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Abstract: This study models the volatility of daily returns for PT Aneka Tambang Tbk (ANTM), which exhibits 

volatility clustering, fat tails, asymmetry, and long memory. The analysis proceeds in two stages: (i) conditional 

variance modeling using FIGARCH (1, d, 1) to represent long-memory dynamics; and (ii) design of a FIGARCH 

ANN hybrid (backpropagation) to absorb residual nonlinearity/asymmetry. Preprocessing tests confirm stationarity in 

log returns, followed by ARIMA baseline selection and confirmation of conditional heteroskedasticity in the residuals. 

Long-memory estimation via the GPH procedure confirms statistically significant long memory (past shocks have 

persistent effects). Compared to GARCH (1,1) and EGARCH, FIGARCH provides a better fit because it has the 

smallest AIC/BIC value. Residual diagnostics for FIGARCH are clean, indicating no autocorrelation and no remaining 

ARCH effects the model captures the main volatility structure. Ten steps ahead forecasts show the conditional variance 

stabilizing, implying that shocks decay slowly (persistence) toward a relatively stable level. The ANN component 

trained on residuals/logvariance reduces error metrics (MSE/RMSE/MAE) compared with standalone FIGARCH, 

evidencing the benefit of nonlinear correction for short horizon accuracy.  

Keywords: volatility; long memory; FIGARCH; ANN; asymmetry; ANTM. 
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1. INTRODUCTION 

Various studies on financial markets indicate that equity return volatility exhibits stylized facts 

such as volatility clustering, heavy tails, and asymmetric effects (leverage effect) which 
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conceptually challenge the assumptions of normality and simple linear dynamics[1][2][3]. In the 

context of emerging markets, these characteristics tend to be more pronounced due to their 

sensitivity to external shocks, domestic policy shifts, and limited market depth. The stock of PT 

Aneka Tambang Tbk (ANTM) serves as a relevant case in point its performance is influenced by 

a combination of commoditybased factors and market sentiment, resulting in volatility patterns 

that are often persistent (long memory) and respond asymmetrically to positive and negative 

shocks[4]. This situation makes volatility modeling precision not merely an academic issue, but a 

practical imperative for risk management spanning from Value at Risk (VaR) measurement, to the 

determination of margin requirements and capital buffers, and the valuation of derivative 

instruments [5][6][7]. 

Methodologically, the ARCH/GARCH family and its extensions (EGARCH/GJR) provide a solid 

framework for capturing conditional heteroskedasticity and asymmetry, but they generally 

emphasize short term dependence [8], [9]. By contrast, FIGARCH is designed to represent long-

memory behavior in volatility; however, it still relies on a linear structure that can leave higher-

order nonlinear patterns and interactions in empirical data unmodeled [10].This gap motivates a 

hybrid approach that combines the interpretability of statistical models (FIGARCH) with the 

capacity of artificial neural networks (ANN, backpropagation) to model residual nonlinearity [11]. 

Using ANTM as a case study, the present research aims to deliver more accurate, stable, and 

actionable volatility estimates and forecasts for decision-makers in Indonesia’s capital market, 

while also enriching the scholarly discourse on volatility modeling in emerging markets [12]. 

ANTM’s stock return volatility exhibits two key features that conventional models struggle to 

capture simultaneously: (i) asymmetric responses to positive versus negative shocks (the leverage 

effect), and (ii) long run persistence (long memory) in the dynamics of the conditional variance. 

Asymmetric GARCH variants (EGARCH, GJR) effectively represent the response asymmetry but 

are generally confined to short-term dependence [13]. By contrast, FIGARCH is designed to model 

long memory; however, it remains a linear specification that often leaves nonlinear patterns in the 

residuals and does not explicitly account for asymmetry [14]. These limitations can lead to 

volatility mis-specification, which in turn degrades forecast accuracy and biases market risk 

measures (Value-at-Risk, VaR). Accordingly, the research problem is the need for an integrated 

modeling framework that jointly captures long memory, asymmetry, and nonlinearity in ANTM 

data. Specifically, this study asks whether combining FIGARCH with an artificial neural network 
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(backpropagation) to model unexplained nonlinear/residual components can deliver meaningful 

improvements in volatility estimation and forecasting accuracy, as well as consistency in risk 

measurement, relative to benchmark models such as FIGARCH. 

This study aims to design, estimate, and evaluate a FIGARCH ANN hybrid framework for 

modeling the volatility of ANTM stock returns that exhibits asymmetry and long memory. 

Specifically, the objectives are to: (i) document the stylized facts of ANTM returns including 

volatility clustering, fat tails, and asymmetry as the empirical basis for modelling, (ii) identify and 

estimate the FIGARCH specification that best represents long-run dependence in the conditional 

variance, (iii) build an artificial neural network (backpropagation) component to capture nonlinear 

residuals and higher-order interactions not accommodated by FIGARCH’s linear structure; (iv) 

integrate the two components into a coherent FIGARCH ANN model and set out reproducible 

estimation and validation procedures, (v) compare the hybrid model’s in sample and out of sample 

performance against benchmarks FIGARCH using volatility forecast accuracy metrics 

(MSE/RMSE/MAE).  

Although the volatility literature in Indonesia’s capital market is expanding, substantive gaps still 

hinder accurate modeling for commodity sensitive stocks such as ANTM. First, most studies 

emphasize asymmetric GARCH families to capture the leverage effect but generally overlook the 

long-run dependence (long memory) empirically observed in the conditional variance. Second, 

work adopting FIGARCH does address long memory, yet typically retains a linear structure that 

leaves nonlinear dynamics and higher-order interactions in the residuals, and it rarely formalizes 

asymmetry explicitly. Third, hybrid approaches that integrate FIGARCH with artificial neural 

networks (ANN) remain scarce particularly in the context of emerging markets and single-name 

studies of ANTM, which face commodity regime shifts and domestic policy changes. As a result, 

comprehensive evidence is still lacking that a framework combining statistical interpretability 

(FIGARCH) with nonlinear flexibility (ANN) can consistently improve the accuracy of volatility 

estimates and the reliability of risk measurements for ANTM. 

Novelty. The contribution of this study lies in a FIGARCH ANN hybrid architecture that 

simultaneously represents long memory, captures asymmetry (the leverage effect), and models 

subtle nonlinearities in ANTM’s return volatility. Unlike asymmetric GARCH variants that are 

primarily oriented toward short term dependence or linear, standalone FIGARCH, we implement 

a residual learning scheme: FIGARCH first approximates the long memory component, after 
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which ANN acts as a directed nonlinear corrector using signed predictors (positive/negative 

shocks), shock magnitudes, and regime indicators to explicitly formalize asymmetry that is often 

overlooked. Practically, the research is well motivated improving volatility model accuracy 

reduces risk-measurement bias, enhances margin and capital buffer setting, and supports 

derivatives pricing in Indonesia’s commodity sensitive market. Scientifically, evidence on a 

commodity issuer in an emerging-market context enriches the volatility literature by offering a 

framework that no longer treats long memory, asymmetry, and nonlinearity as separate issues, 

while providing a replicable design for similar assets. 

 

2. PRELIMINARIES 

Volatility is a statistical measure describing the dispersion or variability of an asset’s or 

market index’s returns, directly reflecting the level of risk inherent in price movements in financial 

markets. The volatility of financial data often exhibits complex and hard to predict behavior, which 

adds uncertainty to financial time-series analysis. The nonstationarity and heteroskedasticity 

inherent in volatility therefore require models that can adaptively and accurately capture the 

dynamics of changing volatility. In the context of precious-metal assets such as gold, return 

volatility is a crucial factor in investment decision making, as sizable price fluctuations can directly 

affect portfolio risk management. The results of this study align with prior evidence identifying 

volatility as a core characteristic and key determinant of precious-metal return behavior; 

accordingly, a deeper understanding of volatility patterns and dynamics can enhance the 

effectiveness of investment strategies and risk management policies. Thus, volatility analysis not 

only enriches the finance literature but also provides practical value to investors and portfolio 

managers confronting market uncertainty  

In financial time-series analysis featuring volatility, variance modeling is a primary step for 

effectively capturing the dynamics of changing variability. However, before modeling the variance, 

an essential preliminary stage is to specify the series’ mean, typically using an Autoregressive 

Moving Average (ARMA) model. The ARMA order that is, the number of lags in the 

autoregressive (AR) and moving-average (MA) components is determined from the 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF), which are the 

principal diagnostic tools for selecting an appropriate specification. Autocorrelation describes the 

correlation between observations in a time series at specific time intervals (lags), and the ACF is 
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the collection of these correlations across lags. This function helps identify patterns of short and 

long run dependence in the data. while, partial autocorrelation measures the direct correlation 

between observations at a given lag after removing the influence of intervening lags, thereby 

providing a more specific view of the direct relationships among observations in the time series. 

The partial autocorrelation function (PACF) is the collection of these partial correlations across 

lags and likewise serves as a guide for selecting the most appropriate ARMA model structure. 

Accordingly, a properly specified ARMA mean model provides a solid foundation before 

proceeding to volatility modeling with variance models such as GARCH and its extensions. 

GARCH 

To understand the dynamics of stock-return volatility, this study begins by modeling with 

ARCH (Autoregressive Conditional Heteroskedasticity) and GARCH (Generalized ARCH). The 

ARCH model, first introduced by Engle (1982), captures time-varying, heteroskedastic variance 

in financial time series. However, its limited ability to explain persistent volatility motivated the 

development of GARCH by Bollerslev (1986), which more efficiently accommodates dependence 

of volatility on past periods. The Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) framework extends the original ARCH model proposed by Engle and has proven 

effective for financial data that exhibit time varying heteroskedasticity.  

To address heteroskedasticity, the ARCH(r) model was introduced, which incorporates the 

influence of past 𝑎𝑡−1
2  on the current conditional variance 𝜎𝑡

2. In general, the ARCH specification 

is formulated as follows 

𝜎𝑡
2 = 𝜔 + ∑ 𝜑𝑖𝑎𝑡−𝑖

2𝑟
𝑖=1       

With 𝜔 > 0, 𝜑𝑖 > 0  and 𝑖 = 1, 2, … , 𝑟.  

To overcome the limitation of the ARCH model which often requires a very high order to capture 

volatility fluctuations adequately Bollerslev (1986) proposed an extension via the Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) framework. GARCH introduces a more 

efficient mechanism by incorporating the previous period’s conditional variance, enabling more 

accurate and parsimonious volatility modeling without substantially increasing the model order. 

Consequently, GARCH can capture volatility clustering in financial data more effectively than the 

conventional ARCH model.  The conditional variance in a GARCH (r, s) model is influenced not 

only by lagged squared residuals 𝑎𝑡−𝑖
2  but also by lagged conditional variances 𝜎𝑡−𝑗

2 . In general, 

the GARCH (r, s) model is specified as follows: 
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𝜎𝑡
2 = 𝜔 + ∑ 𝜑𝑖𝑎𝑡−𝑖

2
𝑟

𝑖=1
+ ∑ 𝛽𝑖𝜎𝑡−𝑗

2
𝑠

𝑗=1
 

With 𝛽𝑖 > 0, dan 𝑗 = 1, 2, … , 𝑠   

The exponential asymmetric GARCH or EGARCH model was introduced by Nelson (1991). One 

problem with the standard GARCH model is the need to ensure that all estimated coefficients are 

positive. Nelson (1991) proposed a model that does not require nonnegativity. The following is the 

EGARCH equation[15]: 

ln(𝜎𝑡
2) = 𝜆0 + ∑ 𝜆𝑖 |

𝑢𝑡−𝑖

𝜎𝑡−𝑖
|

𝑠

𝑖=1
+ ∑ 𝜑𝑘 (

𝑢𝑡−𝑘

𝜎𝑡−𝑘
)

𝑛

𝑘=1
+ ∑ 𝛾𝑖 ln(𝜎𝑡−𝑗

2 )
𝑟

𝑗=1
 

Where 𝜑𝑘   is the leverage effect coefficient. If 
𝑢𝑡−𝑘

𝜎𝑡−𝑘
 is positive, the shock effect on the 

conditional log variance is 𝜆𝑖 + 𝜑𝑘 . If 
𝑢𝑡−𝑘

𝜎𝑡−𝑘
 negative, the shock effect on the conditional log 

variance is 𝜆𝑖 − 𝜑𝑘. In the next step, the long-memory effect was measured using the FIGARCH 

model. In the performance evaluation section, we compared the EGARCH (asymmetric) model 

with the FIGARCH model and the hybrid model, FIGARCH ANN. The EGARCH model showed 

asymmetry through the leverage parameter and distinguished the magnitude effect from the 

direction of the shock, which increased the credibility of the volatility findings. 

Estimation of the FIGARCH (Fractionally Integrated Generalized Autoregressive Conditional 

Heteroskedasticity) model is a crucial step in this study for examining the long-run dynamics of 

return volatility. FIGARCH is selected for its ability to capture long memory effects that frequently 

arise in financial market volatility but are not optimally accommodated by conventional GARCH 

models. By applying this specification, we aim to obtain a deeper understanding of persistent 

volatility dependence and the role of past shocks in shaping current stock-price variability. At this 

stage, FIGARCH parameters are estimated via Maximum Likelihood Estimation (MLE) using 

stock return data that have undergone preprocessing and stationarity verification. The estimation 

is complemented by diagnostic tests to ensure model adequacy and the validity of the results. 

Through this procedure, the study seeks to provide a meaningful empirical contribution to the 

literature on financial volatility modeling, particularly in the context of the Indonesian equity 

market. 

According to prior studies, the FIGARCH (p, d, q) model is mathematically formulated to 

accommodate the long memory property in financial time-series volatility. It extends the 

traditional GARCH framework by introducing a fractional integration component, which allows 
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the degree of differencing in volatility to be fractional (d), thereby providing greater flexibility in 

capturing persistent volatility dynamics. Formally, the FIGARCH (p, d, q) specification can be 

expressed as follows: 

𝜙(𝐿)(1 − 𝐿)𝑑𝜀𝑡
2 = 𝜔 + [1 − 𝛽(𝐿)]𝑣𝑡 

An alternative representation of this model can be expressed by the following equation:  

𝜎𝑡
2 = 𝜔 + [1 − 𝛽(𝐿)]−1𝜙(𝐿)(1 − 𝐿)𝑑𝜀𝑡

2 

𝜎𝑡
2 = 𝜔 + 𝜆(𝐿)𝜎𝑡

2 

Where 𝜆(𝐿) = 𝜆1𝐿 + 𝜆2𝐿2 − ⋯ − 𝜆𝑞𝐿𝑞 , for 0 < 𝑑 < 1 the FIGARCH model implies long-

memory behaviour i.e., the impact of volatility shocks decays slowly. Moreover, note that this 

class of processes is not covariance-stationary, but is strictly stationary and ergodic for 𝑑𝜖[0,1]. 

The long memory component can be factorized with the autoregressive as follows: 

[1 + 𝛽(𝐿)] = 𝜙(𝐿)(1 − 𝐿)𝑑. 

The forecasting quality of volatility models such as FIGARCH and GARCH is typically evaluated 

using objective and comprehensive prediction error metrics, including Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). RMSE 

measures the square root of the average squared difference between observed and predicted values, 

thereby imposing greater penalties on large errors and making it highly sensitive to outliers. MAE 

computes the average absolute difference between observations and predictions, providing a direct 

indication of error magnitude irrespective of sign. MAPE assesses the mean absolute percentage 

error relative to the observed values, allowing errors to be interpreted proportionally and 

facilitating comparisons across models with different data scales. Taken together, these three 

metrics offer a comprehensive picture of model accuracy, where lower values indicate superior 

forecasting performance and greater consistency in representing market-volatility dynamics. 

Accordingly, the choice of an optimal volatility model is often based on comparing the RMSE, 

MAE, and MAPE obtained during the forecasting evaluation. 

 

3. MAIN RESULTS 

3.1 DATA DESCRIPTION 

The data used is daily stock data for PT Aneka Tambang Tbk (ANTM) from January 1, 2014 to 

December 30, 2024, with a total of 2668 data points. The original plot reflects a combination of 

trends and volatility that fluctuate over time. The description provides an initial overview of price 
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movements that are important to consider before modeling. The following shows the daily data 

plot for ANTM shares.   

 

Figure 1. Daily time series of ANTM stock price index 

 

The ANTM plot shows unstable movements over time, beginning with relatively low volatility at 

the start of the sample period, followed by a sharp spike around 2020-2021. Significant price 

changes indicate that volatility is not constant. This pattern indicates that the data does not meet 

the stationarity assumption. This can also be proven using the ADF test, which shows a Dickey 

Fuller statistic of 2.4392 with an order lag of 13 and a p-value = 0.3924. With the null hypothesis 

of a unit root (non-stationary series) and the alternative hypothesis of a stationary series, the p-

value is greater than 0.05 at significance level of 5%. This indicates that H0 cannot be rejected, and 

thus the data is non stationary based on this ADF test. 

Next, the daily price data is converted into daily returns using a transformation that serves to 

eliminate trends, stabilize the scale, and produce data that is more suitable for volatility analysis. 

After the transformation, the return data is visualized to assess dispersion and indications of 

volatility clustering. Then, an Augmented Dickey Fuller (ADF) test is performed on the return data 

to test for unit roots. The following figure presents a plot of the return data.  

 

Figure 2. Daily return time series of ANTM stock 
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After transformation (return), the pattern fluctuates around zero, implying stationarity in the mean, 

but changes in interperiod variance indicate conditional heteroscedasticity. This indicates the 

possibility of ARCH/GARCH effects and potential long memory in variance dynamics. Therefore, 

appropriate modeling should use the GARCH model family and, if long memory in volatility is 

proven, FIGARCH modeling can be considered. This can also be proven using the ADF test, which 

shows a Dickey Fuller statistic of -13.123 with an order lag of 13 and a p-value = 0.01. With the 

null hypothesis of a unit root (nonstationary series) and the alternative hypothesis of a stationary 

series, the p-value is greater than 0.05 at significance level 5%. This indicates that H0 is rejected, 

and thus the return data is stationary. 

Next, a Box-Cox test was conducted to examine the stationarity of the variance. The analysis 

resulted in a Box-Cox test value of 1, meaning that the data had stable variance, so transformation 

was not necessary. 

3.2 ARIMA MODEL 

The Autoregressive Integrated Moving Average (ARIMA) model was selected by examining the 

patterns in the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF). 

These two graphs were used as the main diagnostic tools to infer the most appropriate order of the 

autoregressive (AR) and moving average (MA) components. The results of the ACF and PACF 

visualization of the data are presented in the following figure. 

 

Figure 3. Sample ACF and PACF of ANTM daily log returns 
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From the ACF and PACF figures above, it can be concluded that the ACF is significant at lag-1, 

while the PACF is significant at lag-3, so that the following ARIMA models can be formed: 

ARIMA(1,1,0), ARIMA(1,1,1), ARIMA(1,1,3), ARIMA(3,1,0), ARIMA(3,1,1). Next, determine 

the best model selected from the models with the smallest AIC value. 

Table 1. Comparison of fitted ARIMA models 

No ARIMA Model AIC Value 

1 ARIMA (1,1,0) -11308.91 

2 ARIMA (1,1,1) -11306.91 

3 ARIMA (1,1,2) -11307.74 

4 ARIMA (1,1,3) -11313.52 

5 ARIMA (2,1,0) -11308.13 

6 ARIMA (2,1,1) -11307.86 

7 ARIMA (2,1,2) -11308.98 

8 ARIMA (2,1,3) -11311.56 

9 ARIMA (3,1,0) -11312.42 

10 ARIMA (3,1,1) -11313.91 

11 ARIMA (3,1,2) -11311.9 

12 ARIMA (3,1,3) -11312.08 

 

Based on the comparison of the smallest AIC values, the best ARIMA model selected is ARIMA 

(3,1,1) with an AIC value of -11313.91. The results of the ARIMA (3,1,1) model estimation on 

returns. The estimation produces coefficients AR (1) = 0.5975 (s.e. 0.2358), AR (2) =−0.0258 (s.e. 

0.0226), AR (3) =0.0615 (s.e. 0.0200), and MA (1) =−0.5919 (s.e. 0.2363).  

Diagnostic Tests 

a. Heteroscedasticity test 

The results of the ARCH heteroscedasticity test on the residuals indicate strong conditional 

volatility. The Portmanteau–Q on the residual squares produces very large statistics at various 

orders with p-values close to zero, thus rejecting the null hypothesis of homoscedasticity and 
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supporting the alternative of heteroscedasticity. This finding indicates the presence of an 

ARCH effect on the ARIMA (3,1,1) residuals. This is reinforced by the results of the Lagrange 

Multiplier (LM) test on the residuals, which show very strong evidence of conditional 

heteroscedasticity. The LM statistics are very large at various orders, namely LM(4)=4992 

(p≈0), LM(8)=2208 (p≈0), LM(12)=1381 (p≈0), LM(16)=1020 (p≈0), LM(20)=806 (p≈0), 

and LM(24)=662 (p≈0)  

b. Autocorrelation test 

Q* = 586.91 is the Ljung-Box test statistic value with df = 529, p-value = 0.04097 (α = 5% p-

value &lt; 0.05), so reject H₀. This means that there is still significant autocorrelation in the 

residuals. In other words, the ARIMA (3,0,1) model has not captured all the patterns in the 

data the residuals are not completely white noise. 

c. Normality test 

The test statistic W = 0.90007 (close to 1 means more normal). The p-value is < 2.2e-16, which 

is very small and less than 0.05, so reject H₀ that the residuals are not normal. Since they are 

not normally distributed, the ARCH/GARCH model is better to use. 

3.3 GARCH MODEL 

ACF and PACF of ARIMA (3,1,1) residuals   

 

Figure 4. ACF and PACF of squared residuals of ANTM daily returns 
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The figure shows that the ACF is significant at Lag-1, while the PACF is significant at Lag-1, Lag-

2, and Lag-3. Thus, the following ARCH models can be formed: ARCH (1,0), ARCH (1,1), ARCH 

(1,2), ARCH (1,3). The best ARCH model is selected by comparing the smallest AIC and BIC 

values. The following is the ARCH model estimation.  

Table 2. Comparison of fitted ARCH models 

No ARCH Model AIC Value BIC Value 

1 ARCH (1,0) -4.276118  -4.271702 

2 ARCH (1,1) -4.373987  -4.367363 

3 ARCH (1,2) -4.374301  -4.365469 

4 ARCH (1,3) -4.373618  -4.362578 

5 ARCH (2,0) -4.293631  -4.287007 

6 ARCH (2,1) -4.373803  -4.364971 

7 ARCH (2,2) -4.374034  -4.362994 

8 ARCH (2,3) -4.373316  -4.360068 

9 ARCH (3,0) -4.338219  -4.329387 

10 ARCH (3,1) -4.378693  -4.367653 

11 ARCH (3,2) -4.380046  -4.366798 

12 ARCH (3,3) -4.382843  -4.367387 

 

The ARCH (3,3) model has the smallest AIC and BIC values. However, the ARCH (1,1) model 

can also be used for a stable model. The GARCH (1,1) estimation results for ANTM returns show 

that all main parameters are significant and volatility dynamics are very persistent. The constant 

value (ω) = 4.387×10⁻⁵, ARCH (α₁) = 0.09586, GARCH (β₁) = 0.8567. 

3.4 LONG MEMORY TEST AND FIGARCH MODEL 

Before modeling long-memory, we first estimated EGARCH (1,1) as an asymmetric parametric 

baseline. The estimation results show that the parameter 𝛼 = 0.1217 is significant and positive, 

which means that stock price volatility is sensitive to the magnitude of shocks in the previous 

period. The positive value of 𝛾 = 0.2441  indicates a positive asymmetry effect, where price 
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increases (positive returns) actually increase volatility more than price decreases. Meanwhile, 𝛽 =

0.3648  shows that the volatility effect is temporary and tends to subside quickly. Thus, the 

EGARCH (1,1) model is quite capable of describing the volatility dynamics and asymmetric nature 

of the analyzed stock returns. 

Then, followed by a long memory test, the fractional differentiation parameter value obtained was 

d = 0.4391808. This result indicates that the volatility of ANTM stock returns has significant long 

memory properties, as indicated by the value of 0 < d < 0.5 meaning that the process remains 

stationary. Thus, the GARCH model's, which only captures short memory, is insufficient to 

describe the dynamics of volatility, requiring FIGARCH modeling to accommodate the long 

memory effect. Based on the FIGARCH (1, d,1) modeling results, ω = 5.45×10⁻⁵, φ = 0.261, d = 

0.439, β = 0.605, and the degree of freedom ν = 3.54. Advalue close to 0.5 indicates strong long 

memory in volatility. The following is a comparison of the garch(1,1) and figarch(1,d,1) models. 

Table 3. Comparison of fitted GARCH (1,1) and FIGARCH (1, d,1) 

MODEL AIC Value BIC value 

GARCH (1,1) -12136.17 -12112.61 

EGARCH -4.3792 

 

-4.3593 

 

FIGARCH (1, d,1) -12185.47 -12156.03 

The best model is the FIGARCH (1, d,1) model with the smallest AIC and BIC values. Forecasting 

the FIGARCH (1, d,1) model for 10 steps  

Table 4. Forecasts of conditional variance for ANTM returns 

NO Data to Forecast NO Data to Forecast 

1 2668 0.0009428891  6 2673 0.0009957844 

2 2669 0.0010024089 7 2674 0.0009937315 

3 2670 0.0010052389 8 2675 0.0009922287 

4 2671 0.0010019163 9 2676 0.0009912252 

5 2672 0.0009984942 10 2677 0.0009906205 

The variance starts at 0.0009429, then rises slightly to 0.0010024, and stabilizes around 0.00099. 
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This means that FIGARCH predicts long-term persistence (long memory): the variance does not 

decrease quickly, but tends to remain stable. Volatility is stable around 0.0307 – 0.0317. Stable 

prediction longer lasting shock effect. 

 

Figure 5. Comparison of FIGARCH and GARCH models on ANTM returns 

3.5 FIGARCH ANN 

 

Figure 6. Neural network for nonlinear correction of FIGARCH residuals 
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Table 5. Comparison MSE, RMSE, and MAE of FIGARCH and FIGARCH ANN 

 FIGARCH FIGARCH ANN 

MSE 1.508 0.943 

RMSE 1.228 0.971 

MAE 0.95 0.179 

Long memory volatility gives d = 0.4391808, confirming the existence of long memory in ANTM 

return volatility, so that short-memory models such as conventional GARCH may be inadequate. 

This finding forms the basis for selecting FIGARCH to capture these long-term memory dynamics. 

FIGARCH (1, d, 1) estimation. The representative parameters obtained are 𝜔 = 5.45 × 10 − 5  

𝛽 = 0.605 and 𝑣 = 3.54. These values are consistent with a highly persistent (long memory) 

volatility process with Student-t distribution (fat tails) on the innovation. FIGARCH ANN hybrid. 

The paper also describes the FIGARCH–ANN design that utilizes ANN to correct non-linear 

patterns in FIGARCH residuals. The evaluation summary shows an improvement in metrics for 

the hybrid compared to the single FIGARCH. 

 

4. CONCLUSION 

ANTM volatility analysis shows long memory with FIGARCH parameter d = 0.4391808, which 

consistently indicates long-term persistence in return variance. Compared to GARCH (1,1), 

EGARCH (1,1), the FIGARCH model is more appropriate because it has a lower AIC/BIC while 

the RMSE is the same at 0.028958. Therefore, the selection of the FIGARCH model is also 

considered adequate because the residuals (no remaining autocorrelation/ARCH effect). For 

forecasting, the 10-step projection shows a conditional variance that converges around 0.00099, 

confirming persistence with a relatively controlled level of risk. Furthermore, the FIGARCH ANN 

hybrid proved promising: modeling the residuals with ANN reduced the MSE/MAE compared to 

FIGARCH alone, indicating the ability of ANN to absorb the remaining nonlinearity/asymmetry 

of the residuals. 
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