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Abstract. In this paper, we present an optimal control approach for an (SEIRV) epidemic model of COVID-19
disease by controlling quarantine measures on susceptible individuals and controlling the vaccination rate for sus-
ceptible individuals, exposed but not yet infectious individuals, and asymptomatic infectious individuals to reduce
the disease burden and related costs. We have proven that an optimal control does exist, and we used Pontryagin’s
maximum principle to characterize the optimal control. In numerical simulations, we solve the optimal control
problem by the fourth-order Runge—Kutta method. Moreover, we discuss different cases for optimal control of
quarantine measures and vaccination quantity presented through graphical representations.
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1. INTRODUCTION

In recent years, considerable attention has been devoted to the development of analytical

and numerical techniques for solving classical and fractional differential equations arising in
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applied sciences, particularly in epidemic and biomedical modeling. Various efficient algo-
rithms have been proposed for Volterra integro-differential equations and fractional differential
systems, highlighting their accuracy and computational efficiency [1, 2, 3]. Fractional-order
modeling has also proved to be a powerful tool for capturing memory and hereditary effects in
the transmission dynamics of infectious diseases, including Zika virus and COVID-19, as well
as in control-oriented epidemic frameworks [4, 5, 6, 7]. More recently, fractional mathematical
models have been successfully applied to emerging infectious diseases such as monkeypox and
to biomedical applications including cancer progression, offering deeper insight into stability,
control, and long-term behavior of complex dynamical systems [8, 9, 10, 11].

The world has been witnessing the spread of a new virus known as COVID-19 (Coronavirus
disease 2019). This infectious disease originated in China in November 2019 and has quickly
propagated to numerous countries globally [12], whereby by the end of March 2022, approxi-
mately 480 million confirmed cases of COVID-19 had been reported, and over 6 million deaths
had occurred [13]. It is a pandemic impacting all age groups, with mortality rates rising with
age, starting at 0.2% for 39-year-olds and reaching 14.8% for those over 80 [14]. In addition,
common COVID-19 symptoms are fever, fatigue, dry cough, sore throat, headache, and breath-
ing issues [15].

Efforts to control COVID-19 have focused on exploring various treatment options and devel-
oping multiple vaccines aimed at preventing and mitigating the impact of the virus [16, 17]. In
addition, several preventive measures have proven effective. These include quarantine and iso-
lation to limit contact with infected individuals, social distancing to reduce close interactions,
wearing masks to prevent airborne spread, regular handwashing to remove potential viruses,
and disinfecting surfaces to eliminate viral particles [18, 19]. These initiatives are crucial in
managing the spread and severity of the disease, ultimately aiming to reduce the global health
burden caused by the pandemic.

The urgent global task is to understand COVID-19 transmission and apply effective mea-
sures, such as vaccination and quarantine. These practices (preventive measures) have signif-
icant economic and social impacts for any country due to the high costs and logistical chal-

lenges involved, making universal vaccination and quarantine less viable options, leading to an
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increasing desire to relax them and identify the minimal level of contact reduction necessary to
meet public health goals [20]. For this reason, many scientists employ optimal control theory to
mathematically model and identify the most effective strategies for managing dynamic systems,
assessing the efficiency and costs of various policies and control measures [21]. Lemecha et al.
[22] developed a new COVID-19 epidemic model to identify optimal control strategies while
taking into account control costs using optimal control theory. The author in [23] formulated
an optimal control problem where the population engages in social distancing and the treatment
of infected individuals serves as the control variable. By applying the Pontryagin maximum
principle, the most effective control strategies were identified. The authors in [24] examined
effective control measures and cost-effectiveness strategies to mitigate COVID-19 in a specific
region. Khajanchi and Mondal [25] proposed an optimal control model for COVID-19 to deter-
mine the best treatment strategy and to minimize the number of infected and isolated individuals
through optimal intervention strategies. Calvin Tsay et al. [26] introduced a model to manage
the COVID-19 outbreak in the US. It models population dynamics, estimates parameters from
data, and employs optimal control strategies to minimize infections via strategic social dis-
tancing and testing. Edilson F. Arruda et al. [27] introduced a comprehensive epidemic model
addressing multiple viral strains and reinfection due to waning immunity, aiming to balance
societal and economic mitigation costs through optimal control. The authors in [28] found an
optimal vaccine administration strategy for COVID-19 using real data from China.

In this paper, we study the optimal control system for the SEIRV model of COVID-19 trans-
mission studied by us previously [29], where we implement two control measures, namely vac-
cination control for susceptible individuals, exposed individuals, and asymptomatic infectious
individuals, and quarantine control policies for susceptible individuals. These measures aim to
reduce or eliminate the prevalence of COVID-19, while also minimizing the costs associated
with vaccination and quarantine.

The rest of the paper is structured as follows. Section 2 presents the basic details of our
SEIRV model. Section 3 covers the fundamental concepts of optimal control, utilizing the

Filippov—Cesari Existence Theorem and Pontryagin’s maximum principle to analyze control
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strategies and determine the necessary conditions for optimal disease control. Section 3.4 illus-
trates the mathematical results through numerical simulations. Finally, we summarize our work

and propose future research directions.

2. BASELINE MODEL

First, we mention the model that we studied and analyzed in reference [29], which de-
scribes the spread of the COVID-19 virus, where the population is subdivided into seven distinct
groups: susceptible individuals (S), exposed but not yet infectious individuals (E), vaccinated
individuals (V'), asymptomatic infectious individuals (Z,), symptomatic and hospitalized infec-
tious individuals (/;), individuals who have succumbed to the disease (D), and those who have
recovered (R).

It is assumed that the total human population N remains constant, implying that birth and

death rates are equal. Hence, the normalized reduced system is given by

)]
(1) = —(aun + 0 (1=n))S(t) (la(r) +1s(2)) — uS(1) + A2V (1) + YR(t) = MiS(1),

E'(t) = (oan+ oo (1=n))S(t) (la(t) +1s(1)) — (B1+ B2+ + A3) E(1),
VI(t) = MS(t) + MBE(t) + Aala(1) — (A2 + As + ) V (1),

L) =BE®)— (n+As+ 1) L(1),

(1) = B2E(t) = (o + 8 + 1) L(2),

R'(1) = 1la(t) + 11(6) + A5V (1) — YR(r) — R ().

with initial densities

\

where «; is the infection rate of confined susceptible individuals and oy is the infection rate
of unconfined susceptible individuals, such that o < op. Herein, 1 is the confinement rate
within the population, (f3;) i—1  are the exposed-to-infectious rates, 7 is the reinfection rate after
recovery from a first infection, (%),_, , are the recovery rates, (4;);_ 3 4 are the vaccination
rates, A, is the rate of vaccine ineffectiveness, As is the vaccine effectiveness rate, 0 is the

COVID-19 mortality rate, and p is the natality rate.
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3. OPTIMAL CONTROL PROBLEM

We aim to formulate a control problem for the model system 1 that incorporates vaccination
and quarantine as strategic interventions. Our goal is to find an optimal method to utilize vacci-
nation and quarantine to control the spread of the disease and reduce its impact on public health.
In the following, we discuss these control interventions in detail.

To ensure that vaccinated individuals benefit from vaccination at minimum cost within a
specified period of time, this can be achieved by replacing the constant vaccination rates A,
A3, and A4 in model (1) with the time-dependent control functions u(z), u(t), and u3(t), re-
spectively, which act as vaccination controls, where u1(¢) is a control function that represents
the percentage of susceptible individuals (S) being vaccinated at each instant of time ¢, with
t € [0,2¢], up(t) is a control function that represents the percentage of exposed individuals (E)
being vaccinated at each instant of time 7, with ¢ € [0,#/], and u3(z) is a control function that
represents the percentage of asymptomatic infectious individuals (Z,) being vaccinated at each
instant of time 7, with ¢ € [0,¢].

Quarantine programs for susceptible individuals (S) are implemented to control the spread
of the disease, but they come with significant costs. To minimize these costs, we let  vary
with time and replace it with u4(¢) in model (1). Thus, the mathematical system describing
the spread of COVID-19 disease with control is given by the following nonlinear differential
equations:

(

§'(1) = — (onug (1) + 0 (1 —ua (1)) S (1) (L (1) + 4 (1)) — 1S (1) + A2V (1)
+YR (1) —uy (1) S (1),

E' (1) = (onus (1) + 0 (1 —ua (1)) S (t) (la (1) + I (1)) = (Br + B2+ 1z (1)) E (1),
1) =ur (t)S(1) +uz (1) E(t) +u3 () Lo (1) — (A2 +As+ 1) V (1),

2 ¢V
L) =BiE@M) —(n+us(t)+p) L (1),
L(t)=BE({)—(rn+6+u)L(1),
R'(t) =1l (t) + 1l (t) + AsV (1) — YR (t) — uR (7).

\

We define the set of admissible controls Q,; as

Qua = {u= (u,ur,u3,us) : u; are measurable with 0 < u;(r) <1, i=1,2,3,4, 1 € [0,t/]}.
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Here, ¢ represents time and ¢y represents the final time for the control strategy of the SARS

disease.

3.1. Objective function. The target of the considered control strategy is to

e Lower the COVID-19 exposed individuals (E), asymptomatic infectious individuals
(1), and symptomatic and hospitalized infectious individuals (I).

e Minimize the cost of applied controls uy, up, u3, and uy.

In achieving these goals, we formulate the objective functional as follows:

J(u(t)) = /O ! (mlE(t) ol () +msly() + %u%(t) + %ug(t) + %u%(z‘) + %ui(t)) dr.

where m; is a weight for the number of exposed infected individuals, m; is a weight for the
number of asymptomatic infected individuals, m3 is a weight for the number of symptomatic
infected individuals, wy is a positive constant representing the weight for the cost of vaccinating
the susceptible subpopulation S, wy is a positive constant representing the weight for the cost
of vaccinating the exposed subpopulation (E), ws is a positive constant representing the weight
for the cost of vaccinating the asymptomatic infectious subpopulation (1), wy is a positive
constant representing the weight for the cost of quarantining the susceptible subpopulation (S),
mE(t) describes the cost related to exposed infected individuals, m;I,(f) describes the cost
related to asymptomatic infected individuals, m3/;(¢) describes the cost related to symptomatic

infected individuals, Tlu%(t) represents the total cost of vaccinating the susceptible individuals,

w N T w
—2u%(t) represents the total cost of vaccinating the exposed individuals, fu%(t) represents the

2
total cost of vaccinating asymptomatic infected individuals, and %uﬁ(t) represents the total
cost of quarantining the susceptible individuals.
Our goal is to find optimal controls u* = (u]k,u;,u;,uj) such that the corresponding state
trajectories solve the system (2) for ¢ € [0,#7] and minimize the specified cost functional in (3).

That is,
4) J(* (1)) =min{J(u) :u € Quy}.

3.2. Existence of an Optimal Control. Before proceeding with the characterization of the

optimal control, we first establish the existence of an optimal solution for the control problem.
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Theorem 3.1. The optimal control problem (2)—(3) has a solution.

Proof. To prove the existence of an optimal control u*, we need to verify the conditions given
by Fleming and Rishel [30].

1— The set of all solutions of the control system (2) with associated control functions in Q4
1s nonempty.

2— The admissible control set Q,; is convex and closed.

3— The right-hand side of the state system is bounded by a linear function of the state and
control variables.

4— The integrand
w
L(E I, I5,u) = miE(t) +mol,(t) + msl(t) + Tlu%(t) + 7142(0 + - 3 (1) + —u;(1)

of the objective functional is convex on Q.

5— There exist constants by, by, and a constant p > 1 such that
L(x,u) > by||u|P — by,

1
where ||u|| = (u} + 13 +uf +u3) .
e To prove condition 1, we will use a simplified version of an existence result (Boyce and

DiPrima) [31]. Let x = (x1,x2,x3,X4,X5,X) = (S,E,V,1,,I,R). We have
/
xi - in (t,Xl,XQ,X3,X4,X5,X6> )

where x|, X, x5, x}, x5, and x; are given by the right-hand side of the equations of system (2).
Let uy, up, uz, and uy be constants, and since all parameters are constants and x1, x2, X3, X4, X3,
and xg are continuous, then

(a) Fs, Fg, Fy, Fy,, Fp, and Fy are continuous.

(b) The partial derivatives a&iil ,i=1,...,6, are all continuous.
Therefore, according to [31], there exists a unique solution (S,E,V,I,,I;,R) that satisfies the

initial conditions. Condition 1 is satisfied.
e To prove condition 2, we take any controls u = (uy,uy,us,us) € Quq andv= (vy,vo,v3,v4) €
Q.4, and we prove that

9u,~+(1—0)v,-€£2ad, 0 c [0,1]
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We have 0 < Ou; + (1 — 6)v;. Additionally, we observe that
Ou; <0,
(1—0)v; <(1-0).
Then, we obtain
Oui+(1—-0)y; <0+ (1—0)=1.
Hence, we have
0<0u;+(1-0); <1, i=1,2,3,4.
This implies that
Ou;+ (1 —0)v; € Quy, 0 €0,1].
Therefore, condition 2 is satisfied.
e To prove condition 3, we have
Fs = S'()<p+0V @)+ yR()+ (02— an)S(t) (T () +15 () ua (t) —ur (1) S (1),
Fe = E'(t)< (01— 00)S(0) (L () +1s (1)) ua (1) + 028 (1) —wa (1) E (1),
Fro= V() <up(t)S(0) +ua (1) E (1) +us3 (1) Lo (1),
Fi, = L) <BiE()—us(t)1a(t),
Fig = I(t) < BE(1),

Fr = RI(t)=0l()+0l) +25V (1).
So, we can rewrite system (2) in matrix form as
F(t,S,E,V,1,,I,R) < A+Ax(t)+Bu(t),

where
(

F(taS7EaV71a7157R) - [FS7FE7FV7EaaFky7FR]T7
A=(1,0,0,0,0,0]",

x(1) = [S,E,V, s, I, R]"

l/l(t) = [u],btz,bt3,bl4]T
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and
0 0 4% 0 0 vy -S 0 0 (p—ai)S{,+]I)
o 0 0 0 0 0 0 —E 0 (oq—0n)SU+I)
0 0 0 0 0 O s E I, 0
A: 5 B:
0O B 0 0 0 O 0O 0 - 0
0 B 0 0 0 O 0 0 0 0
0 0 As nmn r 0 0 0 0 0

We have a linear function of state variable and control vector. Therefore, we write
|F @8, E,V, 1o, Is,R)|| < [[A[l+ ][ [lx ()] + [[B] [ (2)
< o+ y(llx@+ lu@)l])-

where ||A]| < ¢ and y = max (||A]|,||B]|). Thus condition 3 is proved.

e To prove condition 4, we want to prove for any 0 € [0, 1] such that
L(t,x,(1—0)u+0v) < (1—0)L(t,x,u)+6L(t,x,v),

where u = (uy,up,u3,us) € Quq and v = (vi,v2,v3,va) € Q4. Here,

1
(1 - G)L(t7x7vl)+9(lax7‘}2) :m1E+mZIa+m3Is+ ( 2

—0) & 0 &
) Z‘iwiu,-z—}-z Z{wiv?
1= 1=
and
1 4
L(t,x,(l—Q)LH—Qv):m1E+m21a+m3IS+§Zw1((1—9)u,~+9vl~)2.

i=1
Further, we have

(1—0)L(t,x,v1)+ 0 (t,x,v2) — L(t,x,(1 —0)u+ 6v)
4

1-0)d& , 8& 1
= 5 Zwiui—FEZw,vl ZZWI u,+9vl),
i=1 i=1 i=1

I
| =
Mb
—
—~
—_

|
D
~—
<
~o
+
D
=~
—~
—~
D
~—
=
+
D
=
~—
—

— ;i (\/9 1-6 )u,-—\/e(l—e)vi)z,

1 4
= EG(]—Q)ZW,‘(ZJ,‘—V,‘)Z ZO.

1

Hence, the integrand is convex on €,,. Thus condition 4 also holds.
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e To prove condition 5, it can be seen that W4u3l < wy, that is, 5 uﬁ < %5t We have

L(x,u) =

w w
miE +maly + maly+ il + 223+ 222 4 B2

2 2 2 2
Wi W20 W30
Z Suit St 3+2 0
Wi o W2 o W3 5 W4
> 2z 22 il it
—21+22+23+2 2’
> m1n<w1 W2 W3 W4>|| H
227272
1
where, |[ul| = (u? +u3 +u3+uj)?. Choosing b, = min (%, %2, %2 %) and b; = %, we get
L (x,u) > by ||u||” — by. This completes the proof. O

3.3. Characterization of the Optimal Control. In this section, we define the optimal con-

trols u* = (u’f, Uy, Uz, uZ) that provide the best values for the control measures and the related

state variables (S*,E*,V*, I, I7,R*). We apply Pontryagin’s maximum principle [32] to derive

the necessary condition for the optimal control. The adjoint function is utilized to link the sys-

tem of differential equations (2) to the objective functional (3), resulting in the formation of the

Hamiltonian. This method converts the problem into minimizing the Hamiltonian H(¢) over

time ¢ defined by

(5) H (x(t) ,u(t),A(1))

= <m1E (1) +maly () +m3l; (t) + —-uj

St (1) + S (1) +

W32

. S 0+ Shd ()

A [t — (ot (1) 4+ 0 (1= (1)) S (1) (L (1) + 1, (1)) — S (1) 4+ AoV () + YR (1) — w1

FAe[(0nua (1) + 0 (1 —ua (1)) S (t) (la (1) + 15 (£)) — (B + B2+ M +ua (1)) E (1))
T (1) S (1) +ua () E (1) +u3 (1) L (1) = (A2 + A5 + 1) V (1)]

+ALBIE (1) — (N +us (£) + 1) La (1)]

+A[B2E (1) — (a+ 8+ ) L (1))

+AR[V11a (1) + oIy (1) + A5V () — YR (t) — UR ()],

where A = (As,Ag,Av, A1, A1, Ag) are the adjoint variables, and the state variables for the

population dynamics are denoted by x(r) = (S(¢),E(t),V (t),1,(t),I(¢),R(t)). Thatis, Ag adjoint

for S(¢), Ag adjoint for E(z), Ay adjoint for V (¢), A;, adjoint for I,(¢), A;, adjoint for I;(¢), and

Ag adjoint for R(t).



Theorem 3.2. For optimal control u* = (ui“, us, Uz, ui) and the solutions (S*,E*,V* [} I, R*)

of the corresponding state system (2), there exists a continuously differentiable vector

satisfying

(6)

dis
dt

dig
dt

dA,

dAy,
dt

dA
dt

dir _
dr
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At) = (As(t), Ae (1), A (1), A, (1), A, (2), AR (1))

= —%I = (As—Ag) (s + 0o (1 —ua)) (Lo + 1) + (A — Ay) ur + Agpt,

= _% =+Ae (Br+ Bo+ U +uz) —my — Ayuz — A, Br — A o,

_ _0H _
dr

= —377 = (A —2Ag) (Qqug + o (1 —ua)) S+ Ay, (Vi +uz + W) —mp — Ayuz — Ag1i,

5v =A (A +As+u) — A — AgAs,

= — 92 = (As—Ag) (Qrus + 0o (1 —us)) S+ A (o + 8+ ) —m3 — s,

_?9% = A& (Y‘i‘ .LL) _}LSY‘

with the transversality conditions

(7

As (1) = Ae (1) = v (1p) = A (17) = A (1) = Ar (1) =0

and optimal controls

®)

Proof. By deriving the Hamiltonian equation (5) with respect to S(¢), E(t), V(t), I,(t), L(t),

\

and R(t), we obtain

©)

;

\

dis
dt

dip
dt

dt
dA,

dt
dy,

dt

dig
dt

= -9 = (A —Ag) (s + 0 (1 —ug)) (Il + 1) + (As — Ay + Al

=9 = 1 Ap (Bi+ Bo+ p +uz) — 1 — Ayuz — Ay, B — Mg Bo,

Do — I — 2 (Ao + A5+ 1) — Ads — AgAs,

= —‘3—,’1 =(A—Ag) (Qtua+ 0 (1 —ua)) S+ Ay, (N1 +uz + 1) —ma — Ayuz — Agi,

= — 9 — (A — ) (Quua+ 0 (1 —1g)) S+ A (o + 8 + 1) —m3 — Ara,

= _%711; = Ar ('}/‘F ,u) —)Ls'}/-
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To obtain the optimality condition (4), we differentiate the Hamiltonian function with respect

to uj, u3, u3, and uj, such that

H
I o m=1.23.4.
du,y,
That is
((on _ A —2A)S=0
Jur = Wi+ s)S=0,
(10)

g—z = w3usz + A

a

( _

9B — wyuz + (A — ) E =0,
( - )Iazo,
( _

A
oH ) S (I + 1) (Ag — Ag) = 0.

L a—M:W4u4+ (04]

Solving for the optimal controls yields

( As—Ay
uy = Gs=t) o )S,
s = (Ae—h) p
(11) v
M; = —(111;3}/\/)1“7
|y = el b gy ).

From the boundedness of u; (¢) on [0, 1] and the minimality condition, it yields

( (
0, ifa—H>0, 0, ifa—H>0,
du duy
up(r) = MS, if —— =0, ut)= ME, if 22—,
wi duy \ %) duy
oH oH
1 if — <0 1 if — <0
L ) 1 a(l,[l < ) L ) 1 auz < )
0, if a—H > 0,
duz
* — . O0H
uj(t) = < M[a’ lfa_:(),
w3 ous
oH
1 if — <0
\ ’ ! 3u3 <%
and
(
07 if a—H > O,
duy
. — o) (A — A . 0H
W4 8u4
L, if oH <0.
. duy
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So, it can be written as

(12)

The proof is completed.

3.4. Simulation numérique. In this section, numerical simulations are performed for systems
(2) and (3) using the forward—backward sweep method [33] in MATLAB to examine the impact
of control policy strategies on disease dynamics and the related implementation costs, with

specific initial and parameter values given for the simulations in Table 3.4.

TABLE 1. Initial values and parameter values.

Parameter values N u Y Ao As 0

Estimation 100000 | 5.644e-4(per day) | 0.0099 | 0.001765 | 0.008 | 0.0055

Parameter values o o Bi B2 ] )
Estimation 0.03 0.12 0.092 0.05 0.01 | 0.0005
Initial values S(0) E(0) V(0) 1,(0) | I,(0) | R(0)
Estimation 0.8 0.05 0.10 0.033 | 0.016 | 0.001

In order to explore and analyze the influences of control policy and strategies, we considered
the following cases:
e Strategy A (without control): u; =0, up =0, u3 =0, ug = 0.
e Strategy B: u; =0, u; =0, u3 =0, ug #0.
e Strategy C: u; #0, up =0, u3 =0, ug = 0.
e Strategy D: u; =0, up # 0, u3 =0, ug =0.

e Strategy E: u; =0,u, =0, u3 #0, uy =0.
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e Strategy F' (combination of u; and uy): u; # 0, up =0, u3 =0, uy # 0.
e Strategy G (combination of u, and uy): u; =0, uy #0, u3 =0, ugy # 0.
e Strategy H (using all controls): u; # 0, up # 0, uz # 0, ug # 0.
We used parameter values given in Table 3.4 and wy = 250, wp = 250, w3 = 250 [34], w4 = 10

[35], and m| = my = m3 = 1 for numerical illustration.

025

02

=
&

Population Density
o

0.05

L L
0 10 20 30 40 50 80 70 80 80 100
Time (days)

FIGURE 1. Density of Subpopulation (E),(I,),(Is) with Control Strategy A, C.

0.038

o

0.025 -

0018 -

Time (days)

FIGURE 2. Applied control profile u;.

In Figure (2), the optimal control effort «; decreases from its maximum to its minimum value

over time, ending after 100 days, indicating that vaccination is no longer needed afterward.
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FIGURE 3. Density of Subpopulation (E),(1,),(Is) with Control Strategy A, D.
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Time (days)

FIGURE 4. Applied control profile u;.
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FIGURE 5. Density of Subpopulation (E),(I,),(Is) with Control Strategy A, E.
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[] 10 20 30 40 50 60 0 80 0 100
Time (days)

FIGURE 6. Applied control profile u3.

In Figures (4) and (6), the control efforts u, and u3 are essentially negligible, indicating that

vaccinating exposed individuals and asymptomatic infectious individuals is unnecessary.
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FIGURE 7. Density of Subpopulation (E),(I,),(Is) with Control Strategy A, B.
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In Figure (8), the control profile u4 indicates that quarantine for susceptible individuals should

be maintained optimally during the intervention, then gradually reduced after approximately 28
days.
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FIGURE 9. Density of Subpopulation (E),(1,),(Is) with Control Strategy A, G.
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In Figures (10), (12), and (14), the combined effects of controls (up,us), (uz,us), and
(uy,uy,u3,uy) are illustrated. When implemented together, one notes that COVID-19 prevention
(control u4), i.e., quarantine measures, should be implemented optimally and start decreasing
after about 28 days throughout the intervention period. Meanwhile, it is observed that the use
of the vaccine is not necessary.

Figures (1), (3), (5), (7), (9), (11), and (13) demonstrate how control strategies A, B, C,
D, E, F, G, and H influence the dynamics of COVID-19 in the community. We observed
that the applied control strategies A, B, C, D, E, F, G, and H cause the exposed population
(E), asymptomatic infectious individuals (,), and symptomatic and hospitalized infectious
individuals (I;) to show a slight increase under the implementation of control compared to the
scenario without control. In other words, the peak levels reached under control are significantly
lower than those observed in the absence of control. This indicates that the application of control
effectively mitigates the initial surge in cases. Then, the number of individuals (1), (), and
(E) gradually decreases until each case reaches the stability threshold.

Moreover, each control strategy produces unique peaks in timing and magnitude, highlighting
that their effectiveness depends on intensity and duration, and emphasizing the need to choose

an optimal approach that balances impact and costs.

4. CONCLUSION

This study develops optimal control strategies to reduce disease burden and costs, estab-
lishing their existence and uniqueness. Using Pontryagin’s Minimum Principle, the optimal
trajectories are analytically characterized. Numerical simulations demonstrate the effectiveness
of these strategies in preventing disease spread within communities. The simulation results
show that quarantine and vaccinating susceptible individuals are essential to control COVID-19
spread. Without vaccination, quarantine effectively limits transmission. When both are used
together, the impact of quarantine is more significant, making vaccination less critical. This
indicates that quarantine alone may suffice to manage COVID-19 in combined intervention

strategies.
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