Auvailable online at http://scik.org
Commun. Math. Biol. Neurosci. 2026, 2026:14
https://doi.org/10.28919/cmbn/9617

ISSN: 2052-2541

BRAINPRINT AUTHENTICATION UNDER VARYING ENVIRONMENTAL

CONDITIONS: MACHINE LEARNING VERSUS DEEP LEARNING

DARIEN KEEGAN?, SIAW-HONG LIEW*", SIEW-YIN TANG!, YUN-HUOY CHOOQ?, STEPHANIE CHUA!,
CHONG CHEE SOON?

!Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300,
Sarawak, Malaysia

2Faculty of Artificial Intelligence and Cyber Security, Universiti Teknikal Malaysia Melaka, Durian Tunggal 76100,
Melaka, Malaysia

3Department of Engineering and Built Environment, Tunku Abdul Rahman University of Management and
Technology, Penang Branch Campus, Tanjung Bungah 11200, Pulau Pinang, Malaysia

Copyright © 2026 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: This study explores the potential of using EEG signals for biometric authentication through the development
of Convolutional Neural Network (CNN) model. In particular, the electroencephalogram (EEG) signals were recorded
in different ambient noise settings: quiet environment, low-distraction environment, and high-distraction environment.
Traditionally, EEG-based authentication requires a separate feature extraction step prior to the use of machine learning
algorithm. Feature extraction process is usually cumbersome, which relies heavily on human experts, and prone to
information loss. Thus, a CNN model based on EEGNet architecture is proposed to train EEG datasets collected from
45 volunteers who were instructed to look at images presented to them in all the three acoustic conditions. Using a
variety of performance metrics, notably precision and recall, the model’s performance was compared across various
classification thresholds to account for the imbalanced nature of the dataset. The performance was also compared
across different environmental conditions, with the highest F1-score in quiet conditions. Additionally, the CNN’s
performance was compared against a probability-based Incremental Fuzzy-Rough Nearest Neighbour (prob-IncFRNN)
model, with former outperforming the latter in all metrics.

Keywords: brainprint authentication, convolutional neural network (CNN), probability-based incremental fuzzy-
rough nearest neighbour (prob-IncFRNN).

2020 AMS Subject Classification: 68T07.

“Corresponding author
E-mail address: shliew@unimas.my
Received September 26, 2025



KEEGAN, LIEW, TANG, CHOO, CHUA, SOON

1. INTRODUCTION

The cybersecurity field is increasingly recognizing the need for robust authentication methods
beyond traditional password or token-based systems, which cannot effectively distinguish between
authorized users and imposters [1]. Biometric authentication addresses these shortcomings by
identifying individuals based on unique physical or behavioural traits. Traditional methods fall into
the "what you know" category, while biometric methods fall into the "who you are" category.
Biometrics can be divided into behavioural approaches like signature recognition and physiological
approaches like fingerprints and iris scans. EEG signals represent a cognitive approach, focusing
on "the way an individual thinks", making them highly secure and unique [2]-[4]. However, EEG
signals are nonlinear and nonstationary, making them vulnerable to environmental noise and motion
artifacts that degrade signal quality and reduce authentication accuracy in real-world settings [5].
EEG signals, particularly visual-evoked potentials (VEP), can be analyzed using machine learning
algorithms like convolutional neural networks (CNN) for biometric authentication.

Many studies have demonstrated high accuracy in EEG signals classification using conventional
methods such as LDA, SVM, and k-NN, which require manual feature extraction and feature
selection and are time-consuming [6]. Besides, the conventional machine learning approach such
as Incremental Fuzzy-Rough Nearest Neighbour (IncFRNN) technique was introduced in the past
research for brainprint authentication [7]. The IncFRNN model is good at gradually reconstructing
the knowledge granules from an initial trained model incrementally. It is able to capture the dynamic
changes with human understandable logics. However, the input feature must be extracted first prior
to the use of machine learning algorithm. Feature extraction process is usually cumbersome, which
relies heavily on human experts. Besides that, the two separation modules (feature extraction and
classification) may result in information loss during the feature extraction process [8]. To address
this issue, deep learning simplifies the learning process by allowing end-to-end learning that
performs feature extraction and classification in one scheme. This approach not only reduces
reliance on human experts but also minimizes information loss while improving efficiency. With
this, it is capable to capture the important characteristics of subjects’ brain responses, even in the
presence of environmental noise. However, this area remains underexplored.

Convolutional Neural Network (CNN) can automatically learn to extract features, reducing
manual effort and improving efficiency [9], [10]. Pre-trained models further enhance performance

by reducing training time and computing resources [10], [11]. Thus, this paper aims to authenticate
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brainprints using a CNN model under varying environmental conditions, utilizing datasets from our
past research [4]. Google Colab will be employed in model development and testing. The CNN
model's performance will be compared with the probability-based Incremental Fuzzy-Rough
Nearest Neighbour (prob-IncFRNN) model to evaluate its effectiveness.

The rest of this paper is structured as follows: Section 2 reviews the related works about
machine learning and deep learning models for brainprint authentication. Section 3 illustrates the
experimentation, which includes dataset description and data preparation, models construction on
both machine learning and deep learning models, and performance evaluation. Section 4 portrays
the experimental results and discussions, and Section 5 draws the conclusion and suggests the

direction of future work.

2. RELATED WORKS

Biometric authentication is a security process of verifying an individual identity with the unique
biological characteristics to grant accessibility permission. Common biometric modalities in real
world practice are fingerprints, iris, and facial recognition. However, these modalities pose different
drawbacks in practical implementation, crucially because they appear on the body surface with no
obligatory of liveness evidence. Impostor is able to forge access using a fake fingers, printed iris
images or printed facial images since these biometrics are easily observable using digital sensors
[12]. Thus, biometric modalities with liveness requirement such as Electroencephalogram (EEG)
based biometric research has progressed rapidly, in conjunction with the growth of portable low
cost but high time resolution acquisition devices over the past few years [13]-[15].
Electroencephalography (EEG) is a method to record an electrogram (EGM) or EEG signals of the
electrical activity of the brain. Conventional scalp EEG recordings are obtained by positioning
electrodes on the scalp according to the 10-20 international system. The “10” and “20” refers to the
distance between two adjacent electrodes which can either be 10% or 20% of the front-back distance
of the skull [2]. These recordings capture the brain’s electrical activity, which can be acquired
during spontaneous neural processes, such as resting-state conditions, or in the presence of specific
stimuli or events. These EEG signals also exhibit oscillatory patterns across a wide range of
frequencies, predominantly within the 1 to 40 Hz spectrum, and can be characterized by their
frequency, amplitude, and waveform. The main frequency bands observed in EEG signals include
delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-100 Hz) waves.

Each of these frequency bands is associated with different states of brain activity. For instance,



KEEGAN, LIEW, TANG, CHOO, CHUA, SOON
alpha waves are typically seen when a person is relaxed but awake, while beta waves are associated
with active thinking and concentration [2].

A critical trait of EEG signals is that it is unique, the recorded brain activity cannot be spoofed
thereby being characteristically unlikely to be stolen. In other words, EEG signals are not as
accessible to the attacker as traditional biometrics such as face and fingerprints which can be
replicated at any time. Moreover, EEG signals are inherently confidential since they are not exposed
unlike other biometric traits hence permitting a higher level of privacy compliance [2].

A study by Ong et al. [16] examined the most suitable frequency bands for human EEG-based
biometric identification, applying the k-NN algorithm on EEG signals from ten subjects visualizing
three items. Using a 32-channel EEG device at 512 Hz, they found that the combination of theta,
alpha, beta, and gamma bands yielded an average accuracy of 89.21%. The beta band alone had an
accuracy of 88.10%, followed by alpha and beta at 86.76%, and alpha alone at 83.04%.

Das et al. [17] used LDA and linear SVM for person identification with rapid visually evoked
EEG signals, showing that the period 120-200 ms and visual cortex electrodes were most
informative. They achieved 87.78% accuracy with LDA and 94.08% with SVM via 10-fold cross-
validation. Liew et al. [7] studied the IncFRNN technique for biometric authentication with EEG
signals, finding it outperformed IBk with an AUC of 0.8843. Jayarathne et al. [18] introduced the
Inter-Hemispheric Amplitude Ratio for person identification, with KNN classifier and specific
electrode combinations yielding 99.0+0.8% accuracy.

The potential of transfer learning in CNNs to improve EEG-based authentication systems has
been brought to light by recent investigations. It has been shown by Wu et al. [19] and Yap et al.
[20] that using pre-trained models can greatly enhance EEG-based authentication performance,
especially for multi-class classification tasks. Even with encouraging outcomes, transfer learning is
rarely used in EEG signal processing, with most results obtained for binary classification tasks.
Alahaideb et al. [5] used various machine learning models on EEG dataset collected from nine
female students aged 18-22 in a controlled laboratory environment. Among the tested models, the
CNN achieved the highest accuracy of 99%, followed by Random Forest (RF) and Gradient
Boosting (GB) classifiers with 94% and 93%, respectively. In contrast, KNN and SVM showed
poor performance at 55% and 48%. This finding highlights the effectiveness of CNN for EEG-
based classification, the limited sample size and highly controlled conditions restrict the

generalizability of the real-world settings.



BRAINPRINT AUTHENTICATION UNDER VARYING ENVIRONMENTAL CONDITIONS

Table 1. Overview of past research works on EEG signals classifications

Paper Task Subjects Classifier Channels | Sample Rate | Accuracy
IncFRNN 88.43%
[7] VEP 37 8 256 Hz
KNN (k =5) 86.75%
[21] VEP 102 Elman NN 61 256 Hz 98.12%
[9] Motor imagery 5 CNN 118 1000 Hz 99.35%
LDA 87.4%
QDA 94.7%
Linear SVM 86.3%
[18] VEP 12 - 14 128 Hz
Qudratic SVM 83.1%
Gausian SVM 87.2%
KNN 85.6%
[16] VEP 10 KNN 32 512 Hz 89.21%
LDA 87.78%
[17] VEP 20 . 64 512 Hz
Linear SVM 94.08%
[20] VEP 30 CNN 14 256 Hz 97.75%
CNN 99%
Gradient Boosting 93%
KNN (k = 5) 55%
Decision Tree 81%
[5] ERP (N400) 9 14 128 Hz
Naive Bayes 63%
SVM 48%
Random Forest 94%
Logistic Regression 60%

In summary, Table 1 shows an overview of past research works on person authentication via
EEG signals which includes the protocol used to acquire the signals, classifiers applied, and the
achieved performance. The table also reveals the viability of EEG signals as a future biometric trait,
almost always yielding at least 80% accuracy regardless of the classifiers used. It is also worth
noting the relevancy of the studies on EEG signals as a biometric mode, which has been in the

researchers’ interest since 2007 until as recently as 2025.

3. EXPERIMENTATION

This section presents the brainprint authentication models, as shown in Figure 1 and Figure 2.
Figure 1 illustrates the model based on conventional machine learning approach, utilizing the
probability-based Incremental Fuzzy-Rough Nearest Neighbour (prob-IncFRNN) method. In
contrast, Figure 2 depicts the authentication model using end-to-end learning approach via a
Convolutional Neural Network (CNN). A comparison of results between both models will be

discussed in Section 4.
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FIGURE 1. Conventional machine learning approach
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FIGURE 2. Deep learning approach (End-to-end learning)

3.1 Data Description and Data Preparation

The EEG dataset used in this study is collected by Liew et al. [4]. It comprises EEG signals from
45 volunteers aged 18-36, all healthy with normal or corrected vision. EEG data were collected
using 21 electrodes positioned according to the International 10-20 system, sampled at 512 Hz
without filtering to avoid information loss. Participants sat comfortably to reduce movement-related
artifacts. Visual stimuli were placed 1 meter away at eye level to prevent attention loss from eye
fatigue. Each participant selected a password image and responded by clicking a mouse when it
appeared during 150 shuffled trials, with 60 trials featuring the pre-selected image and 90 trials
featuring random images from a set of 260. Images were displayed for 1 second, followed by a 1.5-

second white-blank screen, known as the interstimulus interval (as shown in Figure 3).

Stimulus Stimulus
I 1 I >
Stimulus duration: Blank Screen duration:
1 000ms 1 500ms
L @
One trial Next trial

FIGURE 3: Visual stimulus presentation
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To simulate real-world conditions, experiments were conducted under three audio-related
scenarios: quiet, low distraction, and high distraction, with corresponding noise levels of soft (30-
40 dB), moderate (50-60 dB), and loud (70-80 dB) as per the American Academy of Audiology
guidelines [22]. During the “low distraction” condition, a 55 dB audio clip of a regular office
environment was played, while the “high distraction” condition employed a 70 dB audio clip of an
irregular office environment to represent a highly distractible setting. These scenarios were
designed to assess the robustness of the proposed brainprint authentication system under varying
environments.

Filtering, segmentation, and artefact rejection were implemented to eliminate unwanted signals.
A bandpass filter of Finite-duration Impulse Response (FIR) type, with the cut-off frequencies of 8
to 13 to 30 Hz, was used to obtain the alpha and beta band signals. Next, the signals were segmented
according to the trial.
3.2 Models Construction
3.2.1 Conventional Machine Learning Model Construction
In this study, the feature extraction and feature selection methods were selected based on literature
review. Power spectral density (PSD), Wavelet phase stability (WPS) and coherence were used to
extract the representative characteristics from the EEG signals in achieving robust classification
results. PSD is an efficient method for converting EEG signals from time domain to frequency
domain. It captures the correlation information between the measured signals from several electrode
channels [14]. On the other hand, WPS used wavelet-based measure to quantify the phase
information [23]. Phase information in signal processing is more useful and stable than the
amplitude information [24]. It is because the phase information takes into consideration the
nonstationary characteristics of the EEG signals. Furthermore, coherence provides an important
approximation of functional interactions between the neural systems operating in each frequency
band [25]. The coherence measures the degree of linear correlation between two signals. Coherence
can reveal the correlation between two signals at different frequencies.

Next, the extracted features will be selected by using Correlation-based Feature Selection (CFS).
A representative feature subset should contain a high correlation between the features and the target
class. CFS chooses the best inter-correlated feature subset according to the correlation-based
heuristic merit. Only 12 out of 210 features were selected for the brainprint authentication modelling.

Since brainprint authentication is a binary class problem, the output class will be either client or
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impostor instead of the number of subjects. Unfortunately, the dataset was imbalanced. Figure 4
shows the class distribution in the dataset which clearly illustrates the disproportionality of the two
classes. In order to deal with the imbalance dataset, the minority class is oversampled to match the
majority class. This is done via scikit-learn’ S RandomOversampler class and only to the training

set.

mYes
No
13184

FIGURE 4. Class distribution

The probability-based Incremental Fuzzy-Rough Nearest Neighbour (prob-IncFRNN) builds on
the K-Nearest Neighbours (KNN) algorithm, a widely used machine learning technique for
classification and regression. KNN operates on the principle of "information gain," identifying the
k closest neighbours to predict an unknown value. It uses methods like Euclidean distance for
quantifying distances, and the choice of k is crucial to avoid inaccurate predictions or overfitting.
However, KNN's simplicity means it does not handle data uncertainty well.

The Fuzzy-Rough Nearest Neighbour (FRNN) [26] combines fuzzy sets and rough sets with the
traditional nearest neighbour approach of KNN to tackle real-world data complexities and
uncertainties. FRNN uses a fuzzy similarity measure to find the nearest neighbours, calculating
fuzzy lower and upper approximations of each decision class. The lower approximation includes
objects certain to belong to a class, while the upper approximation includes objects that possibly
belong. This method determines the membership of a test object to each class. The Incremental
FRNN (IncFRNN) [7] updates knowledge based on actual class labels through object insertion and
deletion, allowing it to adapt to new data characteristics.

The prob-IncFRNN algorithm [4] enhances the update strategy of INcCFRNN by considering the
probability of an object belonging to a class, useful when actual class labels are unavailable. The
incremental update strategy involves inserting objects into the training pool based on the difference
between the top two nearest neighbours and their predicted classes. The strategy ensures the training

pool includes objects that represent unique features of decision classes and capture new
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characteristics. For object deletion, a window size threshold and frequency counter manage the
training pool, removing the least used objects once the threshold is reached.

3.2.2 Deep Learning Model Construction

The convolutional neural network (CNN) is a specialized type of feed-forward neural network that
is designed specifically for computer vision. It is also the most commonly applied ML algorithm in
deep learning. In contrast to conventional neural networks, CNN has the capability to identify
relevant features without any human supervision. The main difference between ANNs and CNN
lies in their architecture and data input. In terms of architecture, a CNN comprises several distinct
layers such as the convolutional layer, pooling layer and fully connected layer, each of which has a
specific purpose. As for the data input, CNN utilizes data tensors typically with the shape: (“input
height”) % ("input width") % ("input channels").

The original EEG data were stored as Excel files which were inefficient in terms of data retrieval
speed. Therefore, the EEG data were transferred into binary files in NumPy. This step was crucial
to avoid any delay during training. Then, the data was rearranged such that the input shape is
21 x 512 for 21 electrodes, each with 512 samples, for a total of 45 X 150 = 6750 sets.

X114 X127t X1512
X211  X22 7 X512
X211 X212 7 X21512

Any invalid set with null values or was zero-filled were removed from the dataset. The alpha
and beta datasets were combined into a single dataset.

The CNN model used throughout this work was based on the EEGNet architecture, introduced
by [27]. The input first undergoes two convolutional steps in succession with kernel shapes of (1,
64) and (21, 1) respectively. The output would yield a feature map containing the EEG signal at
different band-pass. Then, the feature map is passed onto a pooling layer of size (1, 4). Then, the
feature maps are passed to a separable convolution layer. The features are then passed to the same
configuration of layer until it is passed into the classification block. A single dense layer with
sigmoid activation is responsible for classifying the features. The model is compiled with the Adam
optimizer while the loss function is set to binary_crossentropy. The CNN model summary is

shown in Table 2.
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Table 2. CNN model summary

Layers Filters Shape Activation Options
Input (21,512)
Conv2D 16 (1, 64) None padding = same, bias = false

BatchNorm
48 211 None padding = valid, depth = 2, max norm =
DepthwiseConv2D 1,
bias = false
BatchNorm
Activation eLU
AveragePooling2D (1,4)

SeparableConv2D 48 (1, 16) None padding = same, bias = false
BatchNorm
Activation eLU
AveragePooling2D 1, 8)
Flatten

Dense 320
Dropout p=205

Dense 1 Sigmoid

3.2.3 Performance Measurement
The metrics used to measure the performance of the model are accuracy, precision, recall and F1-

scores. The calculation formulas are shown as below:

TP +TN )
aceuracy = total samples )
TP
N L 3
precision TPLFP 3
TP

l=——— 4
e = TP Y FN )

2 X precision X recall
F1l-score = (5)

precision + recall
where TP, TN, FP and FN refers to true positives, true negatives, false positives and false
negatives respectively. Precision is a measure of how many positive predictions made are correct
(true positives) while recall is a measure of how many of the positive cases the classifier correctly
classified. F1-score, on the other hand, is a measure combining both precision and recall usually

described as a harmonic mean of the two.
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4. EXPERIMENTAL RESULTS AND DISCUSSION

In order to determine the prediction class, the precision-recall (PR) threshold is used instead of the
default 0.5 or the receiver operating characteristic (ROC) threshold. A PR threshold can be obtained
from a PR curve which is a plot that illustrates the performance of a binary classifier at varying
classification threshold. Likewise, the ROC threshold can be obtained from a ROC curve which is
a plot of the true positive rate (TPR) against the false positive rate (TPR). It is worth noting that
CNNs are not deterministic, such that any measurement might differ for each run.

4.1 Comparison between Different Classification Thresholds

Table 3 presents a comparison between the performance metrics evaluated at different classification
thresholds: Precision-Recall (PR), ROC and a default threshold of 0.5. This comparison is essential
for understanding how varying thresholds impact the model’s performance, particularly in an
imbalanced dataset where 98% of the instances belong the “no” class and only 2% to the “yes” class,
as shown in Figure 4. Table 3 provides several key performance metrics, including accuracy, AUC-
ROC, AUC-PR, precision, recall and F1-socre for each threshold. It should be noted that the values

presented in the table are the average measurement taken from all 45 subjects.

Table 3. Comparison between different classification thresholds

Thresholds
PR ROC Default
Accuracy 0.9722 0.9448 0.9285
AUC-ROC 0.9793 0.9791 0.9729
AUC-PR 0.7787 0.7143 0.7020
Precision 0.8010 0.4148 0.5030
Recall 0.7483 0.9389 0.8651
F1-Score 0.7641 0.5492 0.5645

The accuracy of the model remains high across all thresholds, ranging from 92.85% to 97.22%.
The high accuracy is largely due to the imbalanced nature of the dataset, where the model correctly
predicts the majority class (i.e., “no”) most of the time. However, accuracy alone is not a sufficient
measure of performance in this context because it does not account for the minority class (i.e.,
“yes”). On the contrary, precision and recall metrics highlight the trade-off between these two
aspects. The PR threshold achieves the highest precision at 80.10%, meaning it is more
conservative and prioritizes correct positive predictions, but comes at the cost of lower recall of
74.83%. In contrast, the ROC threshold yields the highest recall at 93.89%, indicating a more
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liberal approach that captures more true positives but also includes more false positives, resulting
in the lowest precision of 41.48%.

The idea that PR threshold captures more true positives without sacrificing too much recall and
precision can be illustrated in Figure 4. In other words, there is a tendency to select higher PR
threshold (i.e., around the mean of 0.7834) than it is for ROC threshold, which has a lower average
of 0.3494.

4.2 Comparison between Different Environmental Conditions
Table 4 illustrates the classification performance of the proposed CNN model under different

environmental conditions: quiet, low and high distraction environments.

Table 4. Comparison between different environmental conditions

Environmental Conditions
Quiet Low High
Accuracy 0.9722 0.9339 0.9432
AUC-ROC 0.9793 0.9562 0.9672
AUC-PR 0.7787 0.7001 0.6626
Precision 0.8010 0.7625 0.7211
Recall 0.7483 0.7247 0.6668
F1-Score 0.7641 0.7167 0.6772

Despite the imbalanced nature of the dataset, the accuracy and AUC-ROC are relatively high
across all environmental conditions, with the model performing relatively better in quiet
environment, followed by high distraction environment and finally low distraction environment.
However, this can be misleading because it did not adequately represent the model’s ability to
distinguish between majority and minority classes. Conversely, the AUC-PR, precision, recall and
F1-score all show the same inclination—with performance degrading as noise levels increase.
AUC-PR drops from 0.7787 in quiet environment to 0.6626 under high distraction environment.
Meanwhile, the precision, recall and F1-score display similar declines as environmental distraction
increases.

Furthermore, the quiet environment generally yields the highest performance across all the
metrics. It is noteworthy that some metrics in high distraction environment are higher than those
in low distraction environment. This irregular trend could result from the oversampling technique
used to address the class imbalance in the dataset and the impact of environmental noise on the
EEG signals.
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Figure 5(a) and Figure 5(b) show a few examples of EEG waveform taken from random subjects.
It can be observed that different noise environments impact the amount of noise detected in the
EEG signals. In quiet environment, EEG signals tend to be clearer and more stable, providing the
model with clearer data to learn from. However, in low or high distraction environments, the EEG
signals can be contaminated with extraneous noise, making it harder for CNN to accurately identify
and extract relevant features. These noises can manifest as random fluctuations or consistent
patterns that can confuse the model, leading to decreased accuracy in authentication. For instance,
loud noises might induce stress or other physiological responses that alter brainwave patterns,

further complicating the signal.

(a) C? E\/\/V\/\rv\/\'\/\/\/\/ C3 4

i

b C34 31
( ) 3 T34
F& F&

T T T T
0 200 400 0 200 400 0 200 400
quiet low high

FIGURE 5. EEG signals taken from random subjects. (a) alpha frequency; (b) beta frequency

4.3 Comparison against prob-IncFRNN

Figure 6 shows the comparison of the performance of the proposed model (i.e., CNN) and a
probability-based Incremental Fuzzy-Rough Nearest Neighbour (Prob-IncFRNN) model, for
authenticating individuals based on their EEG data.
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FIGURE 6. Comparison of CNN and Prob-IncFRNN models in 3 different environmental conditions

Based on Figure 6, the CNN model outperforms the prob-IncFRNN model across all
performance metrics under different environmental conditions. Both models achieved relatively
high classification accuracy and AUC-ROC values (exceeding 0.90), confirming the reliability of
EEG-based brainprint authentication even under varying environmental conditions. However, the
CNN consistently outperformed prob-IncFRNN, likely due to its end-to-end learning approach
that better preserves important features throughout the process, as compared to the separate feature
extraction and classification in prob-IncFRNN. Another key reason is that the input for prob-
IncFRNN has less features than the input used for CNN. Instead of using the whole 21 electrodes,
only 5 of the total electrodes were used in prob-IncFRNN to reduce modelling complexity: TS, T6,
O1, O2 and OZ. This is because, being a nearest neighbour-based method has limited its capability
to model complex relationships in the data compared to deep learning models like CNNs. This
limitation affects its ability to generalize well on nuanced tasks. Another reason is that EEG signals
are complex and require advanced feature extraction techniques, otherwise the features may not
adequately represent the minority class very well. Prob-IncFRNN might struggle to capture these
complex patterns without sophisticated pre-processing or feature engineering. In this case, three

different algorithms (i.e., power spectral density (PSD), wavelet phase stability (WPS) and
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coherence) were applied to extract relevant features, which yields a total of 210 features. However,
only 12 were chosen as the input. On the other hand, CNN have the ability to automatically extract
features through its convolutional layers. This not only reduces the dependency on handcrafted

features but also minimizes the risk of discarding the useful information during feature selection.

5. CONCLUSION

This study explored brainprint authentication using a CNN model on visual-evoked potentials
(VEP). The CNN consistently outperformed the prob-IncFRNN model across all evaluation
metrics, achieving an Fl-score above 65% under varying environmental conditions. This has
demonstrated the robustness of CNN model beyond the conventional machine learning approach.
Challenges included dataset imbalance (98% majority, 2% minority), leading to oversampling and
overfitting issues, addressed with dropout layers, simplified architecture, and batch normalization.
Limited time hindered a thorough analysis of different acoustic environments' impact on EEG
signals. Future work will focus on optimizing CNN architecture, and examining the effects varying
environmental factors and frequency bands to enhance the scalability and real-world applicability

of brainprint authentication systems.
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