
                

*Corresponding author 

E-mail address: yuyun.hidayat@unpad.ac.id 

Received September 23, 2025 

1 

 

     Available online at http://scik.org 

     Commun. Math. Biol. Neurosci. 2026, 2026:5 

https://doi.org/10.28919/cmbn/9612 

ISSN: 2052-2541 

 

 

DECADAL RAINFALL FORECASTING USING CNN–BiLSTM:  

A CASE STUDY IN INDRAMAYU, INDONESIA 

YUYUN HIDAYAT*, DIMAS NAUFALDY ARDIAN 

Department of Statistics, Universitas Padjadjaran, Sumedang 45363, Indonesia 

Copyright © 2026 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract: Failures in rice cultivation often result from extreme rainfall variability—ranging from droughts due to low 

precipitation to crop damage caused by excessive rainfall. This makes rice production highly sensitive to climate 

fluctuations, emphasizing the need for accurate rainfall forecasting to optimize planting and harvesting schedules. In 

Indramayu Regency, unpredictable rainfall patterns pose significant forecasting challenges. With the Indonesian 

Meteorological Agency’s (BMKG) average accuracy reaching only 63%, alternative approaches are urgently needed. 

This study employs a hybrid deep learning model—Convolutional Neural Network–Bidirectional Long Short-Term 

Memory (CNN-BiLSTM)—to address these limitations, as previous methods such as RNN and LSTM have struggled 

to capture seasonal patterns and the complexity of decadal rainfall data. The model was trained on rainfall data from 

January 2000 to July 2022 and tested on data from August 2022 to January 2025. The model architecture includes two 

convolutional layers (filters 16 and 32), max pooling, and three Bi-LSTM layers (64, 50, and 32 neurons), trained 

using the Adam optimizer (learning rate = 0.0001), a batch size of 64, and Mean Square Error (MSE) as the loss 

function. Evaluation results indicate a Mean Absolute Percentage Error (MAPE) of 17.49%, classified as “good” 

forecasting accuracy. This translates to an overall accuracy of 82.51% (MAPE-based classification). These findings 
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demonstrate that the CNN-BiLSTM model effectively predicts decadal rainfall in Indramayu and has the potential to 

reduce crop loss by optimizing agricultural strategies such as drainage, fertilization, and harvesting aligned with 

rainfall projections for February to April 2025. 

Keywords: forecasting; rainfall; CNN-BiLSTM; rice; Indramayu regency. 

2020 AMS Subject Classification: 68T07, 92B05. 

 

1. INTRODUCTION 

West Java Province stands as one of Indonesia's key agricultural regions, often recognized as 

a national rice granary, with over 1.58 million hectares of rice fields [1]. In 2023, the province 

contributed significantly to national production, yielding 9.14 million tons of rice and ranking 

among the top three rice-producing provinces in Indonesia. Indramayu Regency, a major 

contributor to this productivity, covers approximately 125,000 hectares of paddy fields [2]. 

However, agriculture in Indramayu is highly dependent on rainfall patterns, which are frequently 

erratic and unpredictable. These fluctuations create vulnerabilities to both drought and flooding, 

leading to decreased agricultural yields and increased production costs. 

Rice cultivation, a fundamental pillar of food security, is highly susceptible to climate 

variability, particularly extreme rainfall events. Both insufficient precipitation, leading to droughts 

due to low precipitation, and excessive rainfall, causing floods and crop damage, significantly 

impair agricultural productivity and farmer livelihoods. Inaccurate rainfall predictions can cause 

serious consequences; for instance, overestimated forecasts may delay planting schedules, 

resulting in drought stress and reduced yields. Between April and August 2023, droughts affected 

over 12,800 hectares of farmland in West Java, with 2,269 hectares specifically located in 

Indramayu [3]. Conversely, underestimating rainfall can lead to severe flooding, as observed in 

2023 when over 113,000 hectares of agricultural land across 22 provinces were damaged [4]. 

Excess rainfall also contributes to soil erosion and widespread pest outbreaks [5]. Given these risks, 

accurate and adaptive rainfall forecasting methods are critical to improving food security in the 

region. 
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In Indonesia, rainfall is typically analyzed on a decadal scale, referring to 10-day intervals, 

which provides a more granular and actionable understanding of seasonal trends compared to daily 

or monthly aggregates. The Meteorological, Climatological, and Geophysical Agency (BMKG) 

utilizes this decadal classification to determine the onset of wet or dry seasons. However, the 

existing rainfall prediction model used by BMKG in West Java currently averages an accuracy of 

only 63%, exhibiting a significant error margin of 37%. This level of inaccuracy is often 

inadequate for effective agricultural planning and may lead to suboptimal decisions regarding crop 

management and planting schedules. 

 

Figure 1. Rainfall Plot for Indramayu Regency, West Java Province January 2000 – July 2024 

Addressing these persistent challenges necessitates more reliable and precise forecasting 

methods. Traditional statistical models and earlier machine learning approaches have often 

struggled to capture the complex, non-linear, and multi-scale temporal dependencies inherent in 

rainfall time series data. Recurrent Neural Networks (RNNs) and standard Long Short-Term 

Memory (LSTM) networks, while effective for sequential data, face limitations in discerning 

intricate seasonal patterns and long-term dependencies in complex decadal rainfall datasets. 

Studies on rainfall prediction in Bandung using deep learning have shown promising yet 

improvable results. For instance, an LSTM-based model achieved a test RMSE of 8.78 [6], while 

a BiLSTM model was evaluated with an MAE of 0.15 [7]. These findings suggest that although 

deep learning approaches are applicable, there remains a need for models capable of better 
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capturing long-term variability to support strategic agricultural planning. 

Hybrid architectures such as CNN-BiLSTM offer promising solutions. CNNs are effective in 

extracting local features and short-term patterns, whereas BiLSTMs excel at capturing long-term 

temporal dependencies by processing sequences bidirectionally [8]. This integration enables 

simultaneous learning from both spatial and temporal representations, enhancing predictive 

performance. Several studies have demonstrated the superiority of CNN-BiLSTM compared to 

standalone models, for example in flood prediction [9] and rainfall forecasting [10]. 

Given these advancements and the urgent need for improved forecasting, this study aims to 

develop a more accurate decadal rainfall forecasting model for Indramayu Regency using a hybrid 

CNN-BiLSTM architecture. Specifically, this research seeks to construct a deep learning model 

capable of achieving at least 80% accuracy in forecasting decadal rainfall, thereby significantly 

outperforming current BMKG methods. This improvement is expected to support better-informed 

decisions regarding planting schedules, irrigation planning, and overall agricultural resource 

management, ultimately contributing to enhanced food security in the region. 

2. MATERIALS AND METHODS  

2.1. Data Source 

 This study employs secondary rainfall data collected from the Indonesian Meteorological, 

Climatological, and Geophysical Agency (BMKG). The dataset spans from the first decadal period 

of January 2000 to the first decadal of February 2025. It comprises 904 observations, measured in 

decadal intervals (10-day periods), which are standard in climatological and agricultural planning 

in Indonesia. The use of decadal data allows for better temporal resolution than monthly aggregates 

and reduces the volatility seen in daily data. The historical data used in this study is univariate time 

series data. 

2.2. Data Preprocessing 

 Prior to model training, the raw rainfall data underwent several preprocessing steps to ensure 

optimal model performance and stability. Data normalization was performed using Min-Max 

scaling to rescale the rainfall values to a range between 0 and 1. This method helps to stabilize the 

gradient descent, prevent features with larger values from dominating the learning process, and 

ensure uniform input to the neural network [11]. The formula for Min-Max scaling is given by 
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𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
(𝑥 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
 (1) 

 It was confirmed that the dataset contained no missing values, hence no imputation methods 

were required. Furthermore, no explicit handling or removal of extreme values (outliers) was 

performed, as the CNN-BiLSTM model's inherent robustness was relied upon, evidenced by its 

ability to effectively capture and predict extreme rainfall events in the results. 

 

2.3. CNN-BiLSTM Model Architecture 

The forecasting model utilized in this research is the hybrid CNN–BiLSTM model. This 

architecture integrates Convolutional Neural Networks (CNN) with Bidirectional Long Short-

Term Memory (BiLSTM) networks. The CNN component is responsible for extracting spatial 

features from the input data, such as localized patterns in decadal rainfall sequences. By applying 

convolutional filters over the time dimension, CNNs can detect short-term trends and local 

fluctuations in the signal. Mathematically, the one-dimensional convolution operation is defined 

as: 

𝑦𝑡 = ∑ 𝑥𝑡+𝑖 ∙ 𝑤𝑖 + 𝑏

𝑘−1

𝑖=0

 (2) 

where, 

𝑦𝑡 = output feature at time t 

𝑘 = kernel size 

𝑥𝑡+𝑖 = input value at position 𝑡 + 𝑖 

𝑤𝑖 = weight of the 𝑖𝑡ℎ filter element 

𝑏 = bias term 

This operation allows the model to detect local temporal patterns such as abrupt spikes or 

drops in rainfall, which often signal the onset of extreme weather events. The kernel slides over 

the input sequence, producing convolved features that capture translation-invariant characteristics 

of the data. 

Following convolution, the output is typically passed through a nonlinear activation function, 

such as the Rectified Linear Unit (ReLU), defined as: 

𝑅𝑒𝐿𝑈 = max⁡(0, 𝑥) (3) 

This function introduces nonlinearity into the model, enabling it to learn complex mappings 
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beyond simple linear transformations. 

To further reduce computational complexity and mitigate overfitting, the CNN layer is usually 

followed by a pooling operation, such as max pooling, which selects the maximum value within a 

window: 

𝑝𝑡 = max⁡(𝑥𝑡, 𝑥𝑡+1, ⋯ , 𝑥𝑡+𝑘−1) (4) 

Pooling helps preserve the most salient features while reducing the dimensionality of the 

representation. In this study, the pooling size is set to 2, effectively halving the sequence length 

and enabling the model to focus on dominant rainfall patterns across adjacent time steps. 

Once spatial features are extracted, they are passed into the BiLSTM layers, which capture 

temporal dependencies in the sequence. Unlike standard LSTM models, which process data in a 

single forward direction, BiLSTM processes the input in both forward and backward directions. 

This bidirectional structure allows the model to utilize contextual information from both past and 

future time steps, resulting in a more comprehensive understanding of temporal dynamics. The 

internal operations of LSTM networks are governed by gated mechanisms, including the forget 

gate, input gate, and output gate. The forget gate ft determines which parts of the previous cell 

state should be discarded: 

𝑓𝑡 = 𝜎(𝑾𝑓[ℎ𝑡−1. 𝑥𝑡] + 𝑏𝑓) (5) 

Here, ℎ𝑡−1  is the hidden state from the previous time step, 𝑥𝑡  is the current input, 𝑾𝑓 

represents the weights, and 𝑏𝑓 is the bias. A value close to 1 means retaining the information, 

while a value close to 0 means forgetting it. 

Next, the input gate determines what new information will be stored in the cell. This is a two-

step process: the sigmoid function selects which values to update, while a tanh layer generates a 

vector of new candidate values to be potentially added to the cell state: 

𝑖𝑡 = 𝜎(𝑾𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (6) 

𝐶̅ = tanh⁡(𝑾𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (7) 

These two vectors are then used to update the cell state, which is the memory component of 

the network: 

𝐶𝑡 =⁡𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ ⁡𝐶𝑡̅ (8) 
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This equation combines retained past information (𝑓𝑡 ∙ 𝐶𝑡−1 ) with new candidate memory 

content (𝑖𝑡 ∙ ⁡𝐶𝑡̅). The result is a carefully regulated internal state that allows the LSTM to maintain 

long-term dependences. 

Subsequently, the output gate decides which parts of the updated cell state will be sent to the 

next hidden state. It again uses a sigmoid gate to determine importance, and multiplies the result 

with the tanh-activated cell state: 

𝑜𝑡= 𝜎(𝑾𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (9) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh⁡(𝐶𝑡) (10) 

The final hidden state ℎ𝑡  becomes the output of the LSTM at time step 𝑡, carrying both 

immediate and contextual information forward. 

In Bidirectional LSTM (BiLSTM) architectures, this entire process is mirrored in reverse time. 

A separate set of LSTM units runs backward through the sequence, and the outputs from both 

directions—forward ℎ𝑡
⃗⃗  ⃗ and backward ℎ𝑡

⃖⃗ ⃗⃗ —are concatenated: 

ℎ𝑡 = [ℎ𝑡
⃗⃗  ⃗, ℎ𝑡

⃖⃗ ⃗⃗ ] (11) 

This dual processing allows the model to utilize both past and future context, which is 

particularly useful in rainfall prediction where climatic patterns can exhibit symmetrical or cyclical 

trends [12]. 

The integration of CNN and BiLSTM enables the model to simultaneously learn from spatial 

and temporal representations of the data, making it especially effective for modeling rainfall and 

climate-related phenomena. In this architecture, the input layer receives the rainfall time series 

data, which is then processed by the CNN layer to extract local features and short-term patterns. 

The extracted features are subsequently passed to the BiLSTM layer, which captures temporal 

dependencies in both forward and backward directions. Finally, the Dense layer generates the 

prediction output based on the learned representations. 

2.4. Hyperparameter Tuning and Training 

 The training of the CNN-BiLSTM model was conducted with the Adam optimizer, a learning 

rate of 0.0001, a batch size of 64, and for 300 epochs. Mean Square Error (MSE) was used as the 

loss function during training. Hyperparameter tuning was crucial for achieving optimal model 
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performance. While a comprehensive grid search or Bayesian optimization was not explicitly 

performed due to computational constraints, an iterative empirical tuning approach was adopted. 

This involved evaluating various combinations of learning rates, batch sizes, and architectural 

configurations (e.g., number of layers, neurons, filters) based on their impact on validation loss 

and convergence stability. The selected values were found to yield the most consistent and 

favorable results, as evidenced by the stable convergence of the training and validation loss curves 

(Figure 2) and the improved Mean Absolute Percentage Error (MAPE) on the test set (Table 3). 

Regularization techniques, including Dropout layers, and L2 regularization (also known as weight 

decay) were applied to prevent co-adaptation, penalize large weights, and further improve 

generalization capacity. 

2.5. Evaluation Metrics 

 The performance of the forecasting model was evaluated using several key metrics, including 

Absolute Percentage Error (APE), Mean Absolute Percentage Error (MAPE), Probability of 

Detection (POD), and False Alarm Ratio (FAR). 

1) Absolute Percentage Error 

The evaluation of the first model to be used in this research is the Absolute Percentage Error 

(APE). APE is used to calculate the magnitude of the error for each individual observation value. 

Just like MAPE, if the error value decreases, the accuracy level increases. The smaller APE values 

there are, the smaller the MAPE value will be because MAPE is the average of all APE values 

[13]. 

𝐴𝑃𝐸 = |
𝑋𝑡 − 𝑋𝑡̂

𝑋𝑡
| 𝑥100% (12) 

where, 

𝑋𝑡 = the observed value 

𝑋𝑡̂ = the predicted value  

The smaller the APE value, the better. 

2) Mean Absolute Percentage Error 

The evaluation of the second model to be used in this study is the Mean Absolute Percentage 

Error (MAPE). MAPE is a method of measuring error in forecasting methods using the absolute 

error technique in each period divided by the actual observation value for that period [14]. After 

that, calculations are performed to obtain the average absolute percentage error. MAPE is an error 
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test that can measure the percentage difference between predicted data and actual data. Here is the 

MAPE calculation. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝑋𝑡 − 𝑋𝑡̂

𝑋𝑡
|

𝑛

𝑡=1

𝑥100% (13) 

Where the parameter same as parameter APE. 

3) Probability of Detection (POD) 

POD, also known as Hit Rate, measures the proportion of observed events (actual occurrences) 

that were correctly predicted by the model. It is particularly useful for assessing the model's ability 

to detect positive instances, such as extreme rainfall events. A POD value of 1 (or 100%) indicates 

that all actual events were successfully predicted [15]. 

𝑃𝑂𝐷 =
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑠
 (14) 

Where Hits refer to actual extreme events that were correctly predicted as extreme, and Misses 

refer to actual extreme events that were not predicted as extreme. 

4) False Alarm Ratio (FAR) 

FAR quantifies the proportion of predicted positive events that did not actually occur. It 

evaluates the model's tendency to generate false alarms. A FAR value of 0 indicates no false alarms, 

while a value of 1 means all positive predictions were false alarms [15]. 

𝐹𝐴𝑅 =
𝐹𝑎𝑙𝑠𝑒⁡𝐴𝑙𝑎𝑟𝑚𝑠

𝐻𝑖𝑡𝑠 + 𝐹𝑎𝑙𝑠𝑒⁡𝐴𝑙𝑎𝑟𝑚𝑠
 (15) 

Where False Alarms refer to events predicted as extreme but which did not actually occur. 

3. RESULTS AND DISCUSSION 

3.1. Model Evaluation and Training Behavior 

The model evaluation process began with a series of baseline experiments using simple CNN–

BiLSTM configurations. These early models, featuring relatively shallow architectures with 

limited convolutional filters and small BiLSTM layers, failed to capture the complex temporal 

dynamics of decadal rainfall. As shown in Table 1, all tested configurations yielded excessively 

high Mean Absolute Percentage Error (MAPE) values, with test errors exceeding 140%, indicating 

poor predictive capability and structural underfitting. 
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Table 1. Baseline Parameter Combinations 

Filters 1D Kernel Size 1D Neurons Bi-LSTM Epoch MAPE Train MAPE Test 

32 2 32 150 132,411 146,6516 

32 2 64 150 121,291 149,403 

32 2 128 150 129,518 146,0347 

32 2 256 150 135,899 147,5524 

32 3 32 150 137,636 141,0488 

32 3 64 150 124,856 147,7695 

32 2 32 150 132,411 146,6516 

In response to this underperformance, the model architecture was incrementally deepened. 

This involved increasing the number of filters in the convolutional layers, expanding the BiLSTM 

layers to include more neurons, and extending the training to a full 300 epochs. However, the 

results—summarized in Table 2—exhibited a clear overfitting trend, where training errors dropped 

significantly (as low as 12.65%), while testing errors remained elevated (ranging from 44% to 

65%). This divergence indicated that the model had begun memorizing the training data and failed 

to generalize to unseen samples. 

Table 2. Parameter Combinations with Overfitting Indication 

Filters 1D Kernel Size 1D 
Neurons Bi-LSTM Epoch 

MAPE 

Train 

MAPE Test 

[512,512] 7 3 [512,512,512,512] 300 23,568 65,311 

[512,512,512] 9 5 5 [512,512,512] 300 21,985 45,913 

[512,512,512] 9 7 4 [512,512,512] 300 18,653 44,144 

[512,512,512] 7 3 3 [512,512,512,512] 300 14,477 64,676 

[512,512,512,512] 9 2 7 3 [512,512,512] 300 12,649 52,211 

 

To address the imbalance between model complexity and generalization capacity, the 

architecture was systematically simplified through a series of targeted refinements. The number of 

BiLSTM layers and their associated neurons was reduced, and convolutional layers were adjusted 

by reducing the number of filters to minimize the risk of overfitting. Training optimization was 

carried out by fine-tuning the batch size and learning rate. Most importantly, regularization 

techniques, including Dropout layers and L2 regularization (also known as weight decay), were 

applied to further improve generalization by preventing co-adaptation and penalizing large weights. 

Together, these design choices contributed to a more balanced architecture—one that maintains 

sufficient model capacity while effectively controlling overfitting and ensuring better performance 
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on unseen data. 

This iterative process culminated in a set of configurations with consistently improved 

validation performance, shown in Table 3. Among them, the optimal model achieved a MAPE of 

17.49% on the test set—classified as "good" forecasting accuracy [13]. The corresponding training 

loss and validation loss curves (Figure 2) showed consistent convergence, with both loss metrics 

decreasing rapidly within the first 100 epochs, followed by a gradual stabilization up to epoch 300. 

The minimal gap between training and validation losses throughout indicates a balanced and well-

generalized model with no overfitting symptoms. These findings demonstrate that model 

complexity must be carefully managed to avoid under- or overfitting. The optimal architecture 

reflects a strategic balance between network depth, parameter count, and training dynamics, 

validating the CNN–BiLSTM model's suitability for high-resolution rainfall forecasting. It is 

important to note that the configurations presented in Tables 1, 2, and 3 represent only a subset of 

the total experiments conducted during model tuning; dozens of additional parameter combinations 

were tested and analyzed for clarity and conciseness. 

Table 3. Optimal Parameter Combinations 

Filters 1D Kernel 

Size 1D 

Neurons Bi-

LSTM 
Epoch 

MAPE 

Train 

MAPE 

Test 

[32,16] 3 [64,64,50] 300 17,119 18,462 

[32,16] 3 [64,50,64] 300 21,985 17,517 

[32,16] 3 [64,100,64] 300 18,653 18,247 

[32,16] 3 [64,50,32] 300 18,140 17,498 

[32,16] 3 [64,100,32] 300 19,544 17,645 

[32,16] 3 [64,50,50] 300 21,654 17,715 

[32,16] 3 [64,50,100] 300 18,673 17,635 

 

 

Figure 2. Training Loss and Validation Loss Curve 
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As depicted in Figure 3, the model is able to closely approximate the overall trend of the actual 

rainfall data, even though the predictions do not perfectly align with all observed values. Notably, 

the model demonstrates the ability to capture extreme rainfall events, supporting its robustness in 

handling outlier and high-variance data. Additionally, the model successfully identifies and 

reproduces seasonal patterns present in the actual series. These similarities can be further verified 

not only through the visual comparison in the graph but also through detailed numerical analysis, 

as shown in Table 4.

 

 

 

 

Figure 3. Comparison Between Actual and 

Prediction  

 

 

Table 4. Comparison Between Actual and 

Prediction (Training) 

Decadal Actual Prediction APE (%) 

20000101 19,38 21,28 9,839376 

20000102 87,91 72,44 17,59372 

20000103 281,61 244,28 13,25654 

20000201 46,18 41,16 10,87826 

… … … … 

20220603 4,78 5,50 15,15109 

20220701 11,92 13,71 15,02602 

20220702 87,83 101,01 15,00314 

20220703 0,88 1,06 19,55512 

 

From Table 4, it was found that 84.13% of the training data had an APE value below 20%, 

while the remaining 15.86% of the training data had an APE value above 20%. For the testing data 

(Table 5), 83.51% had an APE value below 20%, with the remaining 16.48% having an APE value 

above 20%. Further analysis of samples with APE values exceeding 20% indicates that these 

higher errors tend to occur during periods of rapid transition between seasons (e.g., onset of rainy 

season or transition to dry season) or during exceptionally intense rainfall events, which are 

inherently more challenging to predict due to their high variability and non-linear dynamics. For 

extreme rainfall events (e.g., >100mm), the model demonstrated a Probability of Detection (POD) 

of 85.37%, indicating a high success rate in identifying actual extreme events. Concurrently, the 

False Alarm Ratio (FAR) was found to be 26.32%, representing the proportion of predicted 

extreme events that did not materialize. These metrics further quantify the model's capability in 

identifying critical high-impact events while managing false predictions. 
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Table 5. Comparison Between Actual and Prediction (Testing) 

Decadal Actual Prediction APE (%) 

20220801 6,0282 7,06 17,11622 

20220802 13,9679 15,8 13,1165 

20220803 1,4899 1,66 11,41687 

20220901 34,9134 40,78 16,80329 

… … … … 

20250101 106,4886 124,5915 16,99988 

20250102 63,9884 75,86816 18,56548 

20250103 145,5348 173,2796 19,06406 

20250201 167,9847 199,5466 18,78858 

 

Because during training and testing the model proved capable of following the rainfall pattern, 

and its accuracy was also quite high, the researchers have selected the model as the one to be used 

for future rainfall data predictions. 

3.2. Prediction 

After obtaining the best model, the researchers used that model to predict rainfall for the next 

6 decadal (2 months ahead), specifically from February to April 2025. Here are the results of the 

prediction: Figure 4 and Table 6.

 

 

Figure 4. Prediction of Rainfall 

 

Table 6. Prediction of Rainfall 

Decadal Prediction 

20250202 102,92 

20250203 80,28 

20250301 84,59 

20250302 63,89 

20250303 71,63 

20250401 63,10 

As shown in Figure 4 and Table 6, the predicted rainfall values for February to April 2025 

exhibit a gradual downward trend, indicating a potential transition from the peak of the rainy 

season toward drier conditions. While the first period shows relatively high rainfall, subsequent 

decadal forecasts decrease consistently, suggesting the model anticipates a shift in seasonal 
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dynamics. It is important to note that for this specific forecast period (February to April 2025), 

actual historical data is not yet available. Therefore, the rationality of this forecasted trend is 

verified by its consistency with typical historical rainfall patterns observed in Indramayu during 

these months, reinforcing the model's ability to capture overall seasonal variations. Furthermore, 

Figure 3 also provides a comprehensive view of how the model's predictions (orange line) align 

with historical actual data (blue line) across the entire dataset used for training and testing, 

including the test set which extends into early 2025, visually confirming the model's capability to 

learn and reproduce historical trends and seasonal patterns, lending confidence to its future 

projections. 

3.3. Discussion 

This study demonstrates that the CNN–BiLSTM model effectively captures temporal and 

seasonal patterns in decadal rainfall data, achieving a test MAPE of 17.49%. Model tuning 

revealed that overly simple architectures caused underfitting, while deeper ones led to overfitting, 

underscoring the need to balance complexity. Regularization (Dropout, L2) and careful 

hyperparameter tuning (learning rate, batch size) proved more effective than merely increasing 

depth. 

The CNN–BiLSTM outperformed BMKG’s average accuracy of 63% in West Java due to its 

hybrid architecture. The CNN component extracted localized features and short-term patterns from 

decadal sequences, while BiLSTM captured long-term dependencies and cyclical trends by 

processing data bidirectionally. This synergy enabled a more comprehensive understanding of 

rainfall dynamics and improved predictive robustness. 

Importantly, the model relies only on historical univariate decadal rainfall data, without 

requiring radar or satellite inputs, making it applicable in regions with limited infrastructure. This 

enhances its value for agricultural planning, particularly in data-scarce areas. 

Forecast results have practical implications: projected high rainfall from February to early 

April 2025 suggests the need for optimized drainage, while fertilization and pesticide application 

should align with drier periods. The decline in rainfall toward May supports gradual field drying 
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before harvest. Although the model performed well in capturing extreme events (POD 85.37%, 

FAR 26.32%), future work should incorporate climatic variables or outlier-sensitive architectures 

to further enhance robustness under volatile conditions. 

4. CONCLUSION 

This study demonstrates the effectiveness of a hybrid Convolutional Neural Network–

Bidirectional Long Short-Term Memory (CNN-BiLSTM) model in forecasting decadal rainfall in 

Indramayu Regency. The optimal model architecture, characterized by its combination of a 24-

step input window, convolutional layers with [32, 16] filters and a kernel size of 3, L2 

regularization (kernel and recurrent) at 0.001, and max pooling, effectively extracts local features 

and short-term patterns from the rainfall sequences. Subsequently, the Bi-LSTM layers, with [64, 

50, 32] neurons, proficiently capture long-term dependencies and complex decadal cycles by 

processing data in both forward and backward directions. This synergistic combination allows the 

model to comprehensively understand and predict intricate rainfall dynamics. Training was 

conducted efficiently with the Adam optimizer (learning rate of 0.0001), a batch size of 64, and 

300 epochs. 

The CNN-BiLSTM model achieved a Mean Absolute Percentage Error (MAPE) of 17.49% 

on the test data, corresponding to an accuracy of 82.51%. This performance significantly 

outperforms the average BMKG forecast accuracy of 63% in the West Java region, affirming the 

model's superior ability to capture seasonal and complex rainfall dynamics. These results highlight 

its strong potential to enhance early warning systems and facilitate data-driven agricultural 

planning. Forecast results indicate that rainfall will remain relatively high from late February to 

early April 2025. Based on these projections, farmers are advised to optimize drainage systems 

and strategically schedule key agricultural activities—such as fertilization and pesticide 

application—during periods of lower rainfall to mitigate crop stress and maximize yield potential. 

For practical implementation and to maximize its impact, future work could explore 

integrating this model into existing operational systems, such as those used by BMKG, potentially 

through an API interface. This would enable real-time and seamless deployment of the forecasts 

for more immediate and adaptive agricultural decision support. 
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