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Abstract. In this paper, we present an optimal control approach for an (SEIRV) epidemic model of COVID-19

disease by controlling quarantine measures on susceptible individuals and controlling the vaccination rate for sus-

ceptible individuals, exposed but not yet infectious individuals, and asymptomatic infectious individuals to reduce

the disease burden and related costs. We have proven that an optimal control does exist, and we used Pontryagin’s

maximum principle to characterize the optimal control. In numerical simulations, we solve the optimal control

problem by the fourth-order Runge–Kutta method. Moreover, we discuss different cases for optimal control of

quarantine measures and vaccination quantity presented through graphical representations.
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1. INTRODUCTION

In recent years, considerable attention has been devoted to the development of analytical

and numerical techniques for solving classical and fractional differential equations arising in
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applied sciences, particularly in epidemic and biomedical modeling. Various efficient algo-

rithms have been proposed for Volterra integro-differential equations and fractional differential

systems, highlighting their accuracy and computational efficiency [1, 2, 3]. Fractional-order

modeling has also proved to be a powerful tool for capturing memory and hereditary effects in

the transmission dynamics of infectious diseases, including Zika virus and COVID-19, as well

as in control-oriented epidemic frameworks [4, 5, 6, 7]. More recently, fractional mathematical

models have been successfully applied to emerging infectious diseases such as monkeypox and

to biomedical applications including cancer progression, offering deeper insight into stability,

control, and long-term behavior of complex dynamical systems [8, 9, 10, 11].

The world has been witnessing the spread of a new virus known as COVID-19 (Coronavirus

disease 2019). This infectious disease originated in China in November 2019 and has quickly

propagated to numerous countries globally [12], whereby by the end of March 2022, approxi-

mately 480 million confirmed cases of COVID-19 had been reported, and over 6 million deaths

had occurred [13]. It is a pandemic impacting all age groups, with mortality rates rising with

age, starting at 0.2% for 39-year-olds and reaching 14.8% for those over 80 [14]. In addition,

common COVID-19 symptoms are fever, fatigue, dry cough, sore throat, headache, and breath-

ing issues [15].

Efforts to control COVID-19 have focused on exploring various treatment options and devel-

oping multiple vaccines aimed at preventing and mitigating the impact of the virus [16, 17]. In

addition, several preventive measures have proven effective. These include quarantine and iso-

lation to limit contact with infected individuals, social distancing to reduce close interactions,

wearing masks to prevent airborne spread, regular handwashing to remove potential viruses,

and disinfecting surfaces to eliminate viral particles [18, 19]. These initiatives are crucial in

managing the spread and severity of the disease, ultimately aiming to reduce the global health

burden caused by the pandemic.

The urgent global task is to understand COVID-19 transmission and apply effective mea-

sures, such as vaccination and quarantine. These practices (preventive measures) have signif-

icant economic and social impacts for any country due to the high costs and logistical chal-

lenges involved, making universal vaccination and quarantine less viable options, leading to an
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increasing desire to relax them and identify the minimal level of contact reduction necessary to

meet public health goals [20]. For this reason, many scientists employ optimal control theory to

mathematically model and identify the most effective strategies for managing dynamic systems,

assessing the efficiency and costs of various policies and control measures [21]. Lemecha et al.

[22] developed a new COVID-19 epidemic model to identify optimal control strategies while

taking into account control costs using optimal control theory. The author in [23] formulated

an optimal control problem where the population engages in social distancing and the treatment

of infected individuals serves as the control variable. By applying the Pontryagin maximum

principle, the most effective control strategies were identified. The authors in [24] examined

effective control measures and cost-effectiveness strategies to mitigate COVID-19 in a specific

region. Khajanchi and Mondal [25] proposed an optimal control model for COVID-19 to deter-

mine the best treatment strategy and to minimize the number of infected and isolated individuals

through optimal intervention strategies. Calvin Tsay et al. [26] introduced a model to manage

the COVID-19 outbreak in the US. It models population dynamics, estimates parameters from

data, and employs optimal control strategies to minimize infections via strategic social dis-

tancing and testing. Edilson F. Arruda et al. [27] introduced a comprehensive epidemic model

addressing multiple viral strains and reinfection due to waning immunity, aiming to balance

societal and economic mitigation costs through optimal control. The authors in [28] found an

optimal vaccine administration strategy for COVID-19 using real data from China.

In this paper, we study the optimal control system for the SEIRV model of COVID-19 trans-

mission studied by us previously [29], where we implement two control measures, namely vac-

cination control for susceptible individuals, exposed individuals, and asymptomatic infectious

individuals, and quarantine control policies for susceptible individuals. These measures aim to

reduce or eliminate the prevalence of COVID-19, while also minimizing the costs associated

with vaccination and quarantine.

The rest of the paper is structured as follows. Section 2 presents the basic details of our

SEIRV model. Section 3 covers the fundamental concepts of optimal control, utilizing the

Filippov–Cesari Existence Theorem and Pontryagin’s maximum principle to analyze control
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strategies and determine the necessary conditions for optimal disease control. Section 3.4 illus-

trates the mathematical results through numerical simulations. Finally, we summarize our work

and propose future research directions.

2. BASELINE MODEL

First, we mention the model that we studied and analyzed in reference [29], which de-

scribes the spread of the COVID-19 virus, where the population is subdivided into seven distinct

groups: susceptible individuals (S), exposed but not yet infectious individuals (E), vaccinated

individuals (V ), asymptomatic infectious individuals (Ia), symptomatic and hospitalized infec-

tious individuals (Is), individuals who have succumbed to the disease (D), and those who have

recovered (R).

It is assumed that the total human population N remains constant, implying that birth and

death rates are equal. Hence, the normalized reduced system is given by

(1)

S′(t) = µ− (α1η +α2 (1−η))S(t)(Ia(t)+ Is(t))−µS(t)+λ2V (t)+ γR(t)−λ1S(t),

E ′(t) = (α1η +α2 (1−η))S(t)(Ia(t)+ Is(t))− (β1 +β2 +µ +λ3)E(t),

V ′(t) = λ1S(t)+λ3E(t)+λ4Ia(t)− (λ2 +λ5 +µ)V (t),

I′a(t) = β1E(t)− (γ1 +λ4 +µ) Ia(t),

I′s(t) = β2E(t)− (γ2 +δ +µ) Is(t),

R′(t) = γ1Ia(t)+ γ2Is(t)+λ5V (t)− γR(t)−µR(t).

with initial densities

S(0)≥ 0, E(0)≥ 0, V (0)≥ 0, Ia(0)≥ 0, Is(0)≥ 0, R(0)≥ 0.

where α1 is the infection rate of confined susceptible individuals and α2 is the infection rate

of unconfined susceptible individuals, such that α1 < α2. Herein, η is the confinement rate

within the population, (βi)i=1,2 are the exposed-to-infectious rates, γ is the reinfection rate after

recovery from a first infection, (γi)i=1,2 are the recovery rates, (λi)i=1,3,4 are the vaccination

rates, λ2 is the rate of vaccine ineffectiveness, λ5 is the vaccine effectiveness rate, δ is the

COVID-19 mortality rate, and µ is the natality rate.
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3. OPTIMAL CONTROL PROBLEM

We aim to formulate a control problem for the model system 1 that incorporates vaccination

and quarantine as strategic interventions. Our goal is to find an optimal method to utilize vacci-

nation and quarantine to control the spread of the disease and reduce its impact on public health.

In the following, we discuss these control interventions in detail.

To ensure that vaccinated individuals benefit from vaccination at minimum cost within a

specified period of time, this can be achieved by replacing the constant vaccination rates λ1,

λ3, and λ4 in model (1) with the time-dependent control functions u1(t), u2(t), and u3(t), re-

spectively, which act as vaccination controls, where u1(t) is a control function that represents

the percentage of susceptible individuals (S) being vaccinated at each instant of time t, with

t ∈ [0, t f ], u2(t) is a control function that represents the percentage of exposed individuals (E)

being vaccinated at each instant of time t, with t ∈ [0, t f ], and u3(t) is a control function that

represents the percentage of asymptomatic infectious individuals (Ia) being vaccinated at each

instant of time t, with t ∈ [0, t f ].

Quarantine programs for susceptible individuals (S) are implemented to control the spread

of the disease, but they come with significant costs. To minimize these costs, we let η vary

with time and replace it with u4(t) in model (1). Thus, the mathematical system describing

the spread of COVID-19 disease with control is given by the following nonlinear differential

equations:

(2)



S′ (t) = µ− (α1u4 (t)+α2 (1−u4 (t)))S (t)(Ia (t)+ Is (t))−µS (t)+λ2V (t)

+γR(t)−u1 (t)S (t) ,

E ′ (t) = (α1u4 (t)+α2 (1−u4 (t)))S (t)(Ia (t)+ Is (t))− (β1 +β2 +µ +u2 (t))E (t) ,

V ′ (t) = u1 (t)S (t)+u2 (t)E (t)+u3 (t) Ia (t)− (λ2 +λ5 +µ)V (t) ,

I′a (t) = β1E (t)− (γ1 +u3 (t)+µ) Ia (t) ,

I′s (t) = β2E (t)− (γ2 +δ +µ) Is (t) ,

R′ (t) = γ1Ia (t)+ γ2Is (t)+λ5V (t)− γR(t)−µR(t) .

We define the set of admissible controls Ωad as

Ωad =
{

u = (u1,u2,u3,u4) : ui are measurable with 0≤ ui(t)≤ 1, i = 1,2,3,4, t ∈ [0, t f ]
}
.
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Here, t represents time and t f represents the final time for the control strategy of the SARS

disease.

3.1. Objective function. The target of the considered control strategy is to

• Lower the COVID-19 exposed individuals (E), asymptomatic infectious individuals

(Ia), and symptomatic and hospitalized infectious individuals (Is).

• Minimize the cost of applied controls u1, u2, u3, and u4.

In achieving these goals, we formulate the objective functional as follows:

(3)

J (u(t)) =
∫ t f

0

(
m1E(t)+m2Ia(t)+m3Is(t)+

w1

2
u2

1(t)+
w2

2
u2

2(t)+
w3

2
u2

3(t)+
w4

2
u2

4(t)
)

dt.

where m1 is a weight for the number of exposed infected individuals, m2 is a weight for the

number of asymptomatic infected individuals, m3 is a weight for the number of symptomatic

infected individuals, w1 is a positive constant representing the weight for the cost of vaccinating

the susceptible subpopulation S, w2 is a positive constant representing the weight for the cost

of vaccinating the exposed subpopulation (E), w3 is a positive constant representing the weight

for the cost of vaccinating the asymptomatic infectious subpopulation (Ia), w4 is a positive

constant representing the weight for the cost of quarantining the susceptible subpopulation (S),

m1E(t) describes the cost related to exposed infected individuals, m2Ia(t) describes the cost

related to asymptomatic infected individuals, m3Is(t) describes the cost related to symptomatic

infected individuals,
w1

2
u2

1(t) represents the total cost of vaccinating the susceptible individuals,
w2

2
u2

2(t) represents the total cost of vaccinating the exposed individuals,
w3

2
u2

3(t) represents the

total cost of vaccinating asymptomatic infected individuals, and
w4

2
u2

4(t) represents the total

cost of quarantining the susceptible individuals.

Our goal is to find optimal controls u∗ =
(
u∗1,u

∗
2,u
∗
3,u
∗
4
)

such that the corresponding state

trajectories solve the system (2) for t ∈ [0, t f ] and minimize the specified cost functional in (3).

That is,

(4) J (u∗(t)) = min{J(u) : u ∈Ωad} .

3.2. Existence of an Optimal Control. Before proceeding with the characterization of the

optimal control, we first establish the existence of an optimal solution for the control problem.
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Theorem 3.1. The optimal control problem (2)–(3) has a solution.

Proof. To prove the existence of an optimal control u∗, we need to verify the conditions given

by Fleming and Rishel [30].

1− The set of all solutions of the control system (2) with associated control functions in Ωad

is nonempty.

2− The admissible control set Ωad is convex and closed.

3− The right-hand side of the state system is bounded by a linear function of the state and

control variables.

4− The integrand

L(E, Ia, Is,u) = m1E(t)+m2Ia(t)+m3Is(t)+
w1

2
u2

1(t)+
w2

2
u2

2(t)+
w3

2
u2

3(t)+
w4

2
u2

4(t)

of the objective functional is convex on Ωad .

5− There exist constants b1, b2, and a constant ρ > 1 such that

L(x,u)≥ b2‖u‖ρ −b1,

where ‖u‖=
(
u2

1 +u2
2 +u2

3 +u2
4
) 1

2 .

• To prove condition 1, we will use a simplified version of an existence result (Boyce and

DiPrima) [31]. Let x = (x1,x2,x3,x4,x5,x6) = (S,E,V, Ia, Is,R). We have

x′i = Fxi (t,x1,x2,x3,x4,x5,x6) ,

where x′1, x′2, x′3, x′4, x′5, and x′6 are given by the right-hand side of the equations of system (2).

Let u1, u2, u3, and u4 be constants, and since all parameters are constants and x1, x2, x3, x4, x5,

and x6 are continuous, then

(a) FS, FE , FV , FIa , FIs , and FR are continuous.

(b) The partial derivatives
∂Fxi

∂xi
, i = 1, . . . ,6, are all continuous.

Therefore, according to [31], there exists a unique solution (S,E,V, Ia, Is,R) that satisfies the

initial conditions. Condition 1 is satisfied.

• To prove condition 2, we take any controls u=(u1,u2,u3,u4)∈Ωad and v=(v1,v2,v3,v4)∈

Ωad , and we prove that

θui +(1−θ)vi ∈Ωad, θ ∈ [0,1].
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We have 0≤ θui +(1−θ)vi. Additionally, we observe that θui ≤ θ ,

(1−θ)vi ≤ (1−θ).

Then, we obtain

θui +(1−θ)vi ≤ θ +(1−θ) = 1.

Hence, we have

0≤ θui +(1−θ)vi ≤ 1, i = 1,2,3,4.

This implies that

θui +(1−θ)vi ∈Ωad, θ ∈ [0,1].

Therefore, condition 2 is satisfied.

• To prove condition 3, we have

FS = S′ (t)≤ µ +λ2V (t)+ γR(t)+(α2−α1)S (t)(Ia (t)+ Is (t))u4 (t)−u1 (t)S (t) ,

FE = E ′ (t)≤ (α1−α2)S (t)(Ia (t)+ Is (t))u4 (t)+α2S (t)−u2 (t)E (t) ,

FV = V ′ (t)≤ u1 (t)S (t)+u2 (t)E (t)+u3 (t) Ia (t) ,

FIa = I′a (t)≤ β1E (t)−u3 (t) Ia (t) ,

FIS = I′s (t)≤ β2E (t) ,

FR = R′ (t) = γ1Ia (t)+ γ2Is (t)+λ5V (t) .

So, we can rewrite system (2) in matrix form as

F (t,S,E,V, Ia, Is,R)≤ Λ+Ax(t)+Bu(t) ,

where 

F (t,S,E,V, Ia, Is,R) = [FS,FE ,FV ,FIa ,FIs,FR]
T ,

Λ = [µ,0,0,0,0,0]T ,

x(t) = [S,E,V, Ia, Is,R]
T ,

u(t) = [u1,u2,u3,u4]
T .
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and

A =



0 0 λ2 0 0 γ

α2 0 0 0 0 0

0 0 0 0 0 0

0 β1 0 0 0 0

0 β2 0 0 0 0

0 0 λ5 γ1 γ2 0


, B =



−S 0 0 (α2−α1)S (Ia + Is)

0 −E 0 (α1−α2)S (Ia + Is)

S E Ia 0

0 0 −Ia 0

0 0 0 0

0 0 0 0


.

We have a linear function of state variable and control vector. Therefore, we write

‖F (t,S,E,V, Ia, Is,R)‖ ≤ ‖Λ‖+‖A‖‖x(t)‖+‖B‖‖u(t)‖

≤ ϕ +ψ (‖x(t)‖+‖u(t)‖) .

where ‖Λ‖ ≤ ϕ and ψ = max(‖A‖ ,‖B‖). Thus condition 3 is proved.

• To prove condition 4, we want to prove for any θ ∈ [0,1] such that

L(t,x,(1−θ)u+θv)≤ (1−θ)L(t,x,u)+θL(t,x,v) ,

where u = (u1,u2,u3,u4) ∈Ωad and v = (v1,v2,v3,v4) ∈Ωad . Here,

(1−θ)L(t,x,v1)+θ (t,x,v2) = m1E +m2Ia +m3Is +
(1−θ)

2

4

∑
i=1

wiu2
i +

θ

2

4

∑
i=1

wiv2
i

and

L(t,x,(1−θ)u+θv) = m1E +m2Ia +m3Is +
1
2

4

∑
i=1

w1 ((1−θ)ui +θvi)
2 .

Further, we have

(1−θ)L(t,x,v1)+θ (t,x,v2)−L(t,x,(1−θ)u+θv)

=
(1−θ)

2

4

∑
i=1

wiu2
i +

θ

2

4

∑
i=1

wiv2
i −

1
2

4

∑
i=1

w1 ((1−θ)ui +θvi)
2 ,

=
1
2

4

∑
i=1

wi

[
(1−θ)u2

i +θv2
i − ((1−θ)ui +θvi)

2
]
,

=
1
2

4

∑
i=1

wi

(√
θ (1−θ)ui−

√
θ (1−θ)vi

)2
,

=
1
2

θ (1−θ)
4

∑
i=1

wi (ui− vi)
2 ≥ 0.

Hence, the integrand is convex on Ωad . Thus condition 4 also holds.
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• To prove condition 5, it can be seen that w4u2
4 ≤ w4, that is, w4

2 u2
4 ≤

w4
2 . We have

L(x,u) = m1E +m2Ia +m3Is +
w1

2
u2

1 +
w2

2
u2

2 +
w3

2
u2

3 +
w4

2
u2

4,

≥ w1

2
u2

1 +
w2

2
u2

2 +
w3

2
u2

3 +
w4

2
u2

4,

≥ w1

2
u2

1 +
w2

2
u2

2 +
w3

2
u2

3 +
w4

2
u2

4−
w4

2
,

≥ min
(w1

2
,
w2

2
,
w3

2
,
w4

2

)
‖u‖2− w4

2
,

where, ‖u‖ =
(
u2

1 +u2
2 +u2

3 +u2
4
) 1

2 . Choosing b2 = min
(w1

2 , w2
2 , w3

2 , w4
2

)
and b1 = w4

2 , we get

L(x,u)≥ b2 ‖u‖ρ −b1. This completes the proof. �

3.3. Characterization of the Optimal Control. In this section, we define the optimal con-

trols u∗ =
(
u∗1,u

∗
2,u
∗
3,u
∗
4
)

that provide the best values for the control measures and the related

state variables (S∗,E∗,V ∗, I∗a , I
∗
s ,R
∗). We apply Pontryagin’s maximum principle [32] to derive

the necessary condition for the optimal control. The adjoint function is utilized to link the sys-

tem of differential equations (2) to the objective functional (3), resulting in the formation of the

Hamiltonian. This method converts the problem into minimizing the Hamiltonian H(t) over

time t defined by

H (x(t) ,u(t) ,Λ(t))(5)

=
(

m1E (t)+m2Ia (t)+m3Is (t)+
w1

2
u2

1 (t)+
w2

2
u2

2 (t)+
w3

2
u2

3 (t)+
w4

2
u2

4 (t)
)

+λs [µ− (α1u4 (t)+α2 (1−u4 (t)))S (t)(Ia (t)+ Is (t))−µS (t)+λ2V (t)+ γR(t)−u1S]

+λE [(α1u4 (t)+α2 (1−u4 (t)))S (t)(Ia (t)+ Is (t))− (β1 +β2 +µ +u2 (t))E (t)]

+λv[u1 (t)S (t)+u2 (t)E (t)+u3 (t) Ia (t)− (λ2 +λ5 +µ)V (t)]

+λIa [β1E (t)− (γ1 +u3 (t)+µ) Ia (t)]

+λIS [β2E (t)− (γ2 +δ +µ) Is (t)]

+λR[γ1Ia (t)+ γ2Is (t)+λ5V (t)− γR(t)−µR(t)],

where Λ = (λS,λE ,λV ,λIa,λIs,λR) are the adjoint variables, and the state variables for the

population dynamics are denoted by x(t)= (S(t),E(t),V (t), Ia(t), Is(t),R(t)). That is, λS adjoint

for S(t), λE adjoint for E(t), λV adjoint for V (t), λIa adjoint for Ia(t), λIs adjoint for Is(t), and

λR adjoint for R(t).
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Theorem 3.2. For optimal control u∗ =
(
u∗1,u

∗
2,u
∗
3,u
∗
4
)

and the solutions (S∗,E∗,V ∗, I∗a , I
∗
s ,R
∗)

of the corresponding state system (2), there exists a continuously differentiable vector

Λ(t) = (λS(t),λE(t),λV (t),λIa(t),λIs(t),λR(t))

satisfying

(6)



dλS
dt =− ∂H

∂S = (λs−λE)(α1u4 +α2 (1−u4))(Ia + Is)+(λs−λv)u1 +λsµ,

dλE
dt =− ∂H

∂E =+λE (β1 +β2 +µ +u2)−m1−λvu2−λIaβ1−λISβ2,

dλv
dt =− ∂H

∂V = λv (λ2 +λ5 +µ)−λsλ2−λRλ5,

dλIa
dt =− ∂H

∂ Ia
= (λs−λE)(α1u4 +α2 (1−u4))S+λIa (γ1 +u3 +µ)−m2−λvu3−λRγ1,

dλIs
dt =− ∂H

∂ Is
= (λs−λE)(α1u4 +α2 (1−u4))S+λIS (γ2 +δ +µ)−m3−λRγ2,

dλR
dt =− ∂H

∂R = λR (γ +µ)−λsγ.

with the transversality conditions

(7) λS
(
t f
)
= λE

(
t f
)
= λV

(
t f
)
= λIa

(
t f
)
= λIs

(
t f
)
= λR

(
t f
)
= 0

and optimal controls

(8)



u∗1 = min
(

1,max
(

0, (λs−λv)
w1

S
))

,

u∗2 = min
(

1,max
(

0, (λE−λv)
w2

E
))

,

u∗3 = min
(

1,max
(

0, (λIa−λv)
w3

Ia

))
,

u∗4 = min
(

1,max
(

0, (α2−α1)(λE−λs)
w4

S (Ia + Is)
))

.

Proof. By deriving the Hamiltonian equation (5) with respect to S(t), E(t), V (t), Ia(t), Is(t),

and R(t), we obtain

(9)



dλS
dt =− ∂H

∂S = (λs−λE)(α1u4 +α2 (1−u4))(Ia + Is)+(λs−λv)u1 +λsµ,

dλE
dt =− ∂H

∂E =+λE (β1 +β2 +µ +u2)−m1−λvu2−λIaβ1−λISβ2,

dλv
dt =− ∂H

∂V = λv (λ2 +λ5 +µ)−λsλ2−λRλ5,

dλIa
dt =− ∂H

∂ Ia
= (λs−λE)(α1u4 +α2 (1−u4))S+λIa (γ1 +u3 +µ)−m2−λvu3−λRγ1,

dλIs
dt =− ∂H

∂ Is
= (λs−λE)(α1u4 +α2 (1−u4))S+λIS (γ2 +δ +µ)−m3−λRγ2,

dλR
dt =− ∂H

∂R = λR (γ +µ)−λsγ.

�
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To obtain the optimality condition (4), we differentiate the Hamiltonian function with respect

to u∗1, u∗2, u∗3, and u∗4, such that

∂H
∂um

= 0, m = 1,2,3,4.

That is

(10)



∂H
∂u1

= w1u1 +(λv−λs)S = 0,
∂H
∂u2

= w2u2 +(λv−λE)E = 0,
∂H
∂u3

= w3u3 +(λv−λIa) Ia = 0,
∂H
∂u4

= w4u4 +(α1−α2)S (Ia + Is)(λE −λs) = 0.

Solving for the optimal controls yields

(11)



u∗1 =
(λs−λv)

w1
S,

u∗2 =
(λE−λv)

w2
E,

u∗3 =
(λIa−λv)

w3
Ia,

u∗4 =
(α2−α1)(λE−λs)

w4
S (Ia + Is) .

From the boundedness of u∗i (t) on [0,1] and the minimality condition, it yields

u∗1(t) =



0, if
∂H
∂u1

> 0,

(λs−λv)

w1
S, if

∂H
∂u1

= 0,

1, if
∂H
∂u1

< 0,

u∗2(t) =



0, if
∂H
∂u2

> 0,

(λE −λv)

w2
E, if

∂H
∂u2

= 0,

1, if
∂H
∂u2

< 0,

u∗3(t) =



0, if
∂H
∂u3

> 0,

(λIa−λv)

w3
Ia, if

∂H
∂u3

= 0,

1, if
∂H
∂u3

< 0,

and

u∗4(t) =



0, if
∂H
∂u4

> 0,

(α2−α1)(λE −λs)

w4
S (Ia + Is) , if

∂H
∂u4

= 0,

1, if
∂H
∂u4

< 0.
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So, it can be written as

(12)



u∗1 = min
(

1,max
(

0, (λs−λv)
w1

S
))

,

u∗2 = min
(

1,max
(

0, (λE−λv)
w2

E
))

,

u∗3 = min
(

1,max
(

0, (λIa−λv)
w3

Ia

))
,

u∗4 = min
(

1,max
(

0, (α2−α1)(λE−λs)
w4

S (Ia + Is)
))

.

The proof is completed.

3.4. Simulation numérique. In this section, numerical simulations are performed for systems

(2) and (3) using the forward–backward sweep method [33] in MATLAB to examine the impact

of control policy strategies on disease dynamics and the related implementation costs, with

specific initial and parameter values given for the simulations in Table 3.4.

TABLE 1. Initial values and parameter values.

Parameter values N µ γ λ2 λ5 δ

Estimation 100000 5.644e-4(per day) 0.0099 0.001765 0.008 0.0055

Parameter values α1 α2 β1 β2 γ1 γ2

Estimation 0.03 0.12 0.092 0.05 0.01 0.0005

Initial values S(0) E(0) V (0) Ia(0) Is(0) R(0)

Estimation 0.8 0.05 0.10 0.033 0.016 0.001

In order to explore and analyze the influences of control policy and strategies, we considered

the following cases:

• Strategy A (without control): u1 = 0, u2 = 0, u3 = 0, u4 = 0.

• Strategy B: u1 = 0, u2 = 0, u3 = 0, u4 6= 0.

• Strategy C: u1 6= 0, u2 = 0, u3 = 0, u4 = 0.

• Strategy D: u1 = 0, u2 6= 0, u3 = 0, u4 = 0.

• Strategy E: u1 = 0, u2 = 0, u3 6= 0, u4 = 0.
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• Strategy F (combination of u1 and u4): u1 6= 0, u2 = 0, u3 = 0, u4 6= 0.

• Strategy G (combination of u2 and u4): u1 = 0, u2 6= 0, u3 = 0, u4 6= 0.

• Strategy H (using all controls): u1 6= 0, u2 6= 0, u3 6= 0, u4 6= 0.

We used parameter values given in Table 3.4 and w1 = 250, w2 = 250, w3 = 250 [34], w4 = 10

[35], and m1 = m2 = m3 = 1 for numerical illustration.

 

FIGURE 1. Density of Subpopulation (E),(Ia),(IS) with Control Strategy A, C.

 

FIGURE 2. Applied control profile u1.

In Figure (2), the optimal control effort u1 decreases from its maximum to its minimum value

over time, ending after 100 days, indicating that vaccination is no longer needed afterward.
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FIGURE 3. Density of Subpopulation (E),(Ia),(IS) with Control Strategy A, D.

 

FIGURE 4. Applied control profile u2.

 

FIGURE 5. Density of Subpopulation (E),(Ia),(IS) with Control Strategy A, E.



16 BOUZIANE, JEBRIL, BATIHA

 

FIGURE 6. Applied control profile u3.

In Figures (4) and (6), the control efforts u2 and u3 are essentially negligible, indicating that

vaccinating exposed individuals and asymptomatic infectious individuals is unnecessary.

 

FIGURE 7. Density of Subpopulation (E),(Ia),(IS) with Control Strategy A, B.

 

FIGURE 8. Applied control profile u4.
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In Figure (8), the control profile u4 indicates that quarantine for susceptible individuals should

be maintained optimally during the intervention, then gradually reduced after approximately 28

days.

 

FIGURE 9. Density of Subpopulation (E),(Ia),(IS) with Control Strategy A, G.

 

FIGURE 10. Applied control profile ((u2,u4)).

 

FIGURE 11. Density of Subpopulation (E),(Ia),(IS) with Control Strategy A, F .



18 BOUZIANE, JEBRIL, BATIHA

 

FIGURE 12. Applied control profile ((u1,u4)).

 

FIGURE 13. Density of Subpopulation (E),(Ia),(IS) with Control Strategy A, H.

 

FIGURE 14. Applied control profile ((u1,u2,u3,u4)).
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In Figures (10), (12), and (14), the combined effects of controls (u2,u4), (u2,u4), and

(u1,u2,u3,u4) are illustrated. When implemented together, one notes that COVID-19 prevention

(control u4), i.e., quarantine measures, should be implemented optimally and start decreasing

after about 28 days throughout the intervention period. Meanwhile, it is observed that the use

of the vaccine is not necessary.

Figures (1), (3), (5), (7), (9), (11), and (13) demonstrate how control strategies A, B, C,

D, E, F , G, and H influence the dynamics of COVID-19 in the community. We observed

that the applied control strategies A, B, C, D, E, F , G, and H cause the exposed population

(E), asymptomatic infectious individuals (Ia), and symptomatic and hospitalized infectious

individuals (Is) to show a slight increase under the implementation of control compared to the

scenario without control. In other words, the peak levels reached under control are significantly

lower than those observed in the absence of control. This indicates that the application of control

effectively mitigates the initial surge in cases. Then, the number of individuals (Ia), (Is), and

(E) gradually decreases until each case reaches the stability threshold.

Moreover, each control strategy produces unique peaks in timing and magnitude, highlighting

that their effectiveness depends on intensity and duration, and emphasizing the need to choose

an optimal approach that balances impact and costs.

4. CONCLUSION

This study develops optimal control strategies to reduce disease burden and costs, estab-

lishing their existence and uniqueness. Using Pontryagin’s Minimum Principle, the optimal

trajectories are analytically characterized. Numerical simulations demonstrate the effectiveness

of these strategies in preventing disease spread within communities. The simulation results

show that quarantine and vaccinating susceptible individuals are essential to control COVID-19

spread. Without vaccination, quarantine effectively limits transmission. When both are used

together, the impact of quarantine is more significant, making vaccination less critical. This

indicates that quarantine alone may suffice to manage COVID-19 in combined intervention

strategies.
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