Auvailable online at http://scik.org
Commun. Math. Biol. Neurosci. 2026, 2026:1
https://doi.org/10.28919/cmbn/9642

ISSN: 2052-2541

MODELING HIV AND AIDS DATA IN TRENGGALEK AND PONOROGO

WITH A BIVARIATE ZERO-INFLATED POISSON APPROACH
BAMBANG WIDJANARKO OTOK!, SEKARSARI UTAMI WIJAYA!2*, IRMA HARLIANINGTYAS!?

'Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
2Department of Logistics Engineering, Universitas Internasional Semen Indonesia, Gresik, Indonesia

3Department of Agricultural, Politeknik Negeri Jember, Indonesia
Copyright © 2026 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: The presence of excess zeros and overdispersion in count data often leads to biased parameter estimates
when analyzed using the standard Poisson regression model. This study aims to model the number of HIV and AIDS
cases in Trenggalek and Ponorogo Regencies using the Bivariate Zero-Inflated Poisson (BZIP) regression approach.
The BZIP model accommodates correlated count responses as well as excess zeros, commonly found in
epidemiological data. Two response variables, the number of HIV cases (Y1) and the number of AIDS cases (Y2),
were analyzed against five explanatory variables: the percentage of the population aged 25-29 years (Xi), low
education level (Xz), condom use among couples of reproductive ages (Xs), participation in health education programs
(X4), and community health insurance coverage (Xs). Parameter estimation was performed using the Expectation-
Maximization (EM) algorithm. The results show that health education significantly increases the likelihood that an
area has no HIV cases, while health insurance significantly reduces the number of AIDS cases. Moreover, individuals
aged 25-29 years were identified as the group most at risk for AIDS. The model also confirmed strong overdispersion
and zero inflation, supporting the use of BZIP as a more appropriate model than the standard bivariate Poisson
regression. Additionally, the BZIP model achieved the best performance, indicated by the lowest AIC value compared
to previous models.
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1. INTRODUCTION

The Poisson distribution is a probability distribution that represents the number of successes
occurring within a given interval of time, such that the possible values of the response variable are
non-negative integers. In Poisson regression, the expected value (mean) is equal to the variance (a
condition known as equidispersion). The Poisson model is often used because of its simplicity and
its natural relationship to counting processes; however, this equidispersion assumption is
frequently violated in real-world applications. Overdispersion occurs when the data variance is
much greater than the mean. High variance is often caused by population heterogeneity, clustering,
or the presence of many zero values (extra zeros) [1]. If overdispersion is not properly addressed,
parameter estimates and confidence intervals may become biased and misleading. Modeling
approaches used to overcome the problem of overdispersion involve combining the Poisson
distribution with other discrete or continuous distributions, known as mixed Poisson distributions.
Several mixed Poisson distributions that have been developed include the Zero-Inflated Poisson
(ZIP), Generalized Poisson, Negative Binomial Poisson, and Poisson Inverse Gaussian
distributions [2].

The zero-inflated regression model is a highly useful tool for analyzing count data that exhibits an
excess of zeros. This model explains the presence of excess zeros by combining a degenerate
distribution at zero with a standard count regression model (such as Poisson, binomial, or negative
binomial for a single response variable, and bivariate Poisson or bivariate negative binomial for
multiple response variables) [3]. A degenerate distribution is a type of probability distribution in
which all the probability mass is concentrated at a single point. This distribution is used to
represent the portion of data that is structurally zero-zero that do not occur due to random variation,
but because the event in question cannot occur. Count data often contain excess zeros, and ignoring
this condition may lead to inaccurate analytical results. The combination of a zero-inflated
regression model and the Poisson model can be used to address excess zeros, resulting in the Zero-
Inflated Poisson (ZIP) regression model. The ZIP model consists of two components (states): the
Poisson state, which represents nonzero count data in the response variable, and the logit state,
which represents zero count data in the response variable [4]. Many studies have applied and
developed the ZIP model in various fields, such as manufacturing, epidemiology, public health,

and others. The modeling approach used to address the problem of overdispersion involves
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combining the Poisson distribution with other discrete or continuous distributions, known as mixed
Poisson distributions. If there are two interrelated response variables (for example, two types of
injuries or two types of events), a bivariate model is required to simultaneously model the
correlation between the responses and handle the presence of extra zeros. The Bivariate Zero-
Inflated Poisson (BZIP) model allows for covariate modeling across both margins while capturing
the sources of correlation arising from the Poisson component and/or the zero-inflation proportion.
The multivariate ZIP model was first introduced by [5] to analyze events in manufacturing
processes that involve several types of rare defects. Several other important BZIP studies include
[6] introduced the BZIP model to analyze occupational injuries and demonstrated an improvement
in model fit compared to univariate models; [7] developed numerical tests and score tests to detect
zero inflation in the BZIP model; [8] applied a Bayesian (MCMC) approach to BZIP for blood
donor data; and more recent methodological studies continue to emerge (e.g., handling missing
covariates, MLE/Bayesian estimation).

Human Immunodeficiency Virus (HIV) and Acquired Immuno-Deficiency Syndrome (AIDS) are
serious health conditions that must be well understood by the public. HIV is a virus that weakens
the immune system, while AIDS is a condition in which the immune system becomes severely
compromised due to HIV infection. Indonesia currently ranks 14th in the world in terms of the
number of people living with HIV (PLHIV) and 9th for new HIV infections. It is estimated that
there are approximately 564,000 PLHIV in Indonesia, yet only about 63% are aware of their status.
According to data from the Indonesian Ministry of Health for the period January—March 2025,
there were 15,382 HIV-AIDS cases reported, consisting of 4,850 AIDS cases and 10,532 HIV
cases. Indonesian Ministry of Health reported that the majority of PLHIV identified during this
period belonged to four key groups: Men who have sex with men (MSM): 4,716 cases; General
population: 3,931 cases; Tuberculosis (TB) patients: 2,152 cases; Clients of sex workers: 1,206
cases. East Java was the province with the highest number of newly detected HIV cases during
January—March 2025 [9].

In Indonesia, the spread of HIV and AIDS initially occurred predominantly among commercial
sex workers (CSWs) and homosexual groups. The practice of having multiple sexual partners
among CSWSs became the main factor in the transmission of the virus, which was later passed on
to their clients and subsequently to housewives within their communities. Transmission can also

occur from an infected mother to her newborn child. In recent years, the pattern of HIV and AIDS
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transmission in Indonesia has been dominated by heterosexual contact and the use of narcotics,
psychotropics, and addictive substances (NAPZA) through shared needles, where injecting drug
users have the potential to transmit the virus to their partners. The widespread transmission of HIV
and AIDS has had serious implications for national development, as most people living with the
disease are within the productive age group. The negative impacts are not limited to health aspects
but also extend to social and economic conditions within society [10].

The data on the number of HIV and AIDS cases in Trenggalek and Ponorogo Regencies are count
data, representing the number of occurrences within a specific time period. This type of data
generally follows a Poisson distribution because it is discrete, non-negative, and represents the
number of rare events within a given unit of time or area [4]. Furthermore, HIV and AIDS cases
in both regencies are interrelated, as an increase in the number of HIV cases tends to be followed
by an increase in AIDS cases. Therefore, the modeling process involves two response variables
(bivariate modeling). Consequently, the appropriate distribution to describe the relationship
between these two variables is the bivariate Poisson distribution, which is capable of capturing the
positive correlation between two types of related events [11]. The use of two separate regression
models to estimate jointly related events will result in inconsistent and inefficient estimators [12].
However, the data on the number of HIV and AIDS cases in Trenggalek and Ponorogo Regencies
show a high proportion of zero values, indicating that many subdistricts have no HIV or AIDS
cases at all. This condition reflects the presence of excess zeros, which violates the equidispersion
assumption in the bivariate Poisson regression model. As a result, the bivariate Poisson regression
model becomes inadequate, leading to biased parameter estimates and poor model accuracy. To
address this issue, the appropriate modeling approach is the Bivariate Zero-Inflated Poisson (BZIP)
regression. This study proposes the use of the BZIP regression model to determine the significance

of factors that may influence the number of HIV and AIDS cases.

2. PRELIMINARIES

2.1 Bivariate Poisson Distribution

The discrete random variables Y; and Y, follow a bivariate Poisson distribution, denoted as
(Y,,Y,)~BP(44,1,, A3) if their joint probability mass function (pmf) for Y; and Y, isgiven as

follows.



MODELING HIV AND AIDS DATA
PYy=y,Y2=y5)
¢+ (1 — p)e"Mathata) (3, y,) = (0,0)

min(y1,y2) ; ;o
Y1—J9Y2—]q]
’11 /12 ’13

(= letaria ) DIk

1)

1, y2) # (0,0)

And 0 < ¢ <1 represents the additional proportion in the zero-zero cell. Furthermore, the
correlation coefficient between Y; and Y, inequation (1) given by :
A3+ d(A +A3)(A, + A
Cort(¥..1,) = 3+ @+ 23) (A + 45) o
Vi +23) (A2 + A3)[1 + ¢(Ag + A3)][1 + ¢ (Az + A5)]

From equation (2) there are two sources that can generate correlation between Y; and Y,. The

first is Az, which represents the pure covariance parameter of the bivariate Poisson (BP)
distribution. The second is ¢, which represents the additional (inflated) proportion in the zero—
zero cell. Therefore, Y;and Y, cannot be independent unless ¢ = 0 and A; = 0.
2.2 Bivariate Zero Inflated Poisson Distribution
The bivariate Poisson model was proposed by [13] dan and presented by Johnson and Kotz (1969)
in [14]. This model is used to model two correlated count variables. Let there be a probability
space (Q,C,P). Consider three random variables U;, U, and U, each following independent
Poisson distributions with parameters A;,1,, and A, respectively. Then the random variables
Y, =U;+U, dan Y, = U, + U, 3)
jointly follow a bivariate Poisson distribution, denoted BP(44,4,,4,). Equation (4) is the
probability mass function of the Bivariate Zero-Inflated Poisson (BZIP) distribution.
¢+ (1— e~ Mty = 0.k =1,2

(1- qb)e‘uk”())M Vi # 0,k =1,2 )

V!
The moments of the BZIP distribution can be shown as follows:

E(Ye) = (1 = ¢)(Ak + 4o)

Var(Y) = E(G[1 + (i + A0)]

E(Y1Y;) = (1 = @) [(A41 + o) (A2 + 40) + 4]

Cov(Y, Y2) = (1 = )[Ao + ¢ (A1 + 20) (42 + 40)]
2.3 The Model Regression of BZIP

The regression model aims to (a) identify significant risk factors that influence the occurrence of

P(Yy =y,) =

()

zero inflation, and (b) determine the extent to which interventions or other confounders affect the
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mean number of events. For purpose (a), the Poisson component is held fixed (constant) with
parameters f,,;, and B,. The zero-inflation parameter ¢ is modelled as a logistic function of

the covariates Z:

d).
log (725) = &= Zla ©)
The Poisson mean component is defined as:
log (Ak,i) = N = Br +log (&) ()

with k =0,1,2; i = 1,...,n; t; represents the exposure term (time or risk measure).
For purpose (b), ¢ is considered fixed. However, the Poisson (mean) component is assumed to
be related to the covariates X, as follows:
log (1 fld’i) =§=a
log (M) = M = Xy Brc +1og (t;)
log (Ak,i) = Nk, = Bo +1og (t;)
where X;adn X, are design matrices that include the risk factors, §; and S, are vectors of

regression coefficients, and S, is an unknown constant representing the common mean
component. Similar to the univariate ZIP model, specifying the full BZIP model with identical
covariates in all Poisson and logistic components may lead to parameter identifiability issues.
Therefore, the complete model should be divided into two submodels: one for analyzing zero
inflation and another for analyzing the mean count of events.

2.4 Expectation Maximization Algorithm

To obtain the maximum likelihood estimates (MLE) of the model parameters, the Expectation—
Maximization (EM) algorithm as described in [15] is used. Let the complete data be denoted by
U, Uy, Uy, V, where V is a latent variable indicating whether an observation originates from the
latent zero class (V = 1) or the nonzero class (V = 0), meanwhile, U, is also unobserved and
represents the shared component between Y;and Y,. Although the complete-data log-likelihood
function is mathematically complex, it can be expressed as a linear function of U, and V. Since
U, and V are conditionally independent, the E-step in the EM algorithm is performed by
replacing U, and V with their conditional expected values based on the current parameter
estimates. The M-step is then conducted by partitioning the log-likelihood function into four

orthogonal components, allowing parameter estimation to be performed separately through logistic
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regression (for the zero-inflated component) and three weighted Poisson regressions (for the
bivariate Poisson components). The asymptotic standard deviations of the regression coefficients
are obtained using the method described in [15]. The details of the estimation procedure are
provided as follows.
le=1l:+1, +1,, +1
constitute the complete data that form (build) the log-likelihood.

n

L = ) vigi — log[1 +exp (5]

i=1

n
Ly, = Z(l —v;) [(Yk,i - uo.l)nk,i - eXp(nk_i) — log ((Yk,i - uo,i)!)] k=12
i=1

n
by, = 2(1 — v) U0, M01 — exp (M) — log(ug,i!)]

=1

1
vi(m) =<{1+exp (-fi(m) — exp(ng?)) - exp(ngf?)) - exp(’?((;,?il))
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>,jika (Y1,i,3’2,i) = (0,0)
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The asymptotic variance of the parameters is obtained from the observed information matrix

exp (—4; — 43 — 4p)

through the EM estimation procedure. The observed information matrix can be expressed as the
conditional expectation of the gradient vector of the complete-data log-likelihood function,
evaluated at the maximum likelihood estimates (MLE)[16]. Let ¥ = (a’,B1", B2", Bo)" it is

known that

n n
lc = Z lc (Ul,i» Uz,i’ Uo,ii Vi, ¢) = Z lc (Yl,i' Yz,i’ Uo,ii Vi, 1/’)
i=1 i=1
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which indicates that

0lc(Uyp Uz Uois Vi )| ] _ ole (Y10 Va,i0 Bloi; D1, P)
alp 1,1, 2,1 al/)

where ¥; and i,; denote the corresponding final estimates obtained in the E-step. Hence, the

Si(W; yii¥ai) = E[

observed information matrix is given by
n
~ T
Iops = Zsi(lp; V11.Y21)S:(W; Y11Y21)
i=1

The asymptotic standard error of the parameter estimates 1) the BZIP regression model is
obtained from the inverse of the observed information matrix, denoted as 1.

2.5 Case Study

The data used in this study consist of HIV and AIDS case records obtained from the Health Offices
of Trenggalek and Ponorogo Regencies for the year 2012. There is a total of 35 subdistricts,
comprising 14 subdistricts in Trenggalek Regency and 21 subdistricts in Ponorogo Regency. This
study aims to model the effects of health awareness and healthcare services on the tendency of
individuals to contract HIVV/AIDS. The cases of people living with HIV and those with AIDS are
interdependent, as the occurrence of AIDS is highly dependent on HIV status. The data on the
number of new HIV and AIDS cases in Trenggalek and Ponorogo Regencies in 2012 follow a
Poisson distribution. However, the data exhibits a very high level of overdispersion due to the
presence of many zero values 57% of subdistricts have zero HIV cases and 34% have zero AIDS
cases. Therefore, the appropriate modeling approach used is the Bivariate Zero-Inflated Poisson
(BZIP) regression. There are two response variables, Y;and Y,, and five explanatory variables,
X1, X,,X3,X,,and X, used in this study. Specifically:

e Y;: Number of HIV cases

e Y,: Number of AIDS cases

e X;: Percentage of population aged 25-29 years

e X,: Percentage of population with low education level

e X5: Percentage of couples of reproductive age using condoms

e X,: Percentage of population participating in health education programs

e Xs5: Percentage of population covered by the Community Health Insurance (Jamkesmas)

program



MODELING HIV AND AIDS DATA

2.6 Data Analysis

The stages of data analysis (figure 1) conducted in this study are as follows:

1.

10.

Data Collection: Collect data on HIV and AIDS cases, along with supporting variables, age
of patients (X;), education level (X,), percentage of couples of reproductive age using
condoms (X3), percentage of the population participating in health education programs (X,),
and percentage of the population covered by the Community Health Insurance (Jamkesmas)
program (Xs), as recorded by the Health Offices of Trenggalek and Ponorogo Regencies.
Descriptive Analysis: Perform descriptive statistics to determine the standard deviation,
skewness, minimum and maximum values, and the percentage of zero occurrences for each
subdistrict in Trenggalek and Ponorogo.

Correlation Test of Response Variables: Examine the correlation between the response
variables, namely the number of HIV and AIDS cases (Y; and Y,) in Trenggalek and
Ponorogo.

Dispersion Test: Evaluate the dispersion of the response variables (Y; and Y,) to assess
whether the Poisson assumption of equidispersion holds.

Distribution Testing: Test the distribution of the response variables to determine whether the
HIV and AIDS case data follow the Poisson or Zero-Inflated Poisson distribution.
Multicollinearity Test: Assess the multicollinearity among the explanatory variables
(X1, X2, X3, X4, X5).

Parameter Estimation: Estimate the model parameters using the Bivariate Zero-Inflated
Poisson (BZIP) regression model through the Expectation-Maximization (EM) algorithm
approach.

Model Selection: Select the best model based on the Akaike Information Criterion (AIC) as
the indicator of model fit.

Model Construction: Develop and formulate the BZIP regression equations.

Model Interpretation: Interpret the regression model to explain the relationship between the

explanatory variables and the number of HIV and AIDS cases.
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Figure 1 Flowchart of research

3. MAIN RESULTS

3.1 Description of Response and Explanatory Variables

Table 1 resents the descriptive statistics of the two response variables. The average number of new
HIV cases per subdistrict in Trenggalek and Ponorogo Regencies is one person per year. The
standard deviation of 1.278 indicates that the number of new HIV cases does not vary greatly
across subdistricts. Furthermore, since the standard deviation is greater than the mean, the data
exhibits overdispersion. The highest number of new HIV cases, totaling four individuals, occurred
in Kampak and Bendungan subdistricts in Trenggalek Regency. Similarly, the average number of

new AIDS cases per subdistrict in Trenggalek and Ponorogo Regencies is one person per year.
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The standard deviation of 1.173 suggests that the number of new AIDS cases also does not differ
substantially among subdistricts. As with the HIV data, the standard deviation being greater than
the mean indicates the presence of overdispersion in the AIDS case data.

Table 1  Descriptive Statistics of HIV and AIDS Cases

Response Variable Standard Deviation Minimum Maximum Skewness Percentage of Zeros
Number of HIV cases (Y1) 1.279 0 4 1.39 57%
Number of AIDS cases (Y2) 1.173 0 5 1.57 34%

Table 2 shows that the average percentage of the population aged 25-29 years in each subdistrict
IS 6.798%. The standard deviation of 0.513% indicates that the percentage of residents aged 25-29
does not vary greatly across subdistricts. Watulimo Subdistrict has the lowest percentage, at
5.771%, while Trenggalek Subdistrict has the highest, at 7.821%. The average percentage of the
population with a low education level in each subdistrict is 14.784%. The standard deviation of
5.783% indicates that some subdistricts differ considerably from others. Pudak Subdistrict has the
lowest percentage, at 6.491%, while Trenggalek Subdistrict has the highest percentage, at
34.954%.

Table 2 Descriptive Statistics Explanatory variables

Standard Mini- Maxi-

Response Variable Mean o
Deviation ~ mum mum
Percentage of population aged 25-29 years (X1) 6.798 0.513 5711 7.821
Percentage of population with low education level (X2) 14.784 5.783 6.491 34.954
Percentage of couples of reproductive ages (PUS) using condoms (X3) 2.894 2.607 0.153 13.313

Percentage of population participating in health education programs (X4) 0.671 0.459 0.041 2512
Percentage of population covered by the Community Health Insurance (X5) 40.510  11.000 16.660 60.980

The average percentage of couples of reproductive age (PUS) using condoms in each subdistrict
IS 2.894%. The standard deviation of 2.607% indicates that there are considerable differences
among subdistricts. Ngebel Subdistrict has the lowest percentage, at 0.513%, while Trenggalek
Subdistrict has the highest percentage, at 13.313%. The average percentage of the population
participating in health education programs in each subdistrict is 0.671%. The standard deviation
of 0.459% shows that the percentages do not vary greatly between subdistricts, with the lowest
value of 0.041% in Gandusari Subdistrict and the highest value of 2.512% in Pudak Subdistrict.

The average percentage of the population covered by the Community Health Insurance
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(Jamkesmas) program in each subdistrict is 40.51%. The standard deviation of 11% indicates a
considerable difference across subdistricts. Siman Subdistrict has the lowest coverage, at 16.66%,
while Pudak Subdistrict has the highest, at 60.98%.

Distribution of Y1 Distribution of Y2
20 Observec d 14 Observed

0 1 2 3 4 o 1 2 3 4
Y1 values Y2 values

Observed vs Expected (ZIP) - Y1 Observed vs Expected (ZIP) - Y2

20 Observed 14 Observed
Expected (ZIP) Expected (ZIP)

o 1 2 3 4 o 1 2 3 4 5
Y1 values Y2 values

Q-Q Plot Y1 (Poisson) Q-Q Plot Y2 (Poisson)

Ordered Values
N W oA W
L]

Ordered Values

o

0.0 0.5 1.0 1.5 2.0 25 3.0 0.0 05 1.0 15 20 25 3.0 35 4.0

Figure 2 Graph of the distribution of Y1 and Y2 (top), observed vs expected Y1 and Y>
(middle), and Q-Q plot Y1 dan Y2 (bottom)

Figure 2 (top) shows the empirical (observed) distribution of Y: and Y2. For Y: (HIV) most
observations have a value of zero (around 20 cases), indicating the presence of zero inflation or
areas with no HIV cases. The Y2 (AIDS) data exhibit a right-skewed distribution, but the number
of zeros is smaller than in Y1, suggesting that AIDS cases are more widely distributed than HIV
cases. Figure 2 (middle) presents the comparison between observed and expected values under the
Zero-Inflated Poisson (ZIP) model. The graph demonstrates a strong agreement between observed
and predicted frequencies for each variable. For Y1, the ZIP model accurately captures the actual
data pattern, especially for counts of zero and one, confirming that the model effectively accounts
for excess zeros. For Y2, the predicted ZIP distribution also closely follows the observed pattern,
with only minor deviations for counts of one and two. Overall, these results indicate that the
Bivariate Zero-Inflated Poisson (BZIP) model provides a good fit in describing the joint

occurrence patterns of HIV and AIDS. Figure 2 (bottom) shows the Q—Q plots for Y: and Y2 under



13
MODELING HIV AND AIDS DATA

the Poisson distribution assumption. The blue dots represent the ordered observed values, while

the red line represents the theoretical quantiles. The points that closely follow the diagonal line

suggest that the Poisson distribution assumption for the count process component is well satisfied.

The slight deviations at the upper right tail indicate mild overdispersion, which has been

successfully corrected by the zero-inflation component within the BZIP model.

3.2 Examination of Correlation Between Response Variables

In bivariate regression analysis, the response variables must exhibit a correlation. This study uses

the number of new HIV cases (Y1) and the number of new AIDS cases (Y2) as the response

variables. The correlation coefficient between the two response variables is 0.399, indicating a

positive correlation, meaning that as the number of new HIV cases increases, the number of new

AIDS cases also tends to increase. Conversely, when the number of new HIV cases decreases, the

number of new AIDS cases also tends to decrease. The hypotheses tested are as follows:

Ho: There is no correlation between Y1 and Y>

H1: There is correlation between Y1 and Y>

The t-value obtained is 2.5, which is greater than the critical value ta/2,33 = 2.034 and the p-value

1s 0.018, which is smaller than the significance level a (0.05), Therefore, the decision is to reject

Ho. In conclusion, there is a significant correlation between the number of new HIV and AIDS

cases in Trenggalek and Ponorogo Regencies.

3.3 Overdispersion Diagnostic

Overdispersion testing is conducted to evaluate whether the count data follow the Poisson

distribution assumption, which requires that the mean and variance are equal. A mismatch between

the variance and mean indicates that the standard Poisson regression model may not be appropriate,

and an alternative model such as the Zero-Inflated Poisson (ZIP) model should be considered.
Table 3 Overdispersion Diagnostic

Variable Mean Variance Ratio
Y 0.8857 1.6336 1.8444
Y- 1.0857 1.3748 1.2663

Table 3 As shown in Table 3, the mean of Y; is 0.8857 and the variance is 1.6336, producing a
variance-to-mean ratio of 1.8444. This value is much greater than 1, and even exceeds the
empirical threshold of 1.5, which is commonly used to detect significant overdispersion. Hence,

Y; exhibits strong overdispersion. For Y, the mean is 1.0857 and the variance is 1.3748, resulting
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in a variance-to-mean ratio of 1.2663, which is slightly above 1. This indicates mild overdispersion.
Although not as pronounced as in Y;, this result still suggests that the ZIP model (and later the
BZIP model) is more suitable for handling the excess zeros and overdispersion present in the data.
3.4 Testing the Distribution of Response Variables
The hypothesis testing for the distribution of the response variables is divided into two
complementary tests, each serving a distinct statistical purpose: (1) to determine whether the data
exhibit excess zeros (zero inflation) that cannot be adequately explained by the standard Poisson
distribution, and (2) to assess whether the data follow the Zero-Inflated Poisson (ZIP) distribution.
If ¢ = 0, then the joint probability density function of ¥; and Y, becomes identical to that of
the traditional bivariate Poisson (BP) regression model given by [17]. Therefore, the hypothesis
test comparing the BP model with the Bivariate Zero-Inflated Poisson (BZIP) regression model
can be formulated as follows:
Hy: ¢ = 0 (No zero-inflation) @®)
H;: ¢ > 0 (Zero-inflation exists)
The alternative hypothesis in Equation (8) is one-sided, as the main interest in real data analysis
lies in detecting the presence of zero inflation. To test this hypothesis, following [18], a
reparameterization from ¢ to v, is performed as:

_ ¢
Thus, the hypothesis test in Equation (8) becomes equivalent to:
Hy: ¢ = 0 (No zero-inflation
ot = 0 (o zerorinflation) (10)
Hy:¢ > 0 (Zero-inflation exists)
To obtain the score test statistic for Equation (10), the log-likelihood function of the BZIP model

based on n independent observations is derived as follows:

logL =
(10)

n
i=

0
b= Z[_ log(1 +1) + I(J’1i0/zi)=(0.0) log(t/) + e”ﬁi"gi‘*ls) -1
i=1

1
- I(yli,yZi)=(0,0))((Iii + 23 — 43) +log (Y(yu’YZi)))]

where [; is the logarithm of the probability function for the ke-i of (Y;;,Y5;), evaluated at the

values (Y3, Y2;) = (711, ¥2:), and I,y is an indicator function that equals 1 if the condition inside

the parentheses is true, and 0 otherwise.

After testing for the presence of zero inflation, the next step is to perform a goodness-of-fit test to
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determine whether the data follow the Zero-Inflated Poisson (ZIP) distribution.

HO: The data follow the ZIP distribution

H1: The data do not follow the ZIP distribution (10)
Table 4 shows that for the variable Y;, the score test for detecting zero inflation yields a Z-statistic
of 7.9138 with a very small p-value (0.000001). This provides strong evidence to reject the null
hypothesis at the 5% significance level, indicating the presence of significant zero inflation in Y,
Similarly, for the variable Y,, the Z-statistic is 2.2731 with a p-value of 0.0115, suggesting that
although the zero inflation is not as strong as in Y3, it is still statistically significant at the 5% level.
Therefore, the standard Poisson model is inadequate to represent the data, and an alternative ZIP
model is required to properly account for the large number of zero observations.

Table 4 Testing the Distribution of Response Variables

) Zero-Inflation ZIP
Respon Variable

Z-Statistic  P-value Chi-Square df P-value
Y 7.9138 0.0000 3.3476 1 0.0673
Y- 2.2731 0.0115 0.3421 1 0.5586

Furthermore, the results of the goodness-of-fit test indicate that the ZIP model provides an
adequate fit to the data. For the variable Y;, the Chi-square value of 3.3476 with a p-value of
0.0673 shows that there is insufficient evidence to reject the null hypothesis. This means that the
ZIP model is considered adequately representative in describing the distribution of Y;. For the
variable Y,, the Chi-square value is 0.3421 with a p-value of 0.5586, indicating no significant
deviation between the model and the observed data. Therefore, the ZIP distribution is deemed to
fit Y, very well. These results suggest that the use of the Bivariate Zero-Inflated Poisson (BZIP)
model which extends the advantages of the ZIP model to the bivariate case is an appropriate
approach for analyzing these two variables, given the evidence of significant zero inflation and
satisfactory model fit.

The empirical (observed) and fitted frequency distributions of Y1 and Y2 under the BZIP model
are presented in  Figure 3. As expected, the zero—zero combination (y;,y,) = (0,0) exhibits the
highest frequency, representing subdistricts with no HIV or AIDS cases. The figure clearly shows
that the BZIP distribution provides an adequate fit to the bivariate data and performs better overall.

According to Wang et al. (2003), the BZIP model outperforms the bivariate Poisson, marginal
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Poisson, and marginal ZIP distributions in terms of log-likelihood value, demonstrating its superior

capability in handling correlated count data with excess zeros.

(] [—l‘wpw-' cal F equency W Fitted BZIP Hrrwmv,‘;

Figure 3 Empirical and Fitted Frequency Distribution of the
BZIP Model

3.5 Multicollinierity Diagnostic

Multicollinearity testing is conducted to determine whether there is a correlation among the
explanatory variables when considered simultaneously. One method to detect the presence of
multicollinearity is by using the Variance Inflation Factor (VIF). If the VIF value exceeds 10, it
indicates the presence of multicollinearity among the explanatory variables. Based on Table 5, the
VIF values for each explanatory variable with respect to the others are less than 10, indicating that
no multicollinearity exists among the explanatory variables. Therefore, all five explanatory
variables can be appropriately used in the Bivariate Zero-Inflated Poisson (BZIP) regression model.

Table 5 VIF value of explanatory variables

Response Variable Explanatory Variable Rk2  VIF Conclusion
X1 X2, X3, X4, X5 0.188 1.231
X2 X1, X3, X4, X5 0.515 2.062
X3 X1, X2, X4, X5 0.485 1.942 No multicollinearity
X4 X1, X2, X3, X5 0.062 1.066

X5 X1, X2, X3, X4 0.172 1.208
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3.6 Modeling the Number of New HIV and AIDS Cases in Trenggalek and Ponorogo
Regencies in 2012 Using the Bivariate Zero-Inflated Poisson (BZIP) Model
Table 6 Poisson parameter estimation for Y1

Parameter Estimate Standard Error z-value p-value

Intercept  -6.3896 3.4031 -1.8776  0.0604
X1 0.7022 0.4340 1.6181 0.1056
X2 0.0145 0.0359 0.4033 0.6867
X3 0.1751 0.1053 1.6634 0.0962
X4 0.0657 0.5328 0.1233  0.9019
X5 0.0295 0.0206 1.4320 0.1522

Based on Table 6, the estimation results for the Poisson component of the dependent variable
representing the number of people living with HIV (Y1) show that none of the explanatory
variables have a statistically significant effect at the 5% significance level. However, several
interesting tendencies can be observed. The coefficient for the percentage of the population aged
25-29 years (X is positive, at 0.702239, with a p-value of 0.1056, indicating a tendency that an
increase in the proportion of individuals in this productive age group may lead to a higher number
of HIV cases, although the effect is not statistically significant. The percentage of the population
with a low education level (X2) has a small and insignificant coefficient (p = 0.6867), suggesting
that low education is not necessarily a major factor contributing to the increase in HIV cases within
the study area. The percentage of couples of reproductive ages (PUS) using condoms (Xs) has a
positive coefficient of 0.175126 with a p-value of 0.0962, which is close to the 10% significance
threshold. This finding indicates that areas with higher condom use actually report more HIV cases,
possibly due to greater awareness and better reporting resulting from more intensive prevention
programs. The health education participation variable (X4) and the community health insurance
coverage variable (Xs) both show no significant effect on the number of HIV cases (p > 0.05).

Overall, the Poisson component for Y1 suggests that while none of the factors are statistically
significant, the positive indication from the condom use variable (X3) deserves further attention

and investigation in future studies.
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Table 7 Poisson parameter estimation for Y2

Parameter Estimate Standard Error z-value p-value

Intercept 1.5761 4.2264 0.3729 0.7092
X1 0.0267 0.5672 0.0470  0.9625
X2 -0.0094 0.0379 -0.2479  0.8042
X3 0.0709 0.0816 0.8690 0.3849
X4 0.0716 0.5812 0.1233 0.9019
X5 -0.0425 0.0182 -2.3382  0.0194

In Table 7 for the dependent variable representing the number of people living with AIDS (Y>),
most explanatory variables do not show statistically significant effects, except for one factor that
exhibits a clear and meaningful influence. The community health insurance variable (Xs) has a
negative coefficient of —0.042518 with a p-value of 0.0194, which is statistically significant at the
5% level. This finding indicates that an increase in the proportion of the population covered by
community health insurance is associated with a decrease in the number of AIDS cases. In other
words, the health insurance program likely provides better access to HIVV/AIDS prevention and
treatment services, thereby helping to reduce disease progression. Meanwhile, the variables
representing the population aged 25-29 years (X1), low education level (X2), condom use among
couples of reproductive ages (Xs), and participation in health education programs (X4) do not have
significant effects on AIDS cases (p > 0.05). Thus, these results suggest that community health
insurance (Xs) plays an important role in controlling AIDS cases, while the other explanatory
variables have not shown a statistically meaningful relationship in the Poisson component of the
model.

Table 8 Estimation Parameter Zero-Inflation for Y1

Parameter Estimate  Standard Error z-value p-value

Intercept  -306.9160 216.9058 -1.4150 0.1571
X1 57.5542 71.2383 0.8079 0.4191
X2 -5.1381 33.3300 -0.1542 0.8775
X3 -92.4985 196.0869 -0.4717 0.6371
X4 209.6302 46.4640 4.5117 0.0000

X5 0.0591 14.2102 0.0042 0.9967
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The estimation results presented in Table 8 illustrate how independent factors influence the
likelihood of zero inflation, that is, areas with no HIV cases at all. The findings show that health
education participation (X4) is the only variable that has a statistically significant effect on the
zero-inflation component, with a positive coefficient of 209.6302 and a p-value < 0.001. This
indicates that the higher the percentage of the population participating in health education
programs, the greater the probability that a region will have zero HIV cases. In other words, health
education has proven to be effective in reducing the emergence of new HIV cases by promoting
public awareness and preventive behavior. Meanwhile, other variables population aged 25-29
years (X1), low education level (Xz), condom use (Xs3), and community health insurance coverage
(X5) do not show significant effects (p > 0.05). Therefore, it can be concluded that health education
plays a major role in explaining the probability of HIVV-free regions, whereas other demographic
and socioeconomic factors do not make a statistically significant contribution to zero inflation in
Y1

Table 9 Estimation Parameter Zero-Inflation for Y

Parameter  Estimate  Standard Error z-value p-value

Intercept  5621.2511 341.5423 16.4584 0.0000
X1 -7102.4752 89.4648 -7.8520 0.0000
X2 6.7695 65.1372 0.1039 0.9172
X3 -171.4635 288.4713 -0.5944 0.5523
X4 -777.5620 4471320 -1.7390 0.0820
X5 -9.6843 11.9313 -0.8117 0.4170

Based on Table 9, the estimation results for the zero-inflation component of the dependent variable
representing the number of people living with AIDS (Y2) indicate that the population aged 25-29
years (X1) is a significant factor affecting the probability of excess zeros. The coefficient value of
—702.4752 with p < 0.001 shows that as the proportion of people aged 25-29 increases, the
likelihood that a region will have zero AIDS cases decreases. This finding suggests that the 25-29
age group is particularly vulnerable to HIV/AIDS transmission. Additionally, the health education
variable (X4) shows a p-value of 0.0820, which is close to the 10% significance level, indicating
that health education programs may also reduce the likelihood of zero inflation. In other words,
they may help promote case detection and reporting in areas that previously had no recorded AIDS

cases. Other variables, such as low education level (X2), condom use (X3), and community health
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insurance coverage (Xs) do not have a significant effect on the zero-inflation component.

In summary, these results indicate that the 25-29 age group plays a dominant role in determining

the distribution of AIDS cases, while health education activities potentially influence case

detection through increased awareness and reporting. Based on the estimation results of both the

Poisson and Zero-Inflation components, the final model is obtained as follows:

log (1;) = —6.3896 + 0.7022X, + 0.0145X, + 0.1751X5 + 0.0657X, + 0.0295X
log (1,) = 1.5761 + 0.0267X; — 0.0094X, + 0.0709X; + 0.0716X, — 0.0425X:

T
1og(1 1ﬂ ) = —306.9160 + 57.5542X, — 5.1381X, — 92.4985X; + 209.6302X,
— i

+0.0591X:

s
log(1 27'[ ) = 5621.2511 — 702.4752X, + 6.7695X, — 171.4635X5 — 777.5620X,
— i3

— 9.6843X;

Based on the obtained model, the interpretation of the Bivariate Zero-Inflated Poisson (BZIP)

model parameters is as follows:

(@)

(b)

(©)

Poisson Component for Y: (HIV Cases)

No explanatory variable is statistically significant at the 5% level. However, the condom use
variable (Xs) has a p-value = 0.0962 (approaching significance) with a positive coefficient of
0.1751. This indicates that an increase in condom use tends to coincide with an increase in the
number of reported HIV cases. This finding may be interpreted as showing that regions with
higher awareness of condom use also tend to have better reporting systems, resulting in more
HIV cases being identified rather than actual increases in transmission.

(Poisson Component for Y2 (AIDS Cases)

The community health insurance variable (Xs) has a significant negative effect (p = 0.0194).
This means that as the proportion of the population covered by health insurance increases, the
number of AIDS cases decreases. Access to health services facilitates early detection and
treatment, preventing the progression from HIV infection to AIDS.

Zero-Inflation Component for Y: (HIV Cases)

The health education participation variable (X4) is highly significant (p < 0.001) with a
positive coefficient of 209.6302. This suggests that the higher the level of public participation

in health education activities, the greater the probability that a region will have no HIV cases
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(increased zero inflation). In other words, health education programs are effective in
preventing new HIV infections through improved public awareness.
(d) Zero-Inflation Component for Y2 (AIDS Cases)

The population aged 25-29 years (X:) variable shows a significant negative effect (p <0.001)
with a coefficient of —702.4752, indicating that as the proportion of people aged 25-29
increases, the likelihood that a region will be free of AIDS cases decreases. This age group
represents the productive population, which is generally more socially active and therefore at
a higher risk of HIV/AIDS transmission. Additionally, the health education variable (X4) has
a p-value of 0.0820, which approaches the 10% significance level, indicating that education
programs may help reduce AIDS risk by improving awareness and encouraging early

detection and reporting of cases.

After thirty iterations using the Expectation—Maximization (EM) algorithm, the Bivariate Zero-
Inflated Poisson (BZIP) model produced an Akaike Information Criterion (AIC) value of
180.3489, indicating that the resulting model is highly efficient. This efficiency reflects the
model’s strong ability to accommodate the large number of zero values (excess zeros) present in
the HIV and AIDS data. Consequently, the BZIP model demonstrates a good level of fit to the
observed counts of individuals living with HIV and AIDS. For comparison (Table 10), several
previous studies reported higher AIC values, indicating less optimal model performance. [19]
applied BZIP regression using the Newton—Raphson numerical method and obtained an AIC value
of 340.6977. [20] implemented the Geographically Weighted BZIP Regression (GWBZIPR)
model, also with the Newton—-Raphson method and achieved an AIC of 320.3074. Another study,
referred to as [10], reported an AIC of 910.2177, which is substantially higher, indicating poor
performance in handling overdispersion and zero inflation. [21] employed the BZIP Inverse
Gaussian (BZIPIG) Regression with the BHHH algorithm, yielding an AIC of 317.96. Among all
these models, the BZIP model in the present study produced the lowest AIC (180.3489),
demonstrating the best performance. This result confirms that the proposed BZIP model efficiently
captures the underlying data structure, achieving a balance between predictive accuracy and model
simplicity, making it a highly effective approach for modelling bivariate count data with excess

Zeros.
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Table 10 AIC Comparison Among Competing Models

Model Type Estimation Method AIC Value

Bivariate Zero-Inflated Poisson (BZIP) Regression EM Algorithm 180.3489
Bivariate Zero-Inflated Poisson (BZIP) Regression Newton—Raphson  340.6977
Geographically Weighted BZIP (GWBZIP) Regression  Newton—Raphson  320.3074
Bivariate Poisson Inverse Gaussian (BPIG) Regression ~ Newton—-Raphson ~ 910.2177

BZIP Inverse Gaussian (BZIPIG) Regression BHHH Algorithm  317.9600

3.7 Conclusions and suggestions

Based on the analysis using the Bivariate Zero-Inflated Poisson (BZIP) model, it can be concluded
that the factors influencing the number of people living with HIV and AIDS exhibit different
characteristics. The health education variable (X4) was found to have a significant positive effect
in increasing the probability of regions being free of HIV cases, while the community health
insurance variable (Xs) showed a significant negative effect on the number of AIDS cases,
indicating that access to healthcare services plays an essential role in suppressing disease
progression. In addition, the 25-29 age group (Xi) was identified as the most vulnerable group to
the spread of AIDS. Overall, the findings of this study highlight that enhancing health education
and expanding community health insurance coverage are effective strategies for controlling HIV
and AIDS at the regional level. It is recommended that health education programs be strengthened
and continuously expanded to raise public awareness about HIV prevention, particularly among
the productive age group (25-29 years), which has the highest risk of infection. Furthermore, the
coverage of community health insurance should be increased to ensure that individuals living with
HIV have adequate access to treatment and counseling services, thereby preventing the progression
to AIDS. The government and relevant institutions are also encouraged to implement integrated
policies that combine education, healthcare services, and social support, in order to create a more
effective and sustainable approach to HIV and AIDS control in the community. Finally, the BZIP
model applied in this study demonstrates the best performance, as evidenced by the lowest AIC
value compared to all previously tested models, confirming its superiority in modeling bivariate

count data with excess zeros.
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