

that infect humans ,b, is within the range [0.2,0.5]. We can choose a uniform prior over this

range if we believe that any b is equally likely or we can use a lognormal prior to express that

b > 0.

The synthetic observations are derived from the ground truths for each model. The ground

truths are true values of all the unknowns used to generate synthetic data. In experiments,

we want to see how well Bayesian inference recovers the ground truth. We know that with

each combination of values of the parameters and the initial state, there corresponds a unique

solution S(t) defined over the time interval
[
0, t f

]
such that S(0) is the initial state. Numerical

integration from ti = 0 to t f gives that solution. For example, the ground truth for M0, cf.

eq. (1), is given by a = 0.2,b = 0.5,c = 0.5,m = 20,r = 0.01 and µ = 0.12 and the initial

state is (Ih(0), Im(0)) = (x,y). For each state variable Si, i = 1, · · · ,d, we want to observe,

we specify ni observation times t1, · · · , t j, · · · , tni in
[
0, t f

]
. This way, we obtain the values

Si(t1), · · · ,Si(t j), · · · ,Si(tni) of state variable Si. Next, we add some noise ε j to xi(t j) to obtain the

simulated observations ot j = Si(t j)+ ε j for j = 1, · · · ,ni. Note that the number of observations

and the noise can differ between state variables. We consider several scenarios: 1) Number of

observations are the same for all components and are equally spaced in the time interval
[
0, t f

]
.

The noise introduced is Gaussian and its variance is the same everywhere. And 2), Same as

before but the noise variance per state variable differs.

4. RESULTS AND EXPERIMENTS

We have set up experiments to test the methodology described in Section 3 on the models

described in Section 2.1. For the first experiment, we formulate a ground truth by specifying

the initial state and the parameter values of the model. They determine the unique solution of

the system of ODEs. Next, we generate synthetic observations. At specified time steps we

determine the state of the solution and add Gaussian noise. These are the observations/data
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used by Bayesian inference. Inference returns an average solution with associated uncertainty.

We contrast this to the ground truth. Synthetic observations makes this possible while this is

out of question for real-world data. We use synthetic observation to allow us compare the final

predictive posterior with the ground truth that was used to generate the synthetic observations.

In this experiment, the ground truth is the solution to M0, cf. Eq. (1). with parameters

a = 0.2,b = 0.5,c = 0.5,m = 20,r = 0.01, and µm = 0.12 corresponding to the initial state

(Ih(0), Im(0)) = (0.001,0.001). We use data which shows observed malaria cases and infected

mosquito population in Kenya between 2010 to 2022 c.f Figure 1.

This time the unknowns ,θ , are both the parameters and the initial state cf. Eq. (1). We

used uniform priors for the parameters corresponding with the ranges given in Section 2.1 and

half-Cauchy for initial state reflecting a high uncertainty. We used the MCMC-samples after

convergence to construct the posterior predictive distribution shown. As expected the uncer-

tainty increases over time. When the system approaches the steady state corresponding with

the parameter values in the ground truth the uncertainty decreases again as expected since the

observations from then continue to fluctuate around constant values for Ih and Im.

FIGURE 1. The observed Malaria Cases and infected Mosquito population in Kenya.

Figure 1 show the The observed Malaria Cases and infected Mosquito population in Kenya

from 2010 to 2022. The blue shows the human cases and red the infected mosquitoes. These
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datasets were sourced from

https://www.statista.com/statistics/1240010/number-of-malaria-cases-in-kenya/

FIGURE 2. This figure shows both the observed malaria infections in human

(blue dots) and mosquito (red dots) populations. The ODE fitted lines for hu-

mans and mosquitoes are shown by the red and blue lines.

We subsequently fitted our ODE model using observed malaria infection data from both

human and mosquito populations. The ODE model presented in Figure 2 demonstrates poor fit

to the observed data. Therefore, we opted to use the Least square method to fit the observed

data. in Figure 1. The resulting OLS-optimized ODE trajectories in Figure 3 exhibit a precise

match to the dataset. Table 2 shows the calibrated OLS parameter estimates.

TABLE 2. Least Squares Solution of the best parameters estimates

Parameter OLS estimate

a 0.2797

b 0.7709

c 0.5000

m 2.0568

r 0.05

µ 0.5000
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FIGURE 3. This figure shows both the observed malaria infections in human

(green dots) and mosquito (blue dots) populations. The OLS fitted ODE lines

for humans and mosquitoes are shown by the green and blue lines.

TABLE 3. MCMC and highest Solution of the best parameters estimates†

Parameter Mean SD 2.5% HDI 97.5% HDI MCSE Mean r̂

a 0.280 0.001 0.278 0.281 0.0 1.01

b 0.770 0.004 0.763 0.778 0.0 1.00

m 2.055 0.009 2.041 2.072 0.0 1.00

r 0.164 0.001 0.162 0.165 0.0 1.00

σ 0.002 0.000 0.001 0.002 0.0 1.00

† c = 0.5000 and µ = 0.500 maintained the same values as OLS.

To estimate the posterior distributions of the model parameters, we implemented Markov

Chain Monte Carlo (MCMC) sampling, which generated a robust set of parameter samples

through iterative simulations. Subsequently, we summarized the results in a Table (see Table

3) and visualized them by plotting kernel density estimates (KDEs) to assess the uncertainty

and shape of the posterior distributions, alongside trace plots to evaluate chain convergence and

ensure sampling stability across iterations (see Figure 4).
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FIGURE 4. The MMCMC density and trace plots of the posterior parameter estimates.

In Figure 5, we present the final results of the MCMC simulations, which illustrate the pos-

terior estimates derived from 30 independent sampling iterations. The blue and red lines corre-

spond to the inferred trajectories for human and mosquito infections, respectively, demonstrat-

ing variability across the sampled parameter sets.
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FIGURE 5. This figure shows both the observed malaria infections in human

(blue dots) and mosquito (red dots) populations.

5. CONCLUSION AND FUTURE WORK

This study demonstrates the critical role of Bayesian inference and Markov Chain Monte

Carlo (MCMC) methods in addressing uncertainties inherent in malaria transmission mod-

elling. By applying these techniques to the Ross-Macdonald SIR model, we successfully esti-

mated key parameters—such as mosquito biting rates, transmission probabilities, and recovery

rates—while rigorously quantifying uncertainties through posterior distributions. The compar-

ison between Ordinary Least Squares (OLS) and Bayesian approaches revealed that while OLS

provided precise point estimates, Bayesian methods offered a more comprehensive understand-

ing of parameter variability, particularly when integrating prior knowledge and synthetic data.

The convergence of MCMC chains and the stability of posterior distributions underscored the

reliability of these estimates, even under Kenya’s heterogeneous transmission patterns and lim-

ited empirical data.

The findings hold significant implications for malaria control strategies in Kenya. By captur-

ing uncertainties in transmission dynamics, Bayesian frameworks enable policymakers to eval-

uate intervention impacts probabilistically, accounting for both spatial and temporal variability.

For instance, the posterior estimates of the basic reproductive number (R0) and mosquito-human
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ratios provide actionable insights for prioritizing bed net distribution or indoor residual spray-

ing in high-risk regions. Furthermore, the integration of prior knowledge—such as biologically

plausible parameter ranges—enhances model robustness in data-scarce settings, ensuring that

interventions are both evidence-based and adaptable to evolving transmission landscapes.

Future research should expand these methodologies to more complex models, such as sto-

chastic or agent-based frameworks, to better capture individual-level interactions and climate-

driven transmission shifts. Additionally, applying Approximate Bayesian Computation (ABC)

could address limitations posed by non-Gaussian noise in real-world mosquito population data.

By advancing Bayesian approaches in malaria modelling, this work paves the way for scalable,

data-informed strategies that align with Kenya’s public health goals and global malaria eradica-

tion efforts. Such innovations will be vital in navigating the dual challenges of drug resistance

and climate change, ultimately fostering sustainable, community-tailored solutions.
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