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Abstract. In this paper, we propose a new delayed fractional-order model that describes the dynamics of human

immunodeficiency virus (HIV). The proposed model incorporates three transmission modes, two types of infected

cells, the adaptive immunity exerted by antibodies and CTL cells, two delays, one in viral production and the

other in the activation time of antibodies, as well as four therapeutic parameters to represent different aspects

of the therapy and the effect of memory described by Caputo fractional derivative. Additionally, we determine

the equilibrium points and analyze their global stability with respect to specific threshold parameters. Moreover,

we explore the existence of the Hopf bifurcation, demonstrating that the immune delay is the primary factor

responsible for its occurrence.
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1. INTRODUCTION

Human immunodeficiency virus (HIV) is a virus that attacks the body’s immune system. In

spite of the progress of medicine around the world, the HIV infection remains a major global

public health concern because, without treatment, it can progress to acquired immunodeficiency

syndrome (AIDS). According to the World Health Organization (WHO) [1], HIV infection

caused approximately 42.3 million deaths to date. As of the end of 2023, an estimated 39.9

million people were living with HIV, with about 65% of them residing in the WHO African

region. In the same year, around 1.3 million people acquired HIV, and approximately 630 000

died from HIV-related causes. HIV is transmitted through the exchange of infected body fluids

such as blood, semen, vaginal secretions, and breast milk. Additionally, it can be passed from

mother to child during pregnancy, childbirth, or breastfeeding. However, casual contact, such

as hugging or kissing, does not transmit HIV. Early stages of infection are often asymptomatic

or present with mild flu-like symptoms, making early diagnosis difficult but critical.

Although there is no cure for HIV, it can be treated and prevented with antiretroviral therapy

(ART). Untreated, it can progress to AIDS, often after many years. ART includes different

classes of drugs, most notably reverse transcriptase inhibitors (RTIs) and protease inhibitors

(PIs). RTIs prevent the conversion of viral RNA into DNA, which block the activity of reverse

transcriptase and stop cell-to-cell transmission. PIs, on the other hand, block the protease en-

zyme that is crucial for the final maturation of new viral particles, which prevents infected cells

from producing HIV virions. However, their introduction causes infected cells to produce non-

infectious virions. However, HIV virions that were produced before the initiation of treatment

remain infectious. Thus, there are two types of viral particles: those unaffected by protease

inhibitors, which are still infectious, and those formed under the influence of the drugs, which

are noninfectious.

The HIV weakens the immune system by targeting CD4+T cells, which activates the body’s

adaptive immune response, playing a crucial role in fighting this infection. This response in-

volves two primary forms of immunity: humoral immunity, which involves the production of

antibodies by B cells that identify and bind specific viral antigens in order to neutralize the virus

and prevent its entry into host cells and cellular immunity, which is mediated by cytotoxic T
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lymphocytes (CTLs) that target and eliminate HIV-infected cells by recognizing viral peptides

presented on the surface of these cells. This response plays an essential role in controlling vi-

ral replication, particularly in the early stages of infection. Both types of adaptive immunity,

humoral and cellular, are characterized by specificity and immunological memory, allowing the

immune system to respond more effectively when it encounters the virus again.

Recently, modeling the propagation and progression of HIV in the human population has at-

tracted the attention of many researchers. Several studies have explored this infection dynamics

using classical integer-order differential equations. Cai et al. [2] analyzed the effect of treat-

ment delays on stability and showed the occurrence of Hopf bifurcations. Hattaf and Yousfi

[3] investigated a mathematical model with delay to describe HIV infection of CD4+T-cells

during therapy. The model incorporates both therapy and delay, providing new insights into the

dynamics of HIV infection under treatment. Later in 2018 [4], they proposed a mathematical

model of HIV infection that incorporates both virus-to-cell and cell-to-cell transmission modes,

while accounting for adaptive immunity. The study emphasized the importance of these modes

in determining the stability of the disease dynamics. Ali et al. [5] modeled HIV/AIDS-TB

co-infection with media awareness and studied the stability of multiple equilibria.

However, the above cited models are based on classical derivatives, which are local operators

and cannot capture memory effects. This limitation has led researchers to turn to fractional

differential equations (FDEs), which better reflect the memory and hereditary properties of bi-

ological processes. For example, Hajhouji et al. [6] developed a fractional HIV-1 model under

Highly active antiretroviral therapy (HAART), incorporating humoral immunity and immuno-

logical memory, showing the relevance of fractional modeling in capturing long-term immune

responses and treatment dynamics. Similarly, Phukan and Dutta [7], Rajivganthi and Rihan [8],

developed a Caputo fractional-order model, where infection occurs through various modes, em-

phasizing the importance of fractional derivatives in capturing memory effects and providing a

more accurate description of viral infections dynamics.

Motivated by the above biological and mathematical results, we propose a new mathematical

model that describes the dynamics of HIV infection with therapy, delays and adaptive immu-

nity. This paper is organized as follows. In Sect 2, the formulation of the developed model is
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detailed. Continuing with Sect 3, we define the threshold parameters and determine the equili-

birium points of our model. Sect 4 focuses on examining the global stability of the equilibria,

while Sect 5 demonstrates that the second delay can induce periodic oscillations through Hopf

bifurcations. Finally, the paper ends with a conclusion and some directions of future research.

2. MODEL FORMULATION AND ITS SPECIAL CASES

In medicine, it is known that the introduction of PIs in HIV infection leads to the emer-

gence of two types of viruses: infectious and noninfectious viruses. Therefore, we propose the

following model formulated by fractional delay differential equations (FDDEs):

CDαS(t) = λ −dS(t)− (1−ε1)β1S(t)VI(t)
1+α1VI(t)

− (1−ε2)β2S(t)A(t)
1+α2A(t) − (1−ε3)β3S(t)L(t)

1+α3L(t) ,

CDαL(t) = η

(
(1−ε1)β1S(t)VI(t)

1+α1VI(t)
+ (1−ε2)β2S(t)A(t)

1+α2A(t) + (1−ε3)β3S(t)L(t)
1+α3L(t)

)
− (e+ r)L(t),

CDαA(t) = (1−η)
(
(1−ε1)β1S(t)VI(t)

1+α1VI(t)
+ (1−ε2)β2S(t)A(t)

1+α2A(t) + (1−ε3)β3S(t)L(t)
1+α3L(t)

)
+ rL(t)

−aA(t)− p1A(t)C(t),

CDαVI(t) = (1− ε4)ke−mτ1A(t− τ1)−µVI(t)− pVI(t)W (t),

CDαVNI(t) = ε4ke−mτ1A(t− τ1)−µVNI(t),

CDαW (t) = gVI(t− τ2)W (t− τ2)−hW (t),

CDαC(t) = σA(t)C(t)−dcC(t),

(1)

where S(t),L(t),A(t),VI(t),VNI(t),W (t) and C(t) represent respectively the concentrations of

susceptible cells, non-productive infected cells, productive infected cells, infectious virus, non-

infectious virus, antibodies and CTL cells. Susceptible host cells are produced at a constant rate

λ , die at a rate dS, and become infected either by free infectious viruses or through direct con-

tact with infected cells. The total infection rate is given by (1−ε1)β1S(t)VI(t)
1+α1VI(t)

+ (1−ε2)β2S(t)A(t)
1+α2A(t) +

(1−ε3)β3S(t)L(t)
1+α3L(t) , where β1, β2, and β3 represent the infection rates for virus-to-cell transmis-

sion, cell-to-cell transmission by productive infected cells, and cell-to-cell transmission by

non-productive infected cells, respectively. The parameters ε1, ε2, and ε3 denote the efficacy

of RTIs in blocking infection through the corresponding modes of transmission. Once infected,

a susceptible cell becomes either a non-productive infected cell with probability η ∈ (0,1) or

a productive infected cell with probability 1−η . Non-productive infected cells die at rate eL

and can transition into productive infected cells at rate rL. Productive infected cells die at rate
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aA and are eliminated by CTLs at rate p1AC. These productive cells are responsible for the

generation of viral particles at rate k, which are either cleared at rate µ or neutralized by anti-

bodies at rate pVIW . Antibodies are activated in response to the infectious virus at rate gVIW

and decay at rate hW . CTL cells are stimulated by productive infected cells at rate σAC and die

at rate dcC. Furthermore, the parameter ε4 denotes the efficacy of PIs that reduce the produc-

tion of infectious virus, with τ1 representing the intracellular delay required for newly produced

viral particles to mature and become infectious. Additionally, τ2 captures the time delay in the

activation of antibodies following viral presence.

Obviously, none of the equations of system (1) depend on the variable VNI . Then, model (1)

can be rewritten by the following reduced system:

CDαS(t) = λ −dS(t)− (1−ε1)β1S(t)VI(t)
1+α1VI(t)

− (1−ε2)β2S(t)A(t)
1+α2A(t) − (1−ε3)β3S(t)L(t)

1+α3L(t) ,

CDαL(t) = η

(
(1−ε1)β1S(t)VI(t)

1+α1VI(t)
+ (1−ε2)β2S(t)A(t)

1+α2A(t) + (1−ε3)β3S(t)L(t)
1+α3L(t)

)
− (e+ r)L(t),

CDαA(t) = (1−η)
(
(1−ε1)β1S(t)VI(t)

1+α1VI(t)
+ (1−ε2)β2S(t)A(t)

1+α2A(t) + (1−ε3)β3S(t)L(t)
1+α3L(t)

)
+ rL(t)

−aA(t)− p1A(t)C(t),

CDαVI(t) = (1− ε4)ke−mτ1A(t− τ1)−µVI(t)− pVI(t)W (t),

CDαW (t) = gVI(t− τ2)W (t− τ2)−hW (t),

CDαC(t) = σA(t)C(t)−dcC(t).

(2)

In this study, we consider system (2) with the following initial conditions:

S(θ) = φ1(θ)≥ 0, L(θ) = φ2(θ)≥ 0, A(θ) = φ3(θ)≥ 0, VI(θ) = φ4(θ)≥ 0,

W (θ) = φ5(θ)≥ 0, C(θ) = φ6(θ)≥ 0, θ ∈ [−τ,0], τ = max{τ1,τ2}.

Here, CDα is the Caputo fractional derivative of order α (0<α ≤ 1) [9], defined for an arbitrary

function f by

CDα f (t) =
1

Γ(1−α)

∫ t

0
(t− s)−α f ′(s)ds.

It is important to note that our proposed model includes numerous special cases available in the

litterature. For example,

• When α = 1, η = 0, β2 = β3 = 0, τ1 = τ2 = 0, ε2 = ε3 = 0, latently infected cells and

adaptive immunity are neglected, we obtain the model described in [10].
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• When α = 1, β2 = β3 = 0, τ1 = τ2 = 0, ε1 = ε2 = ε3 = ε4 = 0 and adaptive immunity

is ignored, we get the model in [11].

• When α = 1, ε1 = ε2 = ε3 = ε4 = 0,τ1 = τ2 = 0 and adaptive immunity is neglected,

we obtain the simplified version of the Hattaf and Dutta model [12].

• When α1 = α2 = 1, β3 = 0, ε1 = ε2 = ε3 = ε4 = 0, τ2 = 0 and cellular immunity is

excluded, we recover the Rajivganthi and Rihan model [8].

• When η = 1, ε1 = ε2 = ε3 = ε4 = 0, τ1 = τ2 = 0 and adaptive immunity is neglected,

the system corresponds to the fractional model introduced in [7] for HIV dynamics is

obtained.

3. EQUILIBRIA AND THRESHOLD PARAMETERS

It is evident that our model (2) always possesses a unique equilibrium point E0 =

(S0,0,0,0,0,0), where S0 =
λ

d . Then we define the basic reproduction number R0 of our system

as follows

(3) R0 =
(θ((1− ε4)ke−mτ1(1− ε1)β1 +µ(1− ε2)β2)+aµη(1− ε3)β3)S0

µa(e+ r)
,

where θ = r+(1−η)e.

The other equilibrium points of the model (2) satisfy the following system

λ −dS− (1−ε1)β1SVI
1+α1VI

− (1−ε2)β2SA
1+α2A − (1−ε3)β3SL

1+α3L = 0,

η

(
(1−ε1)β1SVI

1+α1VI
+ (1−ε2)β2SA

1+α2A + (1−ε3)β3SL
1+α3L

)
− (e+ r)L = 0,

(1−η)
(
(1−ε1)β1SVI

1+α1VI
+ (1−ε2)β2SA

1+α2A + (1−ε3)β3SL
1+α3L

)
+ rL−aA− p1AC = 0,

(1− ε4)ke−mτ1A−µVI− pVIW = 0,

gVIW −hW = 0,

σAC−dcC = 0.

(4)

By using the last two equations of the system (4), we obtain W = 0 or VI =
h
g and C = 0 or

A = dc
σ

. Then we discuss four cases.

• If W = 0 and C = 0, we get L = η(λ−dS)
e+r ,A = (r+(1−η)e)(λ−dS)

a(e+r) ,VI =

(1−ε4)k(r+(1−η)e)e−mτ1(λ−dS)
aµ(e+r) and



DELAYED FRACTIONAL DIFFERENTIAL EQUATIONS DESCRIBING THE DYNAMICS OF HIV 7

(1− ε1)β1S(1− ε4)k(r+(1−η)e)e−mτ1

(1+α1 f (S))
+

(1− ε2)β2S(r+(1−η)e)µ
(1+α2g(S))

+
(1− ε3)β3Sηµa
(1+α3Q(s))

−aµ(e+ r) = 0

with f (S) = (1−ε4)k(r+(1−η)e)e−mτ1(λ−dS)
µa(e+r) ,g(S) = (r+(1−η)e)(λ−dS)

a(e+r) and Q(S) = η(λ−dS)
e+r .

Since L ≥ 0, we have S ≤ λ

d . This implies that there is no biological equilibrium when

S > λ

d .

Let F be a function defined on the closed interval [0, λ

d ] as follows

F(S) =
(1− ε1)β1S(1− ε4)k(r+(1−η)e)e−mτ1

(1+α1 f (S))
+

(1− ε2)β2S(r+(1−η)e)µ
(1+α2g(S))

+
(1− ε3)β3ηSµa
(1+α3Q(S))

−aµ(e+ r).

We have F(0) =−aµ(e+ r)< 0,F(λ

d ) = µa(e+ r)(R0−1) and

F ′(S) =
(1− ε1)β1(1− ε4)k(r+(1−η)e)e−mτ1

(1+α1 f (S))2

+
α1(1− ε1)β1(1− ε4)

2k2e−2mτ1(r+(1−η)e)2λ

µa(e+ r)(1+α1 f (S))2

+
(1− ε2)β2µ(r+(1−η)e)a(e+ r)+(1− ε2)β2µ(r+(1−η)e)2α2λ

a(e+ r)(1+α2g(S))2

+
(1− ε3)β3µaη(e+ r)+(1− ε3)β3α3η2µaλ

(e+ r)(1+α3Q(S))2 > 0.

Then the equation F(S) = 0 has a unique solution S1 ∈ (0, λ

d ) if R0 > 1. There-

fore, the model (2) has a unique equilibrium point without immune response

E1(S1,L1,A1,VI1 ,0,0) when R0 > 1.

• If W 6= 0 and C = 0, then VI =
h
g . Based on the system (4), we get L = η(λ−dS)

e+r ,A =

(r+(1−η)e)(λ−dS)
a(e+r) , W = g(1−ε4)k(r+(1−η)e)e−mτ1(λ−dS)−µah(e+r)

aph(e+r) and

(1− ε1)β1Sh(e+ r)
g+α1h

+
(1− ε2)β2S(r+(1−η)e)(λ −dS)

a(1+α2u(S))
+

(1− ε3)β3ηS(λ −dS)
1+α3v(S)

− (e+ r)(λ −dS) = 0,

where u(S) = (r+(1−η)e)(λ−dS)
a(e+r) and v(S) = η(λ−dS)

e+r .
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Since W ≥ 0, we have S ≤ λ

d −
µah(e+r)

dgk(r+(1−η)e)e−mτ1 . This implies that there is no equi-

librium when S > λ

d −
µah(e+r)

dg(1−ε4)k(r+(1−η)e)e−mτ1 or λ

d −
µah(e+r)

dg(1−ε4)k(r+(1−η)e)e−mτ1 ≤ 0.

Let’s consider s∗= λ

d −
µah(e+r)

dg(1−ε4)k(r+(1−η)e)e−mτ1 and G the function defined on the closed

interval [0,s∗] as follows

G(S) =
(1− ε1)β1Sh(e+ r)

g+α1h
+

(1− ε2)β2S(r+(1−η)e)(λ −dS)
a(1+α2u(S))

+
(1− ε3)β3ηS(λ −dS)

1+α3v(S)
− (e+ r)(λ −dS).

We have G(0) =−λ (e+ r)< 0, and

G′(S) =
(1− ε1)β1h(e+ r)

g+α1h
+

(1− ε2)β2(r+(1−η)e)(λ −dS)
a(1+α2u(S))

− (1− ε2)β2S(r+(1−η)e)(λ −dS)α2u′(S)
a(1+α2u(S))2 +

(1− ε3)β3(λ −dS)
1+α3v(S)

− (1− ε3)β3S(λ −dS)α3v′(S)
(1+α3v(S))2 +d

(
e+ r− (1− ε2)β2S(r+(1−η)e)

a(1+α2u(S))

−(1− ε3)β3ηS
1+α3v(S)

)
.

Since u′(S) = −d(r+(1−η)e)
(e+r)a < 0, v′(S) = −dη

e+r < 0 and

e+ r− (1− ε2)β2S(r+(1−η)e)
a(1+α2u(S))

− (1− ε3)β3ηS
1+α3v(S)

=
(1− ε1)β1Sh(e+ r)
(g+α1h)(λ −dS)

> 0,

then G′(S)> 0.

When the humoral immune response has not been established, we have gVI1 − h ≤

0. Hence, we define another threshold parameter called the reproduction number for

humoral immunity as follows

(5) RW
1 =

gVI1

h
,

where 1
h is the average life span of antibodies and V1 is the quantity of viruses at the

steady state E1. So, the number RW
1 can biologically determine the average number of

antibodies activated by virus.

Note that when RW
1 > 1, we have VI1 >

h
g and S1 <

λ

d −
µah(e+r)

dg(1−ε4)ke−mτ1(r+(1−η)e) so that

we will subsequently demonstrate that G(s∗) > 0. And thus the equation G(S) = 0
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admits a unique solution S2 ∈ (0, λ

d −
µah(e+r)

dg(1−ε4)ke−mτ1(r+(1−η)e)) if RW
1 > 1. There-

fore, the model (2) has a unique infection equilibrium with only humoral immunity

E2(S2,L2,A2,VI2,W2,0) when RW
1 > 1.

• If W = 0 and C 6= 0, then A = dc
σ

. Based on the system (4), we get L = η(λ−dS)
e+r ,VI =

(1−ε4)ke−mτ1dc
σ µ

, C = (r+(1−η)e)σ(λ−dS)−adc(e+r)
dc p1(e+r) and

(1− ε1)β1S(1− ε4)ke−mτ1dc(e+ r)
µσ +α1(1− ε4)ke−mτ1dc

+
(1− ε2)β2Sdc(e+ r)

σ +α2dc

+
(1− ε3)β3ηS(λ −dS)

1+α3h(S)
− (e+ r)(λ −dS) = 0,

where h(S) = η(λ−dS)
e+r .

Since C ≥ 0, we have S ≤ λ

d −
adc(e+r)

d(r+(1−η)e)σ . This implies that there is no equilib-

rium when S > λ

d −
adc(e+r)

d(r+(1−η)e)σ or λ

d −
adc(e+r)

d(r+(1−η)e)σ ≤ 0. Let’s consider s1 = λ

d −
adc(e+r)

d(r+(1−η)e)σ and H the function defined on the closed interval [0,s1] as follows

H(S) =
(1− ε1)β1S(1− ε4)ke−mτ1dc(e+ r)

µσ +α1(1− ε4)ke−mτ1dc
+

(1− ε2)β2Sdc(e+ r)
σ +α2dc

+
(1− ε3)β3ηS(λ −dS)

1+α3h(S)
− (e+ r)(λ −dS).

We have H(0) =−λ (e+ r)< 0, and

H ′(S) =
(1− ε1)β1(1− ε4)ke−mτ1dc(e+ r)

µσ +α1(1− ε4)ke−mτ1dc
+

(1− ε2)β2dc(e+ r)
σ +α2dc

+
(1− ε3)β3η(λ −dS)

1+α3h(S)

− (1− ε3)β3ηS(λ −dS)α3h′(S)
(1+α3h(S))2 +d(e+ r− (1− ε3)β3ηS

1+α3h(S)
).

Since h′(S) = −dη

e+r < 0 and

e+ r− (1− ε3)β3ηS
1+α3h(S)

=
(1− ε1)β1S(1− ε4)ke−mτ1dc(e+ r)
(µσ +α1(1− ε4)ke−mτ1dc)(λ −dS)

+
(1− ε2)β2Sdc(e+ r)
(σ +α2dc)(λ −dS)

> 0,

then H ′(S)> 0. When the cellular immune response has not been established, we have

σA1− dc ≤ 0. Hence, we define another threshold parameter called the reproduction

number for cellular immunity as follows

(6) RC
1 =

σA1

dc
,
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which represents the average numbre of the activated CTL cells by the productive in-

fected cells during the period of infection when the humoral immunity have not been

started.

When RC
1 > 0, we have A1 >

dc
σ

and S1 <
λ

d −
adc(e+r)

d(r+(1−η)e)σ so that we obtain H(s1)> 0.

Hence, when RC
1 > 1, there exists a unique infection equilibrium with only cellular

immunity E3(S3,L3,A3,VI3,0,C3).

• If W 6= 0 and C 6= 0, then VI =
h
g and A= dc

σ
. From the system (4), we obtain L= η(λ−dS)

e+r ,

W = g(1−ε4)k(r+(1−η)e)e−mτ1(λ−dS)−µah(e+r)
aph(e+r) , C = (r+(1−η)e)σ(λ−dS)−adc(e+r)

dc p1(e+r) and

(1− ε1)β1Sh(e+ r)
g+α1h

+
(1− ε2)β2Sdc(e+ r)

σ +α2dc
+

(1− ε3)β3ηS(λ −dS)
1+α3R(S)

− (e+ r)(λ −dS) = 0,

where R(S) = η(λ−dS)
e+r .

Since C ≥ 0, we have S ≤ λ

d −
adc(e+r)

σ(r+(1−η)e)d . This implies that there is no equi-

librium when S > λ

d −
adc(e+r)

σ(r+(1−η)e)d or λ

d −
adc(e+r)

σ(r+(1−η)e)d ≤ 0. Let’s consider s2 =

λ

d −
adc(e+r)

σ(r+(1−η)e)d and M the function defined on the closed interval [0,s2] as follows

M(S)=
(1− ε1)β1Sh(e+ r)

g+α1h
+
(1− ε2)β2Sdc(e+ r)

σ +α2dc
+
(1− ε3)β3ηS(λ −dS)

1+α3R(S)
−(e+r)(λ−dS).

We have M(0) =−λ (e+ r), and

M′(S) =
(1− ε1)β1h(e+ r)

g+α1h
+

(1− ε2)β2dc(e+ r)
σ +α2dc

+
(1− ε3)β3η(λ −dS)

1+α3R(S)

− (1− ε3)β3ηS(λ −dS)α3R′(S)
(1+α3h(S))2 +d(e+ r− (1− ε3)β3ηS

1+α3h(S)
)> 0.

Now, in addition to RC
1 , we define the reproduction number for cellular immunity in

competition by

(7) RC
2 =

σA2

dc
,

which represents the average number of the activates CTL cells by productive infected

cells during the period of infection in the presence of humoral immunity. If RC
2 > 1,

then S2 > λ

d −
adc(e+r)

σ(r+(1−η)e)d so that we get M(s2) > 0. Hence, the equation M(S) = 0

has a unique solution S4 ∈ (0, λ

d −
adc(e+r)

σ(r+(1−η)e)d ). By the system (4), we obtain W =
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g(1−ε4)ke−mτ1dc−µhσ

phσ
. As W ≥ 0, In addition to RW

1 , we define the reproduction number

for humoral immunity in competition as

(8) RW
2 =

gVI3

h
,

wich represents the the average number of the activates antibodies by virus during the

period of infection when the cellular immunity is established. Then we conclude that

when RW
2 > 1 and RC

2 > 1 there exists a unique infection equilibrium with both humoral

and cellular immunity E4 = (S4,L4,A4,VI4,W4,C4).

Theorem 1. Let R0, RW
1 , RC

1 , RC
2 and RW

2 defined respectively in (3), (5), (6), (7) and (8).

(1) If R0 ≤ 1, then model (2) has a unique infection-free equilibrium E0 = (S0,0,0,0,0,0),

where S0 =
λ

d .

(2) If R0 > 1, then model (2) has a unique immune-free infection equilibrium E1 =

(S1,L1,A1,VI1 ,0,0) besides E0, where S1 ∈ (0, λ

d ),L1 =
η(λ−dS1)

e+r ,A1 =
(r+(1−η)e)(λ−dS1)

a(e+r)

and

VI1 =
(1−ε4)k(r+(1−η)e)e−mτ1(λ−dS1)

µa(e+r) .

(3) If RW
1 > 1, then model (2) has a unique infection equilibrium with only

humoral immunity E2 = (S2,L2,A2,VI2,W2,0) besides E0 and E1, where

S2 ∈ (0, λ

d −
µah(e+r)

dg(1−ε4)k(r+(1−η)e)e−mτ1 ),

VI2 = h
g ,L2 = η(λ−dS2)

e+r ,A2 = (r+(1−η)e)(λ−dS2)
a(e+r) and W2 =

g(1−ε4)k(r+(1−η)e)e−mτ1(λ−dS2)−µah(e+r)
aph(e+r) .

(4) If RC
1 > 1, then model (2) has a unique infection equilibrium with only cellular immunity

E3 = (S3,L3,A3,VI3,0,C3) besides E0, E1 and E2 where S3 ∈ (0, λ

d −
adc(e+r)

d(r+(1−η)e)σ ), L3 =

η(λ−dS3)
e+r , VI3 =

(1−ε4)ke−mτ1dc
σ µ

and C3 =
(r+(1−η)e)σ(λ−dS3)−adc(e+r)

dc p1(e+r) .

(5) If RW
2 > 1 and RC

2 > 1, then model (2) has a unique infection equilibrium with

both humoral and cellular immunity E4 = (S4,L4,A4,VI4 ,W4,C4) besides E0, E1, E2

and E3 where S4 ∈ (0, λ

d −
adc(e+r)

σ(r+(1−η)e)d ), L4 = η(λ−dS4)
e+r , A4 = dc

σ
, VI4 = h

g , W4 =

g(1−ε4)ke−mτ1dc−µhσ

phσ
and C4 =

σ(r+(1−η)e)(λ−dS4)−adc(e+r)
p1dc(e+r) .
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4. GLOBAL STABILITY

Theorem 2. If R0 ≤ 1, then the infection-free equilibrium E0 is globally asymptotically stable

for any delays τ1,τ2 ≥ 0.

Proof. Let u = (S,L,A,VI,W,C) be a solution of (2) and let’s construct a Lyapunov function in

E0 as follows

H0(u) =
η

2S0
(S−S0)

2 +L.

Further, H0(u) = 0 if and only if S(t) = S0,L(t) = A(t) =VI(t) =W (t) =C(t) = 0.

Using the property of fractional derivatives referenced in [13], we obtain

CDαH0 =
η

2S0

CDα (S−S0)
2 +CDαL,

≤ η

S0
(S−S0)

CDαS(t)+CDαL(t),

≤ η

S0
(S−S0)

(
λ −dS− (1− ε1)β1SVI

1+α1VI
− (1− ε2)β2SA

1+α2A
− (1− ε3)β3SL

1+α3L

)
+η

(
(1− ε1)β1SVI

1+α1VI
+

(1− ε2)β2SA
1+α2A

+
(1− ε3)β3SL

1+α3L

)
− (e+ r)L.

Utilizing the infection-free equilibrium condition of the model S0 =
λ

d , we get

CDαH0 ≤−
dη

S0
(S−S0)

2− η

S0

(
(1− ε1)β1VI

1+α1VI
+

(1− ε2)β2A
1+α2A

+
(1− ε3)β3L

1+α3L

)
(S−S0)

2

+η

(
(1− ε1)β1VI

1+α1VI
+

(1− ε2)β2A
1+α2A

+
(1− ε3)β3L

1+α3L

)
S0− (e+ r)L,

≤− η

S0

(
d +

(1− ε1)β1VI

1+α1VI
+

(1− ε2)β2A
1+α2A

+
(1− ε3)β3L

1+α3L

)
(S−S0)

2

+η

(
(1− ε1)β1ke−mτ1(r+(1−η)e)L

µaη
+

(1− ε2)β2(r+(1−η)e)L
aη

+(1− ε3)β3L
)

S0

− (e+ r)L,

≤− η

S0

(
d +

(1− ε1)β1VI

1+α1VI
+

(1− ε2)β2A
1+α2A

+
(1− ε3)β3L

1+α3L

)
(S−S0)

2 +(e+ r)(R0−1)L.

Based on the assumptions R0 ≤ 1, we obtain CDαH0(t) < 0, with equality if and only if

S = S0,L = 0,A = 0,VI = 0,W = 0 and C = 0. Consequently, the largest invariant set of

{(S,L,A,VI,W,C) ∈ R6
+ : CDαH0(t) = 0} is the singleton {E0}. Therefore, by the LaSalle’s

invariance principle [14], the equilibrium point E0 is globally asymptotically stable. �

Assume that R0 > 1. We now state the following theorems under this condition.
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Theorem 3. If RW
1 ≤ 1 and RC

1 ≤ 1 then the immune-free infection equilibrium E1 is globally

asymptotically stable for η = 1 and any delays τ1,τ2 ≥ 0.

Proof. Let u = (S,L,A,VI,W,C), to prove E1 is globally asymptotically stable, construct the

following Lyapunov functional

H1(u) =S1Φ

(
S
S1

)
+L1Φ

(
L
L1

)
+

1
rL1

(
(1− ε1)β1S1VI1

1+α1VI1

+
(1− ε2)β2S1A1

1+α2A1

)
A1Φ

(
A
A1

)
+

(1− ε1)β1S1VI1emτ1

(1− ε4)kA1(1+α1VI1)
VI1Φ

(
V
VI1

)
+

p(1− ε1)β1S1VI1emτ1

g(1− ε4)kA1(1+α1VI1)
W

+
p1

σrL1

(
(1− ε1)β1S1VI1

1+α1VI1

+
(1− ε2)β2S1A1

1+α2A1

)
C

+
(1− ε1)β1S1VI1

1+α1VI1

CD−α
τ1

(
A(t−σ)

A1
−1− ln

A(t−σ)

A1

)
+

p(1− ε1)β1S1VI1emτ1

(1− ε4)kA1(1+α1VI1)
CD−α

τ2
VI(t−σ)W (t−σ),

where CD−α
τ represents the fractional integral, σ ∈ [0,τ] and Φ(x)= x−1− ln(x), for x> 0. It is

clear that Φ(x)≥ 0 for all x > 0, and Φ(x) = 0 if and only if x = 1. Thus, H1(S,L,A,VI,W,C)>

0 for all S,L,A,VI,W,C > 0 and H1(S1,L1,A1,VI1,W1,C1) = 0.

By applying the property of fractional derivatives presented in [15], we get

CDαH1 ≤
(

1− S1

S

)
CDαS(t)+

(
1− L1

L

)
CDαL(t)

+
1

rL1

(
(1− ε1)β1S1VI1

1+α1VI1

+
(1− ε2)β2S1A1

1+α2A1

)(
1− A1

A

)
CDαA(t)

+
(1− ε1)β1S1VI1emτ1

(1− ε4)kA1(1+α1VI1)

(
1− VI1

VI

)
CDαVI(t)+

p(1− ε1)β1S1VI1emτ1

g(1− ε4)kA1(1+α1VI1)
CDαW (t)

+
p1

σrL1

(
(1− ε1)β1S1VI1

1+α1VI1

+
(1− ε2)β2S1A1

1+α2A1

)
CDαC(t)

+
(1− ε1)β1S1VI1

1+α1VI1

(
A(t)
A1
− ln

A(t)
A1
− A(t− τ1)

A1
+ ln

A(t− τ1)

A1

)
+

p(1− ε1)β1S1VI1emτ1

(1− ε4)kA1(1+α1VI1)
(VI(t)W (t)−VI(t− τ2)W (t− τ2)).

Now, by using equilibrium conditions, we have

λ = dS1 +
(1− ε1)β1S1VI1

1+α1VI1

+
(1− ε2)β2S1A1

1+α2A1
+

(1− ε3)β3S1L1

1+α3L1
,
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(1− ε1)β1S1VI1

1+α1VI1

+
(1− ε2)β2S1A1

1+α2A1
+

(1− ε3)β3S1L1

1+α3L1
= (e+ r)L1,

rL1 = aA1,µVI1 = (1− ε4)ke−mτ1A1,

then we obtain

CDαH1

≤(1− ε1)β1S1VI1

1+α1VI1

(
−1− VI

VI1

+
(1+α1VI1)VI

(1+α1VI)VI1

+
1+α1VI

1+α1VI1

)
+

(1− ε2)β2S1A1

1+α2A1

(
−1− A

A1
+

(1+α2A1)A
(1+α2A)A1

+
1+α2A
1+α2A1

)
+

(1− ε3)β3S1L1

1+α3L1

(
−1− L

L1
+

(1+α3L1)L
(1+α3L)L1

+
1+α3L
1+α3L1

)
− (1− ε1)β1S1VI1

1+α1VI1

[
Φ

(
S1

S

)
+Φ

(
LA1

L1A

)
+Φ

(
A(t− τ)VI1

A1VI

)
+Φ

(
SVIL1(1+α1VI1)

S1VI1L(1+α1VI)

)
+Φ

(
1+α1VI

1+α1VI1

)]
− (1− ε2)β2S1A1

1+α2A1

[
Φ

(
S1

S

)
+Φ

(
LA1

L1A

)
+Φ

(
SAL1(1+α2A1)

S1A1L(1+α2A)

)
+Φ

(
1+α2A
1+α2A1

)]
− (1− ε3)β3S1L1

1+α3L1

[
Φ

(
S1

S

)
+Φ

(
S(1+α3L1)

S1(1+α3L)

)
+Φ

(
1+α3L
1+α3L1

)]
+

ph(1− ε1)β1S1VI1emτ1

g(1− ε4)kA1(1+α1VI1)

(
gVI1

h
−1
)

W

+
p1dc

rL1σ

(
(1− ε1)β1S1VI1

1+α1VI1

+
(1− ε2)β2S1A1

1+α2A1

)(
σA1

dc
−1
)

C,

≤−d(S−S1)
2− (1− ε1)β1S1VI1α1(VI−VI1)

2

(1+α1VI)(1+α1VI1)
2VI1

− (1− ε2)β2S1A1α2(A−A1)
2

(1+α2A)(1+α2A1)2A1

− (1− ε3)β3S1L1α3(L−L1)
2

(1+α3L)(1+α3L1)2L1
− (1− ε1)β1S1VI1

1+α1VI1

[
Φ

(
S1

S

)
+Φ

(
LA1

L1A

)
+Φ

(
A(t− τ1)VI1

A1VI

)
+Φ

(
SVIL1(1+α1VI1)

S1VI1L(1+α1VI)

)
+Φ

(
1+α1VI

1+α1VI1

)]
− (1− ε2)β2S1A1

1+α2A1

[
Φ

(
S1

S

)
+Φ

(
LA1

L1A

)
+Φ

(
SAL1(1+α2A1)

S1A1L(1+α2A)

)
+Φ

(
1+α2A
1+α2A1

)]
− (1− ε3)β3S1L1

1+α3L1

[
Φ

(
S1

S

)
+Φ

(
S(1+α3L1)

S1(1+α3L)

)
+Φ

(
1+α3L
1+α3L1

)]
+

ph(1− ε1)β1S1V1emτ1

g(1− ε4)kA1(1+α1VI1)
(RW

1 −1)W

+
p1dc

rL1σ

(
(1− ε1)β1S1VI1

1+α1VI1

+
(1− ε2)β2S1A1

1+α2A1

)
(RC

1 −1)C.
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Based on the assumptions RW
1 ≤ 1 and RC

1 ≤ 1, we obtain CDαH1(t) < 0, with equality if

and only if S = S1,L = L1,A = A1,VI = VI1 , W1 = 0 and C1 = 0. Consequently, the largest

invariant set of {(S,L,A,VI,W,C) ∈R6
+ : CDαH1(t) = 0} is the singleton {E1}. Therefore, the

equilibrium point E1 is globally asymptotically stable. �

Theorem 4. If RC
2 ≤ 1 < RW

1 , then the infection equilibrium with only humoral immunity E2

is globally asymptotically stable for η = 1 and τ2 = 0.

Proof. Consider the following Lyapunov functional

H2(S,L,A,VI,W,C) =S2Φ

(
S
S2

)
+L2Φ

(
L
L2

)
+

1
rL2

(
(1− ε1)β1S2VI2

1+α1VI2

+
(1− ε2)β2S2A2

1+α2A2

)
A2Φ

(
A
A2

)
+

(1− ε1)β1S2VI2emτ1

(1− ε4)kA2(1+α1VI2)
VI2Φ

(
VI

VI2

)
+

p(1− ε1)β1S2VI2emτ1

g(1− ε4)kA2(1+α1VI2)
W2Φ

(
W
W2

)
+

p1

σrL2

(
(1− ε1)β1S2VI2

1+α1VI2

+
(1− ε2)β2S2A2

1+α2A2

)
C

+
(1− ε1)β1S2VI2

1+α1VI2

CD−α
τ1

(
A(t−σ)

A2
−1− ln

A(t−σ)

A2

)
.

By computing the fractional derivative of H2 along the solutions of model (2), we have

CDαH2 ≤
(

1− S2

S

)
CDαS(t)+

(
1− L2

L

)
CDαL(t)

+
1

rL2

(
(1− ε1)β1S2VI2

1+α1VI2

+
(1− ε2)β2S2A2

1+α2A2

)(
1− A2

A

)
CDαA(t)

+
(1− ε1)β1S2VI2emτ1

(1− ε4)kA2(1+α1VI2)

(
1− VI2

VI

)
CDαVI(t)

+
p(1− ε1)β1S2VI2emτ1

g(1− ε4)kA2(1+α1VI2)

(
1−W2

W

)
CDαW (t)

+
p1

σrL2

(
(1− ε1)β1S2VI2

1+α1VI2

+
(1− ε2)β2S2A2

1+α2A2

)
CDαC(t)

+
(1− ε1)β1S2VI2

1+α1VI2

(
A(t)
A2
− ln

A(t)
A2
− A(t− τ1)

A2
+ ln

A(t− τ1)

A2

)
.

Using the following equilibrium condition at E2, we get

λ = dS2 +
(1− ε1)β1S2VI2

1+α1VI2

+
(1− ε2)β2S2A2

1+α2A2
+

(1− ε3)β3S2L2

1+α3L2
,
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(1− ε1)β1S2VI2

1+α1VI2

+
(1− ε2)β2S2A2

1+α2A2
+

(1− ε3)β3S2L2

1+α3L2
= (e+ r)L2,

rL2 = aA2,µVI2 = (1− ε4)ke−mτ1A2− pVI2W2.

Then

CDαH2 ≤−d(S−S2)
2− (1− ε1)β1S2VI2α1(V −VI2)

2

(1+α1VI)(1+α1VI2)
2VI2

− (1− ε2)β2S2A2α2(A−A2)
2

(1+α2A)(1+α2A2)2A2

− (1− ε3)β3S2L2α3(L−L2)
2

(1+α3L)(1+α3L2)2L2
− (1− ε1)β1S2VI2

1+α1VI2

[
Φ

(
S2

S

)
+Φ

(
LA2

L2A

)
+Φ

(
A(t− τ1)VI2

A2VI

)
+Φ

(
SV LI2(1+α1VI2)

S2VI2L(1+α1VI)

)
+Φ

(
1+α1VI

1+α1VI2

)]
− (1− ε3)β2S2A2

1+α2A2

[
Φ

(
S2

S

)
+Φ

(
LA2

L2A

)
+Φ

(
SAL2(1+α2A2)

S2A2L(1+α2A)

)
+Φ

(
1+α2A
1+α2A2

)]
− (1− ε3)β3S2L2

1+α3L2

[
Φ

(
S2

S

)
+Φ

(
S(1+α3L2)

S2(1+α3L)

)
+Φ

(
1+α3L
1+α3L2

)]
+

p1dc

σrL2

(
(1− ε1)β1S2VI2

1+α1VI2

+
(1− ε2)β2S2A2

1+α2A2

)
(RC

2 −1)C(t).

When RC
2 ≤ 1, then CDαH2(S,L,A,VI,W,C) < 0, with equality if and only if S = S2,L =

L2,A = A2,V =VI2 , W =W2 and C2 = 0. Therefore, the equilibrium point E2 is globally asymp-

totically stable. �

Theorem 5. If RW
2 ≤ 1 < RC

1 , then the infection equilibrium with only cellular immunity E3 is

globally asymptotically stable for η = 1 and any delays τ1,τ2 ≥ 0.

Proof. To prove E3 is globally asymptotically stable, construct the following Lyapunov func-

tional

H3(u) =S3Φ

(
S
S3

)
+L3Φ

(
L
L3

)
+

1
rL3

(
(1− ε1)β1S3VI3

1+α1VI3

+
(1− ε2)β2S3A3

1+α2A3

)
A3Φ

(
A
A3

)
+

(1− ε1)β1S3VI3emτ1

(1− ε4)kA3(1+α1VI3)
VI3Φ

(
VI

VI3

)
+

p(1− ε1)β1S3VI3emτ1

g(1− ε4)kA3(1+α1VI3)
W

+
p1

σrL3

(
(1− ε1)β1S3VI3

1+α1VI3

+
(1− ε2)β2S3A3

1+α2A3

)
C3φ(

C
C3

)

+
(1− ε1)β1S3VI3

1+α1VI3

CD−α
τ1

(
A(t−σ)

A3
−1− ln

A(t−σ)

A3

)
+

p(1− ε1)β1S3VI3emτ1

(1− ε4)kA3(1+α1VI3)
CD−α

τ2
VI(t−σ)W (t−σ),
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where u = (S,L,A,VI,W,C). It’s clear that H3(S,L,A,VI,W,C) > 0 for all S,L,A,VI,W,C > 0

and H3(S3,L3,A3,VI3 ,W3,C3) = 0.

By applying the property of fractional derivatives presented in [15], we get

CDαH3 ≤
(

1− S3

S

)
CDαS(t)+

(
1− L3

L

)
CDαL(t)

+
1

rL3

(
(1− ε1)β1S3VI3

1+α1VI3

+
(1− ε2)β2S3A3

1+α2A3

)(
1− A3

A

)
CDαA(t)

+
(1− ε1)β1S3VI3emτ1

(1− ε4)kA3(1+α1VI3)

(
1− VI3

VI

)
CDαVI(t)+

p(1− ε1)β1S3VI3emτ1

g(1− ε4)kA3(1+α1VI3)
CDαW (t)

+
p1

σrL3

(
(1− ε1)β1S3VI3

1+α1VI3

+
(1− ε2)β2S3A3

1+α2A3

)(
1−C3

C

)
CDαC(t)

+
(1− ε1)β1S3VI3

1+α1VI3

(
A(t)
A3
− ln

A(t)
A3
− A(t− τ1)

A3
+ ln

A(t− τ1)

A1

)
+

p(1− ε1)β1S3VI3emτ1

(1− ε4)kA3(1+α1VI3)
(VI(t)W (t)−VI(t− τ2)W (t− τ2)).

Now, by using equilibrium conditions, we have

λ = dS3 +
(1− ε1)β1S3VI3

1+α1VI3

+
(1− ε2)β2S3A3

1+α2A3
+

(1− ε3)β3S3L3

1+α3L3
,

(1− ε1)β1S3VI3

1+α1VI3

+
(1− ε2)β2S3A3

1+α2A3
+

(1− ε3)β3S3L3

1+α3L3
= (e+ r)L3,

rL3 = aA3 + p1A3C3,µVI3 = (1− ε4)ke−mτ1A3,

then we obtain

CDαH3 ≤−d(S−S3)
2− (1− ε1)β1S3VI3α1(VI−VI3)

2

(1+α1VI)(1+α1VI3)
2VI3

− (1− ε2)β2S3A3α2(A−A3)
2

(1+α2A)(1+α2A3)2A3

− (1− ε3)β3S3L3α3(L−L3)
2

(1+α3L)(1+α3L3)2L3
− (1− ε1)β1S3VI3

1+α1VI3

[
Φ

(
S3

S

)
+Φ

(
LA3

L3A

)
+Φ

(
A(t− τ1)VI3

A3VI

)
+Φ

(
SVIL3(1+α1VI3)

S3VI3L(1+α1VI)

)
+Φ

(
1+α1VI

1+α1VI3

)]
− (1− ε2)β2S3A3

1+α2A3

[
Φ

(
S3

S

)
+Φ

(
LA3

L3A

)
+Φ

(
SAL3(1+α2A3)

S3A3L(1+α2A)

)
+Φ

(
1+α2A
1+α2A3

)]
− (1− ε3)β3S3L3

1+α3L3

[
Φ

(
S3

S

)
+Φ

(
S(1+α3L3)

S3(1+α3L)

)
+Φ

(
1+α3L
1+α3L3

)]
+

ph(1− ε1)β1S3VI3emτ1

g(1− ε4)kA3(1+α1VI3)
(RW

2 −1)W.
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Based on the assumptions RW
2 ≤ 1, we obtain CDαH3(t) < 0, with equality if and only if

S = S3,L = L3,A = A3,VI =VI3 , W =W3 = 0 and C =C3. Consequently, the largest invariant set

of {(S,L,A,VI,W,C) ∈ R6
+ : CDαH3(t) = 0} is the singleton {E3}. Therefore, the equilibrium

point E3 is globally asymptotically stable. �

Theorem 6. If RW
2 > 1 and RC

2 > 1, then the infection equilibrium with both humoral and

cellular immunity E4 is globally asymptotically stable for η = 1 and τ2 = 0.

Proof. Consider the following Lyapunov functional

H4(S,L,A,VI,W,C) =S4Φ

(
S
S4

)
+L4Φ

(
L
L4

)
+

1
rL4

(
(1− ε1)β1S4VI4

1+α1VI4

+
(1− ε2)β2S4A4

1+α2A4

)
A4Φ

(
A
A4

)
+

(1− ε1)β1S4VI4emτ1

(1− ε4)kA4(1+α1VI4)
VI4Φ

(
VI

VI4

)
+

p(1− ε1)β1S4VI4emτ1

g(1− ε4)kA4(1+α1VI4)
W4Φ

(
W
W4

)
+

p1

σrL4

(
(1− ε1)β1S4VI4

1+α1VI4

+
(1− ε2)β2S4A4

1+α2A4

)
C4Φ

(
C
C4

)
+

(1− ε1)β1S4VI4

1+α1VI4

CD−α
τ1

(
A(t−σ)

A4
−1− ln

A(t−σ)

A4

)
.

By computing the fractional derivative of H4 along the solutions of model (2), we have

CDαH4 ≤
(

1− S4

S

)
CDαS(t)+

(
1− L4

L

)
CDαL(t)

+
1

rL4

(
(1− ε1)β1S4VI4

1+α1VI4

+
(1− ε2)β2S4A4

1+α2A4

)(
1− A4

A

)
CDαA(t)

+
(1− ε1)β1S4VI4emτ1

(1− ε4)kA4(1+α1VI4)

(
1− VI4

VI

)
CDαVI(t)

+
p(1− ε1)β1S4VI4emτ1

g(1− ε4)kA4(1+α1VI4)

(
1−W4

W

)
CDαW (t)

+
p1

σrL4

(
β1S4VI4

1+α1VI4

+
(1− ε2)β2S4A4

1+α2A4

)(
1−C4

C

)
CDαC(t)

+
(1− ε1)β1S4VI4

1+α1VI4

(
A(t)
A4
− ln

A(t)
A4
− A(t− τ1)

A4
+ ln

A(t− τ1)

A4

)
.

Using the following equilibrium condition at E4, we get

λ = dS4 +
(1− ε1)β1S4VI4

1+α1VI4

+
(1− ε2)β2S4A4

1+α2A4
+

(1− ε3)β3S4L4

1+α3L4
,
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(1− ε1)β1S4VI4

1+α1VI4

+
(1− ε2)β2S4A4

1+α2A4
+

(1− ε3)β3S4L4

1+α3L4
= (e+ r)L4,

rL4 = aA4 + p1A4C4,µV4 = (1− ε4)ke−mτ1A4− pVI4W4.

Then

CDαH4 ≤−d(S−S4)
2− (1− ε1)β1S4VI4α1(VI−VI4)

2

(1+α1VI)(1+α1VI4)
2VI4

− (1− ε2)β2S4A4α2(A−A4)
2

(1+α2A)(1+α2A4)2A4

− (1− ε3)β3S4L4α3(L−L4)
2

(1+α3L)(1+α3L4)2L4
− (1− ε1)β1S4VI4

1+α1VI4

[
Φ

(
S4

S

)
+Φ

(
LA4

L4A

)
+Φ

(
A(t− τ1)VI4

A4VI

)
+Φ

(
SVIL2(1+α1VI4)

S4VI4L(1+α1VI)

)
+Φ

(
1+α1VI

1+α1VI4

)]
− (1− ε2)β2S4A4

1+α2A4

[
Φ

(
S4

S

)
+Φ

(
LA4

L4A

)
+Φ

(
SAL2(1+α2A4)

S4A4L(1+α2A)

)
+Φ

(
1+α2A
1+α2A4

)]
− (1− ε3)β3S4L4

1+α3L4

[
Φ

(
S4

S

)
+Φ

(
S(1+α3L4)

S4(1+α3L)

)
+Φ

(
1+α3L
1+α3L4

)]
.

Hence, CDαH4(S,L,A,VI,W,C) < 0, with equality if and only if S = S4,L = L4,A = A4,VI =

VI4 , W =W4 and C =C4. Therefore, the equilibrium point E4 is globally asymptotically stable.

�

5. BIFURCATION ANALYSIS AT E2 AND E4

For τ2 > 0 and τ1 = 0, model (2) becomes

CDαS(t) = λ −dS(t)− (1−ε1)β1S(t)VI(t)
1+α1VI(t)

− (1−ε2)β2S(t)A(t)
1+α2A(t) − (1−ε3)β3S(t)L(t)

1+α3L(t) ,

CDαL(t) = η

(
(1−ε1)β1S(t)VI(t)

1+α1VI(t)
+ (1−ε2)β2S(t)A(t)

1+α2A(t) + (1−ε3)β3S(t)L(t)
1+α3L(t)

)
− (e+ r)L(t),

CDαA(t) = (1−η)
(
(1−ε1)β1S(t)VI(t)

1+α1VI(t)
+ (1−ε2)β2S(t)A(t)

1+α2A(t) + (1−ε3)β3S(t)L(t)
1+α3L(t)

)
+ rL(t)

−aA(t)− p1A(t)C(t),

CDαVI(t) = k(1− ε4)A(t)−µVI(t)− pVI(t)W (t),

CDαW (t) = gVI(t− τ2)W (t− τ2)−hW (t),

CDαC(t) = σA(t)C(t)−dcC(t).

(9)

In this section, we explore the existence of the Hopf bifurcation at the equilibrium points E2

and E4. For this, we first linearize the system (9) and the linearized system of (9) at an arbitrary
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equilibrium E∗(S∗,L∗,A∗,V ∗I ,W
∗,C∗) is described below.

CDαS(t) = (−d− (1−ε1)β1V ∗I
1+α1V ∗I

− (1−ε2)β2A∗
1+α2A∗ −

(1−ε3)β3L∗
1+α3L∗ )S(t)− (1−ε3)β3S∗

(1+α3L∗)2 L(t)

− (1−ε2)β2S∗

(1+α2A∗)2 A(t)− (1−ε1)β1S∗

(1+α1V ∗I )
2 VI(t),

CDαL(t) = η

(
(1−ε1)β1V ∗I

1+α1V ∗I
+ (1−ε2)β2A∗

1+α2A∗ + (1−ε3)β3L∗
1+α3L∗

)
S(t)

+(η (1−ε3)β3S∗

(1+α3L∗)2 − (e+ r))L(t)

+η
(1−ε2)β2S∗

(1+α2A∗)2 A(t)+η
(1−ε1)β1S∗

(1+α1V ∗I )
2 VI(t),

CDαA(t) = (1−η)
(
(1−ε1)β1V ∗I

1+α1V ∗I
+ (1−ε2)β2A∗

1+α2A∗ + (1−ε3)β3L∗
1+α3L∗

)
S(t)

+((1−η) (1−ε3)β3S∗

(1+α3L∗)2 + r))L(t)+((1−η) (1−ε2)β2S∗

(1+α2A∗)2 −a− p1C∗)A(t)

+(1−η) (1−ε1)β1S∗

(1+α1V ∗I )
2 VI(t)− p1A∗C(t),

CDαVI(t) = k(1− ε4)A(t)− (µ + pW ∗)VI(t)− pV ∗I W (t),

CDαW (t) = gW ∗VI(t− τ2)+gV ∗I W (t− τ2)−hW (t),

CDαC(t) = σC∗A(t)+(σA∗−dc)C(t).

(10)

By applying the Laplace transform to both sides of the system (10), we obtain

sαS (s)− sα−1φ1(0) = (−d− (1−ε1)β1V ∗I
1+α1V ∗I

− (1−ε2)β2A∗
1+α2A∗ −

(1−ε3)β3L∗
1+α3L∗ )S (s)

− (1−ε3)β3S∗

(1+α3L∗)2 L (s)− (1−ε2)β2S∗

(1+α2A∗)2 A (s)− (1−ε1)β1S∗

(1+α1V ∗I )
2 VI (s),

sαL (s)− sα−1φ2(0) = η

(
(1−ε1)β1V ∗I

1+α1V ∗I
+ (1−ε2)β2A∗

1+α2A∗ + (1−ε3)β3L∗
1+α3L∗

)
S (s)

+(η (1−ε3)β3S∗

(1+α3L∗)2 − (e+ r))L (s)+η
(1−ε2)β2S∗

(1+α2A∗)2 A (s)

+η
(1−ε1)β1S∗

(1+α1V ∗I )
2 VI (s),

sαA (s)− sα−1φ3(0) = (1−η)
(
(1−ε1)β1V ∗I

1+α1V ∗I
+ (1−ε2)β2A∗

1+α2A∗ + (1−ε3)β3L∗
1+α3L∗

)
S (s)

+((1−η) (1−ε3)β3S∗

(1+α3L∗)2 + r))L (s)

+((1−η) (1−ε2)β2S∗

(1+α2A∗)2 −a− p1C∗)A (s)

+(1−η) (1−ε1)β1S∗

(1+α1V ∗I )
2 VI (s)− p1A∗C (s),

sαVI (s)− sα−1φ4(0) = k(1− ε4)A (s)− (µ + pW ∗)VI (s)− pV ∗I W (s),

sαW (s)− sα−1φ5(0) = gW ∗e−sτ2VI (s)+(gV ∗I e−sτ2−h)W (s)

+e−sτ2
∫ 0
−τ2

e−su(φ4(u)+φ5(u))du,

sαC (s)− sα−1φ6(0) = σC∗A(s)+(σA∗−dc)C (s),

(11)

where L (S(t))(s) = S (s),L (L(t))(s) = L (s),L (A(t))(s) = A (s),L (VI(t))(s) = VI (s),

L (W (t))(s) = W (s) and L (C(t))(s) = C (s).
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We can rewrite (11) as follows

∆(s) ·



S (s)

L (s)

A (s)

VI (s)

W (s)

C (s)


=



g1(s)

g2(s)

g3(s)

g4(s)

g5(s)

g6(s)


,(12)

where ∆(s) is the characteristic matrix and



g1(s) = sα−1φ1(0),

g2(s) = sα−1φ2(0),

g3(s) = sα−1φ3(0),

g4(s) = sα−1φ4(0),

g5(s) = sα−1φ5(0)+ e−sτ2
∫ 0
−τ2

e−su(φ4(u)+φ5(u))du,

g6(s) = sα−1φ6(0).

We denote H1 =
(1−ε1)β1VI2

1+α1VI2
+ (1−ε2)β2A2

1+α2A2
+ (1−ε3)β3L2

1+α3L2
, H2 = (1−ε3)β3S2

(1+α3L2)2 , H3 = (1−ε2)β2S2
(1+α2A2)2 and

H4 =
(1−ε1)β1S2
(1+α1VI2)

2 . Then, the characteristic equation in Model (9) at E2 = (S2,A2,L2,VI2 ,W2,0) is

given by

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sα +d +H1 H2 H3 H4 0 0

−ηH1 sα −ηH2 + e+ r −ηH3 −ηH4 0 0

(η−1)H1 (η−1)H2− r sα +(η−1)H3 +a (η−1)H4 0 p1A2

0 0 −k(1− ε4) sα +µ + pW2 pVI2 0

0 0 0 −gW2e−sτ2 sα −gVI2e−sτ2 +h 0

0 0 0 0 0 sα −σA2 +dc

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Calculating the corresponding determinant gives

(13) (sα)5 +b4(sα)4 +b3(sα)3 +b2(sα)2 +b1sα +b0 + e−sτ2(c4(sα)4 + c3(sα)3 + c2(sα)2 + c1sα + c0) = 0,
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where

b4 =a+d + e+h+µ + r+H1−ηH2 +(η−1)H3 + pW2,

b3 =h(a+d + e+µ + r+H1 + pW2)+(d +H1)(e+ r)+(H1 + r+d + e)(a+µ + pW2)

+a(µ + pW2)−H3r+(η−1)H3(d + e+h+µ + pW2)−ηH2(+a+d +h+µ + pW2),

b2 =h[(d +H1)(e+ r)+a(µ + pW2)+(d +H1 + e+ r)(a+µ + pW2)]

+a(µ + pW2)(d +H1 + e+ r)+(d +H1)(e+ r)(a+µ + pW2)

−H3[r(d +µ +h+ pW2)+(1−η)(de+dh+hµ + eµ + eh+dµ)+(1−η)pW2(d + e+h)]

+H4k[(η−1)(1− ε4)(h+ e+d)− (1− ε4)r]

−ηH2[d(a+h+µ + pW2)+h(a+µ + pW2)+a(µ + pW2)],

b1 =h[(d +H1)(e+ r)(a+µ + pW2)+a(µ + pW2)(d +H1 + e+ r)]+(d +H1)(e+ r)a(µ + pW2)

− (1− ε4)kH4(r(d +h)+(1−η)(dh+ eh+de))−ηH2[(d +h)(µ + pW2)a+(a+µ)dh+dh]

−H3[r((d +h)(µ + pW2)+dh)+(1−η)(deh+deµ +dhµ + ehµ)+(1−η)pW2(de+dh+ eh)],

b0 =(d +H1)(e+ r)a(µ + pW2)h− kdhH4(1− ε4)(r+(1−η)e)−h(µ + pW2)(H3d(r+(1−η)e)

+ηH2ad),

c4 =−gVI2 =−h,

c3 =−h(H1 +H3 +a+d + e+µ + r),

c2 =h[H3(r+(1−η)(d + e+µ))− (d +H1)(e+ r)−aµ− (a+µ)(d +H1 + e+ r)+ηH2(a+d +µ)

+H4((1− ε4)k−ηk)],

c1 =h[kH4(r(1− ε4)+(1−η)(1− ε4)(e+d))+H3((r+(1−η)e)(d +µ)+(1−η)dµ))

−aµ(d +H1 + e+ r)− (d +H1)(e+ r)(a+µ)+ηH2(ad +µa+dµ)],

c0 =h[kH4((1− ε4)dr+(1− (1−η)ε4)de−dηk)+H3(r+(1−η)e)dµ−aµ((d +H1)(e+ r)−ηH2d].

We aim to prove that equation (13) has no purely imaginary roots for τ2 > 0. Suppose, by

contradiction, that equation (13) has a purely imaginary root. Substituting s(τ2) = iv(τ2) with

v > 0 into equation (13), we obtain

(14) U1 + iV1 +(U2 + iV2)(cosvτ2− isinvτ2) = 0,
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where

U1 = v5α cos
5απ

2
+b4v4α cos2απ +b3v3α cos

3απ

2
+b2v2α cosαπ +b1vα cos

απ

2
+b0,

V1 = v5α sin
5απ

2
+b4v4α sin2απ +b3v3α sin

3απ

2
+b2v2α sinαπ +b1vα sin

απ

2
,

U2 = c4v4α cos2απ + c3v3α cos
3απ

2
+ c2v2α cosαπ + c1vα cos

απ

2
+ c0,

V2 = c4v4α sin2απ + c3v3α sin
3απ

2
+ c2v2α sinαπ + c1vα sin

απ

2
.

Separating the real and imaginary parts of equation (14), we obtain

(15)
V2 sinvτ2 +U2 cosvτ2 =−U1,

−U2 sinvτ2 +V2 cosvτ2 =−V1.

From (15), we get

cosvτ2 =−
U1U2 +V1V2

U2
2 +V 2

2
≡ G1(v),

sinvτ2 =
V1U2−U1V2

U2
2 +V 2

2
≡ G2(v).

Clearly, we have G2
1(v)+G2

2(v) = 1.

Thus,

τ
j

2 =
1
v

[
arccos

(
−U1U2 +V1V2

U2
2 +V 2

2

)
+2 jπ

]
, j = 0,1,2, . . .

The values of v are obtained from the expressions of U1,U2,V1, and V2. This equation G2
1(v)+

G2
2(v) = 1 has at least one positive root v0. Define

τ
∗ = min

{
τ

j
2

}
, j = 0,1,2, . . .

We take the derivative of equation (13) with respect to τ2 to check the transversality condition

at τ2 = τ∗. We obtain

ds
dτ2

D′1(s)+
ds
dτ2

D′2(s)e
−sτ2−D2(s)(s+ τ2

ds
dτ2

)e−sτ2 = 0.

Then,
ds
dτ2

=
sD2(s)e−sτ2

D′1(s)+D′2(s)e
−sτ2− τ2D2(s)e−sτ2

,

where D1(s) =U1 + iV1 and D2(s) =U2 + iV2, so

ds
dτ2

=
N11 + iN12

N21 + iN22
,
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where
N11 = vU2 sinvτ2− vV2 cosvτ2,

N12 = vV2 sinvτ2 + vU2 cosvτ2,

N21 = (U ′2− τ2U2)cosvτ2 +U ′1 +(V ′2− τ2V2)sinvτ2,

N22 = (V ′2− τ2V2)cosvτ2 +V ′1− (U ′2− τ2U2)sinvτ2.

Hence,

Re
(

ds
dτ

)∣∣∣∣
τ2=τ∗,v=v0

=
N11N21 +N12N22

N 2
21 +N 2

22

∣∣∣
τ2=τ∗,v=v0

.

Therefore, the transversality condition holds when (A1) : N11N21+N12N22
N 2

21+N 2
22

6= 0, and then, we

obtain the following theorem

Theorem 7. If (A1) holds, then E2 is locally asymptotically stable for 0 < τ2 < τ∗, and the

model may undergo a Hopf bifurcation at τ2 = τ∗.

By the same reasoning, we can demonstrate the existence of a Hopf bifurcation at the infec-

tion equilibrium with both humoral and cellular immunity E4.

6. CONCLUSION

In this paper, we have proposed a novel general model using FDDEs with the Caputo frac-

tional derivative, which describes the dynamics of HIV infection. Our model considered the

three modes of transmission that are virus-to-cell, cell-to-cell by productive infected cells and

cell-to-cell by non-productive infected cells, the two types of infected cells, the adaptive immu-

nity exerted by antibodies and CTL cells, the delays in viral production and in the activation

time of antibodies, and two types of viruses that are obtained through the introduction of the

four therapeutic parameters. In the analysis of the model, we have identified five threshold pa-

rameters related to viral infection: the basic reproduction number R0, the reproduction number

for humoral immunity RW
1 ,the reproduction number for cellular immunity RC

1 , the reproduc-

tion number for cellular immunity in competition RC
2 and the reproduction number for humoral

immunity in competition RW
2 . Subsequently, we have proved that our model has also five equi-

librium points based on specific conditions related to these threshold parameters. In addition,

we established the global stability of these equilibirum points and explored the existence of the



DELAYED FRACTIONAL DIFFERENTIAL EQUATIONS DESCRIBING THE DYNAMICS OF HIV 25

Hopf bifurcation, which arises when the second delay exceeds a certain critical value, for both

infection equilibrium points with only humoral immunity E2 and with both humoral and cellular

immunity E4.

The memory in the present model was described by the Caputo fractional derivative with

singular kernel and one order parameter. It will be interesting to model the memory effect on

the dynamics of HIV infection by using the Hattaf fractal and fractional derivatives [16, 17, 18].

This issue will be addressed in our future research.
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