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Abstract: Failures in rice cultivation often result from extreme rainfall variability—ranging from droughts due to low
precipitation to crop damage caused by excessive rainfall. This makes rice production highly sensitive to climate
fluctuations, emphasizing the need for accurate rainfall forecasting to optimize planting and harvesting schedules. In
Indramayu Regency, unpredictable rainfall patterns pose significant forecasting challenges. With the Indonesian
Meteorological Agency’s (BMKG) average accuracy reaching only 63%, alternative approaches are urgently needed.
This study employs a hybrid deep learning model—Convolutional Neural Network—Bidirectional Long Short-Term
Memory (CNN-BiLSTM)—to address these limitations, as previous methods such as RNN and LSTM have struggled
to capture seasonal patterns and the complexity of decadal rainfall data. The model was trained on rainfall data from
January 2000 to July 2022 and tested on data from August 2022 to January 2025. The model architecture includes two
convolutional layers (filters 16 and 32), max pooling, and three Bi-LSTM layers (64, 50, and 32 neurons), trained
using the Adam optimizer (learning rate = 0.0001), a batch size of 64, and Mean Square Error (MSE) as the loss
function. Evaluation results indicate a Mean Absolute Percentage Error (MAPE) of 17.49%, classified as “good”

forecasting accuracy. This translates to an overall accuracy of 82.51% (MAPE-based classification). These findings
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demonstrate that the CNN-BiLSTM model effectively predicts decadal rainfall in Indramayu and has the potential to
reduce crop loss by optimizing agricultural strategies such as drainage, fertilization, and harvesting aligned with
rainfall projections for February to April 2025.
Keywords: forecasting; rainfall; CNN-BILSTM; rice; Indramayu regency.

2020 AMS Subject Classification: 68T07, 92B05.

1. INTRODUCTION

West Java Province stands as one of Indonesia's key agricultural regions, often recognized as
a national rice granary, with over 1.58 million hectares of rice fields [1]. In 2023, the province
contributed significantly to national production, yielding 9.14 million tons of rice and ranking
among the top three rice-producing provinces in Indonesia. Indramayu Regency, a major
contributor to this productivity, covers approximately 125,000 hectares of paddy fields [2].
However, agriculture in Indramayu is highly dependent on rainfall patterns, which are frequently
erratic and unpredictable. These fluctuations create vulnerabilities to both drought and flooding,
leading to decreased agricultural yields and increased production costs.

Rice cultivation, a fundamental pillar of food security, is highly susceptible to climate
variability, particularly extreme rainfall events. Both insufficient precipitation, leading to droughts
due to low precipitation, and excessive rainfall, causing floods and crop damage, significantly
impair agricultural productivity and farmer livelihoods. Inaccurate rainfall predictions can cause
serious consequences; for instance, overestimated forecasts may delay planting schedules,
resulting in drought stress and reduced yields. Between April and August 2023, droughts affected
over 12,800 hectares of farmland in West Java, with 2,269 hectares specifically located in
Indramayu [3]. Conversely, underestimating rainfall can lead to severe flooding, as observed in
2023 when over 113,000 hectares of agricultural land across 22 provinces were damaged [4].
Excess rainfall also contributes to soil erosion and widespread pest outbreaks [5]. Given these risks,
accurate and adaptive rainfall forecasting methods are critical to improving food security in the

region.
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In Indonesia, rainfall is typically analyzed on a decadal scale, referring to 10-day intervals,
which provides a more granular and actionable understanding of seasonal trends compared to daily
or monthly aggregates. The Meteorological, Climatological, and Geophysical Agency (BMKG)
utilizes this decadal classification to determine the onset of wet or dry seasons. However, the
existing rainfall prediction model used by BMKG in West Java currently averages an accuracy of
only 63%, exhibiting a significant error margin of 37%. This level of inaccuracy is often
inadequate for effective agricultural planning and may lead to suboptimal decisions regarding crop

management and planting schedules.
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Figure 1. Rainfall Plot for Indramayu Regency, West Java Province January 2000 — July 2024
Addressing these persistent challenges necessitates more reliable and precise forecasting
methods. Traditional statistical models and earlier machine learning approaches have often
struggled to capture the complex, non-linear, and multi-scale temporal dependencies inherent in
rainfall time series data. Recurrent Neural Networks (RNNs) and standard Long Short-Term
Memory (LSTM) networks, while effective for sequential data, face limitations in discerning
intricate seasonal patterns and long-term dependencies in complex decadal rainfall datasets.
Studies on rainfall prediction in Bandung using deep learning have shown promising yet
improvable results. For instance, an LSTM-based model achieved a test RMSE of 8.78 [6], while
a BILSTM model was evaluated with an MAE of 0.15 [7]. These findings suggest that although

deep learning approaches are applicable, there remains a need for models capable of better
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capturing long-term variability to support strategic agricultural planning.

Hybrid architectures such as CNN-BILSTM offer promising solutions. CNNs are effective in
extracting local features and short-term patterns, whereas BiLSTMs excel at capturing long-term
temporal dependencies by processing sequences bidirectionally [8]. This integration enables
simultaneous learning from both spatial and temporal representations, enhancing predictive
performance. Several studies have demonstrated the superiority of CNN-BILSTM compared to
standalone models, for example in flood prediction [9] and rainfall forecasting [10].

Given these advancements and the urgent need for improved forecasting, this study aims to
develop a more accurate decadal rainfall forecasting model for Indramayu Regency using a hybrid
CNN-BILSTM architecture. Specifically, this research seeks to construct a deep learning model
capable of achieving at least 80% accuracy in forecasting decadal rainfall, thereby significantly
outperforming current BMKG methods. This improvement is expected to support better-informed
decisions regarding planting schedules, irrigation planning, and overall agricultural resource

management, ultimately contributing to enhanced food security in the region.

2. MATERIALS AND METHODS
2.1. Data Source

This study employs secondary rainfall data collected from the Indonesian Meteorological,
Climatological, and Geophysical Agency (BMKG). The dataset spans from the first decadal period
of January 2000 to the first decadal of February 2025. It comprises 904 observations, measured in
decadal intervals (10-day periods), which are standard in climatological and agricultural planning
in Indonesia. The use of decadal data allows for better temporal resolution than monthly aggregates
and reduces the volatility seen in daily data. The historical data used in this study is univariate time
series data.

2.2. Data Preprocessing

Prior to model training, the raw rainfall data underwent several preprocessing steps to ensure
optimal model performance and stability. Data normalization was performed using Min-Max
scaling to rescale the rainfall values to a range between 0 and 1. This method helps to stabilize the
gradient descent, prevent features with larger values from dominating the learning process, and

ensure uniform input to the neural network [11]. The formula for Min-Max scaling is given by
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(x - xmin)
(xmax - xmin)

It was confirmed that the dataset contained no missing values, hence no imputation methods

1)

Xscaled =

were required. Furthermore, no explicit handling or removal of extreme values (outliers) was
performed, as the CNN-BIiLSTM model's inherent robustness was relied upon, evidenced by its

ability to effectively capture and predict extreme rainfall events in the results.

2.3. CNN-BILSTM Model Architecture

The forecasting model utilized in this research is the hybrid CNN-BIiLSTM model. This
architecture integrates Convolutional Neural Networks (CNN) with Bidirectional Long Short-
Term Memory (BiLSTM) networks. The CNN component is responsible for extracting spatial
features from the input data, such as localized patterns in decadal rainfall sequences. By applying
convolutional filters over the time dimension, CNNs can detect short-term trends and local

fluctuations in the signal. Mathematically, the one-dimensional convolution operation is defined

as:
k-1
yt=zxt+i'wi+b 2
i=0
where,

vy, = output feature at time t
k =kernel size
X¢4; = Input value at position t + i
w; = weight of the i*" filter element
b = bias term

This operation allows the model to detect local temporal patterns such as abrupt spikes or
drops in rainfall, which often signal the onset of extreme weather events. The kernel slides over
the input sequence, producing convolved features that capture translation-invariant characteristics
of the data.

Following convolution, the output is typically passed through a nonlinear activation function,
such as the Rectified Linear Unit (ReLU), defined as:

ReLU = max (0, x) 3)

This function introduces nonlinearity into the model, enabling it to learn complex mappings
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beyond simple linear transformations.

To further reduce computational complexity and mitigate overfitting, the CNN layer is usually
followed by a pooling operation, such as max pooling, which selects the maximum value within a
window:

Pe = max (X¢, Xeq1, ") Xpgk—1) 4)

Pooling helps preserve the most salient features while reducing the dimensionality of the
representation. In this study, the pooling size is set to 2, effectively halving the sequence length
and enabling the model to focus on dominant rainfall patterns across adjacent time steps.

Once spatial features are extracted, they are passed into the BiLSTM layers, which capture
temporal dependencies in the sequence. Unlike standard LSTM models, which process data in a
single forward direction, BiLSTM processes the input in both forward and backward directions.
This bidirectional structure allows the model to utilize contextual information from both past and
future time steps, resulting in a more comprehensive understanding of temporal dynamics. The
internal operations of LSTM networks are governed by gated mechanisms, including the forget
gate, input gate, and output gate. The forget gate ft determines which parts of the previous cell
state should be discarded:

fe = o(Welhe_q.x¢] + bf) (5)
Here, h;_; is the hidden state from the previous time step, x; is the current input, Wy

represents the weights, and by is the bias. A value close to 1 means retaining the information,

while a value close to 0 means forgetting it.

Next, the input gate determines what new information will be stored in the cell. This is a two-
step process: the sigmoid function selects which values to update, while a tanh layer generates a

vector of new candidate values to be potentially added to the cell state:
it = o(Wilhe—qy, x¢] + b)) (6)

C = tanh (W [h_q,x:] + b,) (7
These two vectors are then used to update the cell state, which is the memory component of

the network:

Ce= ft Ceoq +ip- Et (8)
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This equation combines retained past information (f; - C;_;) with new candidate memory
content (i, - C,). The result is a carefully regulated internal state that allows the LSTM to maintain

long-term dependences.

Subsequently, the output gate decides which parts of the updated cell state will be sent to the
next hidden state. It again uses a sigmoid gate to determine importance, and multiplies the result

with the tanh-activated cell state:
0= o(Wy[he—1,x¢] + by) 9)

h; = o, * tanh (C;) (10)
The final hidden state h; becomes the output of the LSTM at time step t, carrying both
immediate and contextual information forward.
In Bidirectional LSTM (BiLSTM) architectures, this entire process is mirrored in reverse time.
A separate set of LSTM units runs backward through the sequence, and the outputs from both

directions—forward h7 and backward h_t—are concatenated:

he = [he, by (11)

This dual processing allows the model to utilize both past and future context, which is
particularly useful in rainfall prediction where climatic patterns can exhibit symmetrical or cyclical
trends [12].

The integration of CNN and BiLSTM enables the model to simultaneously learn from spatial
and temporal representations of the data, making it especially effective for modeling rainfall and
climate-related phenomena. In this architecture, the input layer receives the rainfall time series
data, which is then processed by the CNN layer to extract local features and short-term patterns.
The extracted features are subsequently passed to the BiLSTM layer, which captures temporal
dependencies in both forward and backward directions. Finally, the Dense layer generates the
prediction output based on the learned representations.

2.4. Hyperparameter Tuning and Training

The training of the CNN-BiLSTM model was conducted with the Adam optimizer, a learning

rate of 0.0001, a batch size of 64, and for 300 epochs. Mean Square Error (MSE) was used as the

loss function during training. Hyperparameter tuning was crucial for achieving optimal model
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performance. While a comprehensive grid search or Bayesian optimization was not explicitly
performed due to computational constraints, an iterative empirical tuning approach was adopted.
This involved evaluating various combinations of learning rates, batch sizes, and architectural
configurations (e.g., number of layers, neurons, filters) based on their impact on validation loss
and convergence stability. The selected values were found to yield the most consistent and
favorable results, as evidenced by the stable convergence of the training and validation loss curves
(Figure 2) and the improved Mean Absolute Percentage Error (MAPE) on the test set (Table 3).
Regularization techniques, including Dropout layers, and L2 regularization (also known as weight
decay) were applied to prevent co-adaptation, penalize large weights, and further improve
generalization capacity.
2.5. Evaluation Metrics

The performance of the forecasting model was evaluated using several key metrics, including
Absolute Percentage Error (APE), Mean Absolute Percentage Error (MAPE), Probability of
Detection (POD), and False Alarm Ratio (FAR).

1) Absolute Percentage Error

The evaluation of the first model to be used in this research is the Absolute Percentage Error
(APE). APE is used to calculate the magnitude of the error for each individual observation value.
Just like MAPE, if the error value decreases, the accuracy level increases. The smaller APE values
there are, the smaller the MAPE value will be because MAPE is the average of all APE values
[13].

X —X;

APE = x100% (12)

t

where,
X; =the observed value
X, = the predicted value
The smaller the APE value, the better.

2) Mean Absolute Percentage Error

The evaluation of the second model to be used in this study is the Mean Absolute Percentage
Error (MAPE). MAPE is a method of measuring error in forecasting methods using the absolute
error technique in each period divided by the actual observation value for that period [14]. After

that, calculations are performed to obtain the average absolute percentage error. MAPE is an error
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test that can measure the percentage difference between predicted data and actual data. Here is the
MAPE calculation.

n

1 X
MAPE = —Z
n

t=1

t_Xt

x100% (13)

Where the parameter same as parameter APE.
3) Probability of Detection (POD)

POD, also known as Hit Rate, measures the proportion of observed events (actual occurrences)
that were correctly predicted by the model. It is particularly useful for assessing the model's ability
to detect positive instances, such as extreme rainfall events. A POD value of 1 (or 100%) indicates
that all actual events were successfully predicted [15].

_ Hits
Hits + Misses
Where Hits refer to actual extreme events that were correctly predicted as extreme, and Misses

POD (14)

refer to actual extreme events that were not predicted as extreme.

4) False Alarm Ratio (FAR)

FAR quantifies the proportion of predicted positive events that did not actually occur. It
evaluates the model's tendency to generate false alarms. A FAR value of 0 indicates no false alarms,
while a value of 1 means all positive predictions were false alarms [15].

FAR — False Alarms (15)
" Hits + False Alarms

Where False Alarms refer to events predicted as extreme but which did not actually occur.

3. RESULTS AND DISCUSSION
3.1. Model Evaluation and Training Behavior

The model evaluation process began with a series of baseline experiments using simple CNN—
BILSTM configurations. These early models, featuring relatively shallow architectures with
limited convolutional filters and small BILSTM layers, failed to capture the complex temporal
dynamics of decadal rainfall. As shown in Table 1, all tested configurations yielded excessively
high Mean Absolute Percentage Error (MAPE) values, with test errors exceeding 140%, indicating

poor predictive capability and structural underfitting.
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Table 1. Baseline Parameter Combinations

Filters 1D  Kernel Size 1D  Neurons Bi-LSTM  Epoch MAPE Train  MAPE Test

32 2 32 150 132,411 146,6516
32 2 64 150 121,291 149,403
32 2 128 150 129,518 146,0347
32 2 256 150 135,899 147,5524
32 3 32 150 137,636 141,0488
32 3 64 150 124,856 147,7695
32 2 32 150 132,411 146,6516

In response to this underperformance, the model architecture was incrementally deepened.
This involved increasing the number of filters in the convolutional layers, expanding the BiLSTM
layers to include more neurons, and extending the training to a full 300 epochs. However, the
results—summarized in Table 2—exhibited a clear overfitting trend, where training errors dropped
significantly (as low as 12.65%), while testing errors remained elevated (ranging from 44% to
65%). This divergence indicated that the model had begun memorizing the training data and failed
to generalize to unseen samples.

Table 2. Parameter Combinations with Overfitting Indication

Filters 1D Kernel Size 1D ) MAPE MAPE Test
Neurons Bi-LSTM  Epoch )
Train

[512,512] 73 [512,512,512,512] 300 23,568 65,311
[512,512,512] 955 [512,512,512] 300 21,985 45,913
[512,512,512] 974 [512,512,512] 300 18,653 44,144
[512,512,512] 733 [512,512,512,512] 300 14,477 64,676
[612,512,512,512] 9273 [612,512,512] 300 12,649 52,211

To address the imbalance between model complexity and generalization capacity, the
architecture was systematically simplified through a series of targeted refinements. The number of
BILSTM layers and their associated neurons was reduced, and convolutional layers were adjusted
by reducing the number of filters to minimize the risk of overfitting. Training optimization was
carried out by fine-tuning the batch size and learning rate. Most importantly, regularization
techniques, including Dropout layers and L2 regularization (also known as weight decay), were
applied to further improve generalization by preventing co-adaptation and penalizing large weights.
Together, these design choices contributed to a more balanced architecture—one that maintains

sufficient model capacity while effectively controlling overfitting and ensuring better performance



11
DECADAL RAINFALL FORECASTING USING CNN-BiLSTM

on unseen data.

This iterative process culminated in a set of configurations with consistently improved
validation performance, shown in Table 3. Among them, the optimal model achieved a MAPE of
17.49% on the test set—classified as "good" forecasting accuracy [13]. The corresponding training
loss and validation loss curves (Figure 2) showed consistent convergence, with both loss metrics
decreasing rapidly within the first 100 epochs, followed by a gradual stabilization up to epoch 300.
The minimal gap between training and validation losses throughout indicates a balanced and well-
generalized model with no overfitting symptoms. These findings demonstrate that model
complexity must be carefully managed to avoid under- or overfitting. The optimal architecture
reflects a strategic balance between network depth, parameter count, and training dynamics,
validating the CNN-BILSTM model's suitability for high-resolution rainfall forecasting. It is
important to note that the configurations presented in Tables 1, 2, and 3 represent only a subset of
the total experiments conducted during model tuning; dozens of additional parameter combinations
were tested and analyzed for clarity and conciseness.

Table 3. Optimal Parameter Combinations

Filters 1D Kernel Neurons Bi- Epoch MAPE MAPE
Size 1D LSTM Train Test
[32,16] 3 [64,64,50] 300 17,119 18,462
[32,16] 3 [64,50,64] 300 21,985 17,517
[32,16] 3 [64,100,64] 300 18,653 18,247
[32,16] 3 [64,50,32] 300 18,140 17,498
[32,16] 3 [64,100,32] 300 19,544 17,645
[32,16] 3 [64,50,50] 300 21,654 17,715
[32,16] 3 [64,50,100] 300 18,673 17,635

0.6 4 —— Training Loss
Validation Loss

0.57

0.4 4

0.2 4

0.1+

0.0+

1] 50 100 150 200 250 300
Epoch

Figure 2. Training Loss and Validation Loss Curve
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As depicted in Figure 3, the model is able to closely approximate the overall trend of the actual
rainfall data, even though the predictions do not perfectly align with all observed values. Notably,
the model demonstrates the ability to capture extreme rainfall events, supporting its robustness in
handling outlier and high-variance data. Additionally, the model successfully identifies and
reproduces seasonal patterns present in the actual series. These similarities can be further verified
not only through the visual comparison in the graph but also through detailed numerical analysis,
as shown in Table 4.

Table 4. Comparison Between Actual and

Prediction (Training)

Decadal Actual  Prediction APE (%)
= 20000101 19,38 21,28 9,839376
20000102 87,91 72,44 17,59372
20000103 281,61 24428  13,25654
‘ 20000201 46,18 41,16 10,87826
[h '
ol
T ' 20220603 4,78 5,50 15,15109
i i 20220701 11,92 13,71 15,02602
Figure 3. Comparison Between Actual and
o 20220702 87,83 101,01  15,00314
Prediction 20220703 0,88 1,06 1955512

From Table 4, it was found that 84.13% of the training data had an APE value below 20%,
while the remaining 15.86% of the training data had an APE value above 20%. For the testing data
(Table 5), 83.51% had an APE value below 20%, with the remaining 16.48% having an APE value
above 20%. Further analysis of samples with APE values exceeding 20% indicates that these
higher errors tend to occur during periods of rapid transition between seasons (e.g., onset of rainy
season or transition to dry season) or during exceptionally intense rainfall events, which are
inherently more challenging to predict due to their high variability and non-linear dynamics. For
extreme rainfall events (e.g., >100mm), the model demonstrated a Probability of Detection (POD)
of 85.37%, indicating a high success rate in identifying actual extreme events. Concurrently, the
False Alarm Ratio (FAR) was found to be 26.32%, representing the proportion of predicted
extreme events that did not materialize. These metrics further quantify the model's capability in

identifying critical high-impact events while managing false predictions.
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Table 5. Comparison Between Actual and Prediction (Testing)

Decadal Actual Prediction APE (%)
20220801 6,0282 7,06 17,11622
20220802 13,9679 15,8 13,1165
20220803 1,4899 1,66 11,41687
20220901 34,9134 40,78 16,80329
20250101 106,4886 124,5915 16,99988
20250102 63,9884 75,86816 18,56548
20250103 145,5348 173,2796 19,06406
20250201 167,9847 199,5466 18,78858

13

Because during training and testing the model proved capable of following the rainfall pattern,

and its accuracy was also quite high, the researchers have selected the model as the one to be used

for future rainfall data predictions.
3.2. Prediction

After obtaining the best model, the researchers used that model to predict rainfall for the next

6 decadal (2 months ahead), specifically from February to April 2025. Here are the results of the

prediction: Figure 4 and Table 6.

e Preditsi

Table 6. Prediction of Rainfall

Figure 4. Prediction of Rainfall

Decadal Prediction
20250202 102,92
20250203 80,28
20250301 84,59
20250302 63,89
20250303 71,63
20250401 63,10

As shown in Figure 4 and Table 6, the predicted rainfall values for February to April 2025

exhibit a gradual downward trend, indicating a potential transition from the peak of the rainy

season toward drier conditions. While the first period shows relatively high rainfall, subsequent

decadal forecasts decrease consistently, suggesting the model anticipates a shift in seasonal
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dynamics. It is important to note that for this specific forecast period (February to April 2025),
actual historical data is not yet available. Therefore, the rationality of this forecasted trend is
verified by its consistency with typical historical rainfall patterns observed in Indramayu during
these months, reinforcing the model's ability to capture overall seasonal variations. Furthermore,
Figure 3 also provides a comprehensive view of how the model's predictions (orange line) align
with historical actual data (blue line) across the entire dataset used for training and testing,
including the test set which extends into early 2025, visually confirming the model's capability to
learn and reproduce historical trends and seasonal patterns, lending confidence to its future
projections.

3.3. Discussion

This study demonstrates that the CNN-BiLSTM model effectively captures temporal and
seasonal patterns in decadal rainfall data, achieving a test MAPE of 17.49%. Model tuning
revealed that overly simple architectures caused underfitting, while deeper ones led to overfitting,
underscoring the need to balance complexity. Regularization (Dropout, L2) and careful
hyperparameter tuning (learning rate, batch size) proved more effective than merely increasing
depth.

The CNN-BiLSTM outperformed BMKG’s average accuracy of 63% in West Java due to its
hybrid architecture. The CNN component extracted localized features and short-term patterns from
decadal sequences, while BiLSTM captured long-term dependencies and cyclical trends by
processing data bidirectionally. This synergy enabled a more comprehensive understanding of
rainfall dynamics and improved predictive robustness.

Importantly, the model relies only on historical univariate decadal rainfall data, without
requiring radar or satellite inputs, making it applicable in regions with limited infrastructure. This
enhances its value for agricultural planning, particularly in data-scarce areas.

Forecast results have practical implications: projected high rainfall from February to early
April 2025 suggests the need for optimized drainage, while fertilization and pesticide application

should align with drier periods. The decline in rainfall toward May supports gradual field drying
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before harvest. Although the model performed well in capturing extreme events (POD 85.37%,
FAR 26.32%), future work should incorporate climatic variables or outlier-sensitive architectures

to further enhance robustness under volatile conditions.

4. CONCLUSION
This study demonstrates the effectiveness of a hybrid Convolutional Neural Network—

Bidirectional Long Short-Term Memory (CNN-BiLSTM) model in forecasting decadal rainfall in
Indramayu Regency. The optimal model architecture, characterized by its combination of a 24-
step input window, convolutional layers with [32, 16] filters and a kernel size of 3, L2
regularization (kernel and recurrent) at 0.001, and max pooling, effectively extracts local features
and short-term patterns from the rainfall sequences. Subsequently, the Bi-LSTM layers, with [64,
50, 32] neurons, proficiently capture long-term dependencies and complex decadal cycles by
processing data in both forward and backward directions. This synergistic combination allows the
model to comprehensively understand and predict intricate rainfall dynamics. Training was
conducted efficiently with the Adam optimizer (learning rate of 0.0001), a batch size of 64, and
300 epochs.

The CNN-BIiLSTM model achieved a Mean Absolute Percentage Error (MAPE) of 17.49%
on the test data, corresponding to an accuracy of 82.51%. This performance significantly
outperforms the average BMKG forecast accuracy of 63% in the West Java region, affirming the
model's superior ability to capture seasonal and complex rainfall dynamics. These results highlight
its strong potential to enhance early warning systems and facilitate data-driven agricultural
planning. Forecast results indicate that rainfall will remain relatively high from late February to
early April 2025. Based on these projections, farmers are advised to optimize drainage systems
and strategically schedule key agricultural activities—such as fertilization and pesticide

application—during periods of lower rainfall to mitigate crop stress and maximize yield potential.

For practical implementation and to maximize its impact, future work could explore
integrating this model into existing operational systems, such as those used by BMKG, potentially
through an API interface. This would enable real-time and seamless deployment of the forecasts

for more immediate and adaptive agricultural decision support.
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