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Abstract: The presence of excess zeros and overdispersion in count data often leads to biased parameter estimates 

when analyzed using the standard Poisson regression model. This study aims to model the number of HIV and AIDS 

cases in Trenggalek and Ponorogo Regencies using the Bivariate Zero-Inflated Poisson (BZIP) regression approach. 

The BZIP model accommodates correlated count responses as well as excess zeros, commonly found in 

epidemiological data. Two response variables, the number of HIV cases (Y₁) and the number of AIDS cases (Y₂), 

were analyzed against five explanatory variables: the percentage of the population aged 25–29 years (X₁), low 

education level (X₂), condom use among couples of reproductive ages (X₃), participation in health education programs 

(X₄), and community health insurance coverage (X₅). Parameter estimation was performed using the Expectation-

Maximization (EM) algorithm. The results show that health education significantly increases the likelihood that an 

area has no HIV cases, while health insurance significantly reduces the number of AIDS cases. Moreover, individuals 

aged 25–29 years were identified as the group most at risk for AIDS. The model also confirmed strong overdispersion 

and zero inflation, supporting the use of BZIP as a more appropriate model than the standard bivariate Poisson 

regression. Additionally, the BZIP model achieved the best performance, indicated by the lowest AIC value compared 

to previous models. 

Keywords: EM algorithm; bivariate zero-inflated Poisson regression; HIV/AIDS; Poisson distribution; zero-inflated 

Poisson distribution. 
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1. INTRODUCTION 

The Poisson distribution is a probability distribution that represents the number of successes 

occurring within a given interval of time, such that the possible values of the response variable are 

non-negative integers. In Poisson regression, the expected value (mean) is equal to the variance (a 

condition known as equidispersion). The Poisson model is often used because of its simplicity and 

its natural relationship to counting processes; however, this equidispersion assumption is 

frequently violated in real-world applications. Overdispersion occurs when the data variance is 

much greater than the mean. High variance is often caused by population heterogeneity, clustering, 

or the presence of many zero values (extra zeros) [1]. If overdispersion is not properly addressed, 

parameter estimates and confidence intervals may become biased and misleading. Modeling 

approaches used to overcome the problem of overdispersion involve combining the Poisson 

distribution with other discrete or continuous distributions, known as mixed Poisson distributions. 

Several mixed Poisson distributions that have been developed include the Zero-Inflated Poisson 

(ZIP), Generalized Poisson, Negative Binomial Poisson, and Poisson Inverse Gaussian 

distributions [2].  

The zero-inflated regression model is a highly useful tool for analyzing count data that exhibits an 

excess of zeros. This model explains the presence of excess zeros by combining a degenerate 

distribution at zero with a standard count regression model (such as Poisson, binomial, or negative 

binomial for a single response variable, and bivariate Poisson or bivariate negative binomial for 

multiple response variables) [3]. A degenerate distribution is a type of probability distribution in 

which all the probability mass is concentrated at a single point. This distribution is used to 

represent the portion of data that is structurally zero-zero that do not occur due to random variation, 

but because the event in question cannot occur. Count data often contain excess zeros, and ignoring 

this condition may lead to inaccurate analytical results. The combination of a zero-inflated 

regression model and the Poisson model can be used to address excess zeros, resulting in the Zero-

Inflated Poisson (ZIP) regression model. The ZIP model consists of two components (states): the 

Poisson state, which represents nonzero count data in the response variable, and the logit state, 

which represents zero count data in the response variable [4]. Many studies have applied and 

developed the ZIP model in various fields, such as manufacturing, epidemiology, public health, 

and others. The modeling approach used to address the problem of overdispersion involves 
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combining the Poisson distribution with other discrete or continuous distributions, known as mixed 

Poisson distributions. If there are two interrelated response variables (for example, two types of 

injuries or two types of events), a bivariate model is required to simultaneously model the 

correlation between the responses and handle the presence of extra zeros. The Bivariate Zero-

Inflated Poisson (BZIP) model allows for covariate modeling across both margins while capturing 

the sources of correlation arising from the Poisson component and/or the zero-inflation proportion. 

The multivariate ZIP model was first introduced by [5] to analyze events in manufacturing 

processes that involve several types of rare defects. Several other important BZIP studies include 

[6] introduced the BZIP model to analyze occupational injuries and demonstrated an improvement 

in model fit compared to univariate models; [7] developed numerical tests and score tests to detect 

zero inflation in the BZIP model; [8] applied a Bayesian (MCMC) approach to BZIP for blood 

donor data; and more recent methodological studies continue to emerge (e.g., handling missing 

covariates, MLE/Bayesian estimation).  

Human Immunodeficiency Virus (HIV) and Acquired Immuno-Deficiency Syndrome (AIDS) are 

serious health conditions that must be well understood by the public. HIV is a virus that weakens 

the immune system, while AIDS is a condition in which the immune system becomes severely 

compromised due to HIV infection. Indonesia currently ranks 14th in the world in terms of the 

number of people living with HIV (PLHIV) and 9th for new HIV infections. It is estimated that 

there are approximately 564,000 PLHIV in Indonesia, yet only about 63% are aware of their status. 

According to data from the Indonesian Ministry of Health for the period January–March 2025, 

there were 15,382 HIV-AIDS cases reported, consisting of 4,850 AIDS cases and 10,532 HIV 

cases. Indonesian Ministry of Health reported that the majority of PLHIV identified during this 

period belonged to four key groups: Men who have sex with men (MSM): 4,716 cases; General 

population: 3,931 cases; Tuberculosis (TB) patients: 2,152 cases; Clients of sex workers: 1,206 

cases. East Java was the province with the highest number of newly detected HIV cases during 

January–March 2025 [9]. 

In Indonesia, the spread of HIV and AIDS initially occurred predominantly among commercial 

sex workers (CSWs) and homosexual groups. The practice of having multiple sexual partners 

among CSWs became the main factor in the transmission of the virus, which was later passed on 

to their clients and subsequently to housewives within their communities. Transmission can also 

occur from an infected mother to her newborn child. In recent years, the pattern of HIV and AIDS 
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transmission in Indonesia has been dominated by heterosexual contact and the use of narcotics, 

psychotropics, and addictive substances (NAPZA) through shared needles, where injecting drug 

users have the potential to transmit the virus to their partners. The widespread transmission of HIV 

and AIDS has had serious implications for national development, as most people living with the 

disease are within the productive age group. The negative impacts are not limited to health aspects 

but also extend to social and economic conditions within society [10]. 

The data on the number of HIV and AIDS cases in Trenggalek and Ponorogo Regencies are count 

data, representing the number of occurrences within a specific time period. This type of data 

generally follows a Poisson distribution because it is discrete, non-negative, and represents the 

number of rare events within a given unit of time or area [4]. Furthermore, HIV and AIDS cases 

in both regencies are interrelated, as an increase in the number of HIV cases tends to be followed 

by an increase in AIDS cases. Therefore, the modeling process involves two response variables 

(bivariate modeling). Consequently, the appropriate distribution to describe the relationship 

between these two variables is the bivariate Poisson distribution, which is capable of capturing the 

positive correlation between two types of related events [11]. The use of two separate regression 

models to estimate jointly related events will result in inconsistent and inefficient estimators [12]. 

However, the data on the number of HIV and AIDS cases in Trenggalek and Ponorogo Regencies 

show a high proportion of zero values, indicating that many subdistricts have no HIV or AIDS 

cases at all. This condition reflects the presence of excess zeros, which violates the equidispersion 

assumption in the bivariate Poisson regression model. As a result, the bivariate Poisson regression 

model becomes inadequate, leading to biased parameter estimates and poor model accuracy. To 

address this issue, the appropriate modeling approach is the Bivariate Zero-Inflated Poisson (BZIP) 

regression. This study proposes the use of the BZIP regression model to determine the significance 

of factors that may influence the number of HIV and AIDS cases. 

 

2. PRELIMINARIES 

2.1 Bivariate Poisson Distribution 

The discrete random variables 𝑌1 and  𝑌2 follow a bivariate Poisson distribution, denoted as 

(𝑌1, 𝑌2)~𝐵𝑃(𝜆1, 𝜆2, 𝜆3) if their joint probability mass function (pmf) for 𝑌1 and  𝑌2 is given as 

follows. 
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𝑃(𝑌1 = 𝑦1, 𝑌2 = 𝑦2)

=

{
 
 

 
 𝜙 + (1 − 𝜙)e−(𝜆1+𝜆2+𝜆3), (𝑦1, 𝑦2) = (0,0)

(1 − 𝜙)e−(𝜆1+𝜆2+𝜆3) ∑
𝜆1
𝑦1−𝑗𝜆2

𝑦2−𝑗𝜆3
𝑗

(𝑦1 − 𝑗)! (𝑦2 − 𝑗)! 𝑗!

𝑚𝑖𝑛(𝑦1,𝑦2)

𝑗=0

, (𝑦1, 𝑦2) ≠ (0,0)
 

(1) 

And 0 < 𝜙 < 1  represents the additional proportion in the zero-zero cell. Furthermore, the 

correlation coefficient between 𝑌1 and 𝑌2 in equation (1) given by : 

Corr(𝑌1, 𝑌2) =
𝜆3 + 𝜙(𝜆1 + 𝜆3)(𝜆2 + 𝜆3)

√(𝜆1 + 𝜆3)(𝜆2 + 𝜆3)[1 + 𝜙(𝜆1 + 𝜆3)][1 + 𝜙(𝜆2 + 𝜆3)]
. (2) 

From equation (2) there are two sources that can generate correlation between 𝑌1 and 𝑌2. The 

first is 𝜆3 , which represents the pure covariance parameter of the bivariate Poisson (BP) 

distribution. The second is 𝜙, which represents the additional (inflated) proportion in the zero–

zero cell. Therefore, 𝑌1and 𝑌2 cannot be independent unless 𝜙 = 0 and 𝜆3 = 0. 

2.2 Bivariate Zero Inflated Poisson Distribution 

The bivariate Poisson model was proposed by [13] dan and presented by Johnson and Kotz (1969) 

in [14]. This model is used to model two correlated count variables. Let there be a probability 

space (Ω, 𝒞, ℙ). Consider three random variables 𝑈1, 𝑈2 and 𝑈0 each following independent 

Poisson distributions with parameters 𝜆1, 𝜆2, and 𝜆0 respectively. Then the random variables 

𝑌1 = 𝑈1 + 𝑈0 dan 𝑌2 = 𝑈2 + 𝑈0 (3) 

jointly follow a bivariate Poisson distribution, denoted 𝐵𝑃(𝜆1, 𝜆2, 𝜆0) . Equation (4) is the 

probability mass function of the Bivariate Zero-Inflated Poisson (BZIP) distribution. 

𝑃(𝑌𝑘 = 𝑦𝑘) = {

𝜙 + (1 − 𝜙)e−(𝜆𝑘+𝜆0), 𝑦𝑘 = 0. 𝑘 = 1,2

(1 − 𝜙)e−(𝜆𝑘+𝜆0)
(𝜆𝑘 + 𝜆0)

𝑦𝑘

𝑦𝑘!
 , 𝑦𝑘 ≠ 0, 𝑘 = 1,2

 (4) 

The moments of the BZIP distribution can be shown as follows: 

𝐸(𝑌𝑘) = (1 − 𝜙)(𝜆𝑘 + 𝜆0) 

Var(𝑌𝑘) = 𝐸(𝑌𝑘)[1 + 𝜙(𝜆𝑘 + 𝜆0)] 

𝐸(𝑌1𝑌2) = (1 − 𝜙)[(𝜆1 + 𝜆0)(𝜆2 + 𝜆0) + 𝜆0] 

Cov(𝑌1, 𝑌2) = (1 − 𝜙)[𝜆0 + 𝜙(𝜆1 + 𝜆0)(𝜆2 + 𝜆0)] 

(5) 

2.3 The Model Regression of BZIP 

The regression model aims to (a) identify significant risk factors that influence the occurrence of 

zero inflation, and (b) determine the extent to which interventions or other confounders affect the 
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mean number of events. For purpose (a), the Poisson component is held fixed (constant) with 

parameters 𝛽0, 𝛽1, and 𝛽2. The zero-inflation parameter 𝜙 is modelled as a logistic function of 

the covariates 𝑍: 

log (
𝜙𝑖

1 − 𝜙𝑖
) = 𝜉𝑖 = 𝒁𝑖

𝑇𝛼 (6) 

The Poisson mean component is defined as: 

log (𝜆𝑘,𝑖) = 𝜂𝑘,𝑖 = 𝛽𝑘 + log (𝑡𝑖) (7) 

with 𝑘 = 0,1,2; 𝑖 = 1,… , 𝑛; 𝑡𝑖 represents the exposure term (time or risk measure). 

For purpose (b), 𝜙 is considered fixed. However, the Poisson (mean) component is assumed to 

be related to the covariates X, as follows: 

log (
𝜙𝑖

1 − 𝜙𝑖
) = 𝜉𝑖 = 𝛼 

log (𝜆𝑘,𝑖) = 𝜂𝑘,𝑖 = 𝑿𝑘,𝑖
𝑇 𝛽𝑘 + log (𝑡𝑖) 

log (𝜆𝑘,𝑖) = 𝜂𝑘,𝑖 = 𝛽0 + log (𝑡𝑖) 

where 𝑋1adn 𝑋2 are design matrices that include the risk factors, 𝛽1 and 𝛽2 are vectors of 

regression coefficients, and 𝛽0  is an unknown constant representing the common mean 

component. Similar to the univariate ZIP model, specifying the full BZIP model with identical 

covariates in all Poisson and logistic components may lead to parameter identifiability issues. 

Therefore, the complete model should be divided into two submodels: one for analyzing zero 

inflation and another for analyzing the mean count of events. 

2.4 Expectation Maximization Algorithm 

To obtain the maximum likelihood estimates (MLE) of the model parameters, the Expectation–

Maximization (EM) algorithm as described in [15] is used. Let the complete data be denoted by 

𝑈1, 𝑈2, 𝑈0, 𝑉, where 𝑉 is a latent variable indicating whether an observation originates from the 

latent zero class (𝑉 = 1) or the nonzero class (𝑉 = 0), meanwhile, 𝑈0 is also unobserved and 

represents the shared component between 𝑌1and 𝑌2. Although the complete-data log-likelihood 

function is mathematically complex, it can be expressed as a linear function of 𝑈0 and 𝑉. Since 

𝑈0  and 𝑉  are conditionally independent, the E-step in the EM algorithm is performed by 

replacing 𝑈0  and 𝑉  with their conditional expected values based on the current parameter 

estimates. The M-step is then conducted by partitioning the log-likelihood function into four 

orthogonal components, allowing parameter estimation to be performed separately through logistic 
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regression (for the zero-inflated component) and three weighted Poisson regressions (for the 

bivariate Poisson components). The asymptotic standard deviations of the regression coefficients 

are obtained using the method described in [15]. The details of the estimation procedure are 

provided as follows. 

𝑙𝐶 = 𝑙𝜉 + 𝑙𝜂1 + 𝑙𝜂2 + 𝑙𝜂0 

constitute the complete data that form (build) the log-likelihood. 

𝑙𝜉 =∑𝑣𝑖𝜉𝑖 − 𝑙𝑜𝑔[1 + exp (𝜉𝑖)]

𝑛

𝑖=1

 

𝑙𝜂𝑘 =∑(1 − 𝑣𝑖) [(𝑦𝑘,𝑖 − 𝑢0,1)𝜂𝑘,𝑖 − exp(𝜂𝑘,𝑖) − log ((𝑦𝑘,𝑖 − 𝑢0,𝑖)!)]

𝑛

𝑖=1

, 𝑘 = 1,2 

𝑙𝜂0 =∑(1 − 𝑣𝑖)[𝑢0,𝑖 , 𝜂0,1 − exp (𝜂𝑘,𝑖) − log(𝑢0,𝑖!)]

𝑛

𝑖=1

 

𝑣𝑖
(𝑚)

=

{
 

 
1

1 + exp (−𝜉𝑖
(𝑚) − 𝑒𝑥𝑝(𝜂1,𝑖

(𝑚)) − 𝑒𝑥𝑝(𝜂2,𝑖
(𝑚)) − 𝑒𝑥𝑝(𝜂0,𝑖

(𝑚)))
, 𝑗𝑖𝑘𝑎 (𝑦1,𝑖,𝑦2,𝑖) = (0,0)

0, 𝑗𝑖𝑘𝑎 (𝑦1,𝑖,𝑦2,𝑖) ≠ (0,0)

 

and 

𝑢0,𝑖
(𝑚) = 𝐸(𝑈0,𝑖|𝑦1,𝑖, 𝑦2,𝑖) 𝑑𝑖𝑚𝑎𝑛𝑎 𝑃 (𝑈0,𝑖 = 𝑗|𝑦1,𝑖, 𝑦2,𝑖) 

  =  
 𝑃(𝑌1,𝑖 = 𝑦1,𝑖, 𝑦2,𝑖,𝑈0,𝑖 = 𝑗)

∑ 𝑃(𝑌1,𝑖 = 𝑦1,𝑖, 𝑦2,𝑖,, 𝑈0,𝑖 = 𝑟)
min (𝑦1,𝑖,𝑦2,𝑖)

𝑟=0

;  𝑗 = 0,… ,min(𝑦1,𝑖,, 𝑦2,𝑖) 

where 

𝑃(𝑌1,𝑖 = 𝑦1,𝑖, 𝑌2,𝑖, = 𝑦2,𝑖,, 𝑈0,𝑖 = 𝑗) =
𝜆1
𝑦1,𝑖−𝑗𝜆2

𝑦2,𝑖−𝑗𝜆0
𝑦0,𝑖−𝑗

(𝑦1,𝑖−𝑗 − 𝑗)! (𝑦2,𝑖−𝑗 − 𝑗)! 𝑗!
exp (−𝜆1 − 𝜆2 − 𝜆0) 

The asymptotic variance of the parameters is obtained from the observed information matrix 

through the EM estimation procedure. The observed information matrix can be expressed as the 

conditional expectation of the gradient vector of the complete-data log-likelihood function, 

evaluated at the maximum likelihood estimates (MLE)[16]. Let 𝛹 =  (𝛼ᵀ, 𝛽₁ᵀ, 𝛽₂ᵀ, 𝛽₀)ᵀ it is 

known that 

𝑙𝐶 =∑𝑙𝐶

𝑛

𝑖=1

(𝑈1,𝑖, 𝑈2,𝑖, 𝑈0,𝑖; 𝑉𝑖, 𝜓) =∑𝑙𝐶

𝑛

𝑖=1

(𝑌1,𝑖, 𝑌2,𝑖, 𝑈0,𝑖; 𝑉𝑖, 𝜓) 
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which indicates that 

𝑆𝑖(𝜓; 𝑦1,𝑖,𝑦2,𝑖) = 𝐸 [
𝜕𝑙𝐶(𝑈1,𝑖, 𝑈2,𝑖, 𝑈0,𝑖; 𝑉𝑖, 𝜓)

𝜕𝜓
| 𝑦1,𝑖,𝑦2,𝑖] =

𝜕𝑙𝐶(𝑦1,𝑖, 𝑦2,𝑖, 𝑢̂0,𝑖; 𝑣𝑖 , 𝜓)

𝜕𝜓
 

where 𝑣𝑖 and 𝑢̂0,𝑖 denote the corresponding final estimates obtained in the E-step. Hence, the 

observed information matrix is given by  

𝐼𝑜𝑏𝑠 =∑𝑆𝑖(𝜓; 𝑦1,𝑖,𝑦2,𝑖)𝑆𝑖(𝜓̂;  𝑦1,𝑖,𝑦2,𝑖)
𝑇

𝑛

𝑖=1

 

The asymptotic standard error of the parameter estimates 𝜓̂  the BZIP regression model is 

obtained from the inverse of the observed information matrix, denoted as 𝐼𝑜𝑏𝑠
−1 . 

2.5 Case Study 

The data used in this study consist of HIV and AIDS case records obtained from the Health Offices 

of Trenggalek and Ponorogo Regencies for the year 2012. There is a total of 35 subdistricts, 

comprising 14 subdistricts in Trenggalek Regency and 21 subdistricts in Ponorogo Regency. This 

study aims to model the effects of health awareness and healthcare services on the tendency of 

individuals to contract HIV/AIDS. The cases of people living with HIV and those with AIDS are 

interdependent, as the occurrence of AIDS is highly dependent on HIV status. The data on the 

number of new HIV and AIDS cases in Trenggalek and Ponorogo Regencies in 2012 follow a 

Poisson distribution. However, the data exhibits a very high level of overdispersion due to the 

presence of many zero values 57% of subdistricts have zero HIV cases and 34% have zero AIDS 

cases. Therefore, the appropriate modeling approach used is the Bivariate Zero-Inflated Poisson 

(BZIP) regression. There are two response variables, 𝑌1and 𝑌2, and five explanatory variables, 

𝑋1, 𝑋2, 𝑋3, 𝑋4,and 𝑋5, used in this study. Specifically: 

• 𝑌1: Number of HIV cases 

• 𝑌2: Number of AIDS cases 

• 𝑋1: Percentage of population aged 25–29 years 

• 𝑋2: Percentage of population with low education level 

• 𝑋3: Percentage of couples of reproductive age using condoms 

• 𝑋4: Percentage of population participating in health education programs 

• 𝑋5 : Percentage of population covered by the Community Health Insurance (Jamkesmas) 

program 
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2.6 Data Analysis 

The stages of data analysis (figure 1) conducted in this study are as follows:  

1. Data Collection: Collect data on HIV and AIDS cases, along with supporting variables, age 

of patients (𝑋1 ), education level (𝑋2 ), percentage of couples of reproductive age using 

condoms (𝑋3), percentage of the population participating in health education programs (𝑋4), 

and percentage of the population covered by the Community Health Insurance (Jamkesmas) 

program (𝑋5), as recorded by the Health Offices of Trenggalek and Ponorogo Regencies. 

2. Descriptive Analysis: Perform descriptive statistics to determine the standard deviation, 

skewness, minimum and maximum values, and the percentage of zero occurrences for each 

subdistrict in Trenggalek and Ponorogo. 

3. Correlation Test of Response Variables: Examine the correlation between the response 

variables, namely the number of HIV and AIDS cases (𝑌1  and 𝑌2 ) in Trenggalek and 

Ponorogo. 

4. Dispersion Test: Evaluate the dispersion of the response variables (𝑌1  and 𝑌2) to assess 

whether the Poisson assumption of equidispersion holds. 

5. Distribution Testing: Test the distribution of the response variables to determine whether the 

HIV and AIDS case data follow the Poisson or Zero-Inflated Poisson distribution. 

6. Multicollinearity Test: Assess the multicollinearity among the explanatory variables 

(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5). 

7. Parameter Estimation: Estimate the model parameters using the Bivariate Zero-Inflated 

Poisson (BZIP) regression model through the Expectation-Maximization (EM) algorithm 

approach. 

8. Model Selection: Select the best model based on the Akaike Information Criterion (AIC) as 

the indicator of model fit. 

9. Model Construction: Develop and formulate the BZIP regression equations. 

10. Model Interpretation: Interpret the regression model to explain the relationship between the 

explanatory variables and the number of HIV and AIDS cases. 
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Figure 1  Flowchart of research 

 

3. MAIN RESULTS 

3.1 Description of Response and Explanatory Variables 

Table 1 resents the descriptive statistics of the two response variables. The average number of new 

HIV cases per subdistrict in Trenggalek and Ponorogo Regencies is one person per year. The 

standard deviation of 1.278 indicates that the number of new HIV cases does not vary greatly 

across subdistricts. Furthermore, since the standard deviation is greater than the mean, the data 

exhibits overdispersion. The highest number of new HIV cases, totaling four individuals, occurred 

in Kampak and Bendungan subdistricts in Trenggalek Regency. Similarly, the average number of 

new AIDS cases per subdistrict in Trenggalek and Ponorogo Regencies is one person per year. 
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The standard deviation of 1.173 suggests that the number of new AIDS cases also does not differ 

substantially among subdistricts. As with the HIV data, the standard deviation being greater than 

the mean indicates the presence of overdispersion in the AIDS case data. 

Table 1  Descriptive Statistics of HIV and AIDS Cases 

Response Variable Standard Deviation Minimum Maximum Skewness Percentage of Zeros 

Number of HIV cases (Y1) 1.279 0 4 1.39 57% 

Number of AIDS cases (Y2) 1.173 0 5 1.57 34% 

 

Table 2 shows that the average percentage of the population aged 25–29 years in each subdistrict 

is 6.798%. The standard deviation of 0.513% indicates that the percentage of residents aged 25-29 

does not vary greatly across subdistricts. Watulimo Subdistrict has the lowest percentage, at 

5.771%, while Trenggalek Subdistrict has the highest, at 7.821%. The average percentage of the 

population with a low education level in each subdistrict is 14.784%. The standard deviation of 

5.783% indicates that some subdistricts differ considerably from others. Pudak Subdistrict has the 

lowest percentage, at 6.491%, while Trenggalek Subdistrict has the highest percentage, at 

34.954%. 

Table 2  Descriptive Statistics Explanatory variables 

Response Variable Mean 
Standard 

Deviation 

Mini-

mum 

Maxi-

mum 

Percentage of population aged 25–29 years (X1) 6.798 0.513 5.711 7.821 

Percentage of population with low education level (X2) 14.784 5.783 6.491 34.954 

Percentage of couples of reproductive ages (PUS) using condoms (X3) 2.894 2.607 0.153 13.313 

Percentage of population participating in health education programs (X4) 0.671 0.459 0.041 2.512 

Percentage of population covered by the Community Health Insurance (X5) 40.510 11.000 16.660 60.980 

 

The average percentage of couples of reproductive age (PUS) using condoms in each subdistrict 

is 2.894%. The standard deviation of 2.607% indicates that there are considerable differences 

among subdistricts. Ngebel Subdistrict has the lowest percentage, at 0.513%, while Trenggalek 

Subdistrict has the highest percentage, at 13.313%. The average percentage of the population 

participating in health education programs in each subdistrict is 0.671%. The standard deviation 

of 0.459% shows that the percentages do not vary greatly between subdistricts, with the lowest 

value of 0.041% in Gandusari Subdistrict and the highest value of 2.512% in Pudak Subdistrict. 

The average percentage of the population covered by the Community Health Insurance 
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(Jamkesmas) program in each subdistrict is 40.51%. The standard deviation of 11% indicates a 

considerable difference across subdistricts. Siman Subdistrict has the lowest coverage, at 16.66%, 

while Pudak Subdistrict has the highest, at 60.98%. 

 

Figure 2 (top) shows the empirical (observed) distribution of Y₁ and Y₂. For Y₁ (HIV) most 

observations have a value of zero (around 20 cases), indicating the presence of zero inflation or 

areas with no HIV cases. The Y₂ (AIDS) data exhibit a right-skewed distribution, but the number 

of zeros is smaller than in Y₁, suggesting that AIDS cases are more widely distributed than HIV 

cases. Figure 2 (middle) presents the comparison between observed and expected values under the 

Zero-Inflated Poisson (ZIP) model. The graph demonstrates a strong agreement between observed 

and predicted frequencies for each variable. For Y₁, the ZIP model accurately captures the actual 

data pattern, especially for counts of zero and one, confirming that the model effectively accounts 

for excess zeros. For Y₂, the predicted ZIP distribution also closely follows the observed pattern, 

with only minor deviations for counts of one and two. Overall, these results indicate that the 

Bivariate Zero-Inflated Poisson (BZIP) model provides a good fit in describing the joint 

occurrence patterns of HIV and AIDS. Figure 2 (bottom) shows the Q–Q plots for Y₁ and Y₂ under 

 

Figure 2  Graph of the distribution of Y1 and Y2 (top), observed vs expected Y1 and Y2 

(middle), and Q-Q plot Y1 dan Y2 (bottom) 
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the Poisson distribution assumption. The blue dots represent the ordered observed values, while 

the red line represents the theoretical quantiles. The points that closely follow the diagonal line 

suggest that the Poisson distribution assumption for the count process component is well satisfied. 

The slight deviations at the upper right tail indicate mild overdispersion, which has been 

successfully corrected by the zero-inflation component within the BZIP model. 

3.2 Examination of Correlation Between Response Variables 

In bivariate regression analysis, the response variables must exhibit a correlation. This study uses 

the number of new HIV cases (Y1) and the number of new AIDS cases (Y2) as the response 

variables. The correlation coefficient between the two response variables is 0.399, indicating a 

positive correlation, meaning that as the number of new HIV cases increases, the number of new 

AIDS cases also tends to increase. Conversely, when the number of new HIV cases decreases, the 

number of new AIDS cases also tends to decrease. The hypotheses tested are as follows: 

H0: There is no correlation between Y1 and Y2 

H1: There is correlation between Y1 and Y2 

The t-value obtained is 2.5, which is greater than the critical value tα/2,33 = 2.034 and the p-value 

is 0.018, which is smaller than the significance level α (0.05), Therefore, the decision is to reject 

H0. In conclusion, there is a significant correlation between the number of new HIV and AIDS 

cases in Trenggalek and Ponorogo Regencies.  

3.3 Overdispersion Diagnostic 

Overdispersion testing is conducted to evaluate whether the count data follow the Poisson 

distribution assumption, which requires that the mean and variance are equal. A mismatch between 

the variance and mean indicates that the standard Poisson regression model may not be appropriate, 

and an alternative model such as the Zero-Inflated Poisson (ZIP) model should be considered. 

Table 3  Overdispersion Diagnostic 

Variable Mean Variance Ratio 

Y₁ 0.8857 1.6336 1.8444 

Y₂ 1.0857 1.3748 1.2663 

 

Table 3 As shown in Table 3, the mean of 𝑌1 is 0.8857 and the variance is 1.6336, producing a 

variance-to-mean ratio of 1.8444. This value is much greater than 1, and even exceeds the 

empirical threshold of 1.5, which is commonly used to detect significant overdispersion. Hence, 

𝑌1 exhibits strong overdispersion. For 𝑌2 the mean is 1.0857 and the variance is 1.3748, resulting 
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in a variance-to-mean ratio of 1.2663, which is slightly above 1. This indicates mild overdispersion. 

Although not as pronounced as in 𝑌1, this result still suggests that the ZIP model (and later the 

BZIP model) is more suitable for handling the excess zeros and overdispersion present in the data. 

3.4 Testing the Distribution of Response Variables 

The hypothesis testing for the distribution of the response variables is divided into two 

complementary tests, each serving a distinct statistical purpose: (1) to determine whether the data 

exhibit excess zeros (zero inflation) that cannot be adequately explained by the standard Poisson 

distribution, and (2) to assess whether the data follow the Zero-Inflated Poisson (ZIP) distribution. 

If 𝜙 = 0, then the joint probability density function of 𝑌1 and 𝑌2 becomes identical to that of 

the traditional bivariate Poisson (BP) regression model given by [17]. Therefore, the hypothesis 

test comparing the BP model with the Bivariate Zero-Inflated Poisson (BZIP) regression model 

can be formulated as follows: 

H0: 𝜙 = 0 (No zero-inflation) 

H1: 𝜙 > 0 (Zero-inflation exists) 
(8) 

The alternative hypothesis in Equation (8) is one-sided, as the main interest in real data analysis 

lies in detecting the presence of zero inflation. To test this hypothesis, following [18], a 

reparameterization from 𝜙 to 𝜓, is performed as: 

𝜓 =
𝜙

1 − 𝜙
 (9) 

Thus, the hypothesis test in Equation (8) becomes equivalent to: 

H0: 𝜓 = 0 (No zero-inflation) 

H1: 𝜓 > 0 (Zero-inflation exists) 
(10) 

To obtain the score test statistic for Equation (10), the log-likelihood function of the BZIP model 

based on 𝑛 independent observations is derived as follows: 

log 𝐿 =∑𝑙𝑖

𝑛

𝑖=1

 = ∑[− log(1 + 𝜓) + 𝐼(𝑦1𝑖,𝑦2𝑖)=(0,0) log(𝜓 + 𝑒
−𝜆1𝑖

∗ −𝜆2𝑖
∗ +𝜆3) − (1

0

𝑖=1

− 𝐼(𝑦1𝑖,𝑦2𝑖)=(0,0))((𝜆1𝑖
∗ + 𝜆2𝑖

∗ − 𝜆3) + log (𝛾(𝑦1𝑖, 𝑦2𝑖)))] 

(10) 

where 𝑙𝑖 is the logarithm of the probability function for the ke-𝑖 of (𝑌1𝑖, 𝑌2𝑖), evaluated at the 

values (𝑌1𝑖, 𝑌2𝑖) = (𝑦1𝑖, 𝑦2𝑖), and 𝐼(⋅) is an indicator function that equals 1 if the condition inside 

the parentheses is true, and 0 otherwise. 

After testing for the presence of zero inflation, the next step is to perform a goodness-of-fit test to 
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determine whether the data follow the Zero-Inflated Poisson (ZIP) distribution. 

H0: The data follow the ZIP distribution 

H1: The data do not follow the ZIP distribution 
(10) 

Table 4 shows that for the variable 𝑌1, the score test for detecting zero inflation yields a Z-statistic 

of 7.9138 with a very small p-value (0.000001). This provides strong evidence to reject the null 

hypothesis at the 5% significance level, indicating the presence of significant zero inflation in 𝑌1, 

Similarly, for the variable 𝑌2, the Z-statistic is 2.2731 with a p-value of 0.0115, suggesting that 

although the zero inflation is not as strong as in 𝑌1, it is still statistically significant at the 5% level. 

Therefore, the standard Poisson model is inadequate to represent the data, and an alternative ZIP 

model is required to properly account for the large number of zero observations. 

Table 4  Testing the Distribution of Response Variables 

Respon Variable 
Zero-Inflation ZIP 

Z-Statistic P-value Chi-Square df P-value 

Y₁ 7.9138  0.0000 3.3476 1 0.0673 

Y₂ 2.2731 0.0115 0.3421 1 0.5586 

 

Furthermore, the results of the goodness-of-fit test indicate that the ZIP model provides an 

adequate fit to the data. For the variable 𝑌1, the Chi-square value of 3.3476 with a p-value of 

0.0673 shows that there is insufficient evidence to reject the null hypothesis. This means that the 

ZIP model is considered adequately representative in describing the distribution of 𝑌1. For the 

variable  𝑌2, the Chi-square value is 0.3421 with a p-value of 0.5586, indicating no significant 

deviation between the model and the observed data. Therefore, the ZIP distribution is deemed to 

fit 𝑌2 very well. These results suggest that the use of the Bivariate Zero-Inflated Poisson (BZIP) 

model which extends the advantages of the ZIP model to the bivariate case is an appropriate 

approach for analyzing these two variables, given the evidence of significant zero inflation and 

satisfactory model fit. 

The empirical (observed) and fitted frequency distributions of Y1 and Y2 under the BZIP model 

are presented in  Figure 3. As expected, the zero–zero combination (𝑦1, 𝑦2) = (0,0) exhibits the 

highest frequency, representing subdistricts with no HIV or AIDS cases. The figure clearly shows 

that the BZIP distribution provides an adequate fit to the bivariate data and performs better overall. 

According to Wang et al. (2003), the BZIP model outperforms the bivariate Poisson, marginal 
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Poisson, and marginal ZIP distributions in terms of log-likelihood value, demonstrating its superior 

capability in handling correlated count data with excess zeros. 

 

 

3.5 Multicollinierity Diagnostic 

Multicollinearity testing is conducted to determine whether there is a correlation among the 

explanatory variables when considered simultaneously. One method to detect the presence of 

multicollinearity is by using the Variance Inflation Factor (VIF). If the VIF value exceeds 10, it 

indicates the presence of multicollinearity among the explanatory variables. Based on Table 5, the 

VIF values for each explanatory variable with respect to the others are less than 10, indicating that 

no multicollinearity exists among the explanatory variables. Therefore, all five explanatory 

variables can be appropriately used in the Bivariate Zero-Inflated Poisson (BZIP) regression model. 

Table 5 VIF value of explanatory variables 

Response Variable Explanatory Variable Rk2 VIF Conclusion 

X1 X2, X3, X4, X5 0.188 1.231 

No multicollinearity 

X2 X1, X3, X4, X5 0.515 2.062 

X3 X1, X2, X4, X5 0.485 1.942 

X4 X1, X2, X3, X5 0.062 1.066 

X5 X1, X2, X3, X4 0.172 1.208 

 

 

 

 

Figure 3  Empirical and Fitted Frequency Distribution of the 

BZIP Model 
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3.6 Modeling the Number of New HIV and AIDS Cases in Trenggalek and Ponorogo 

Regencies in 2012 Using the Bivariate Zero-Inflated Poisson (BZIP) Model 

Table 6  Poisson parameter estimation for Y1 

Parameter Estimate Standard Error z-value p-value 

Intercept -6.3896 3.4031 -1.8776 0.0604 

X1 0.7022 0.4340 1.6181 0.1056 

X2 0.0145 0.0359 0.4033 0.6867 

X3 0.1751 0.1053 1.6634 0.0962 

X4 0.0657 0.5328 0.1233 0.9019 

X5 0.0295 0.0206 1.4320 0.1522 

 

Based on Table 6, the estimation results for the Poisson component of the dependent variable 

representing the number of people living with HIV (Y₁) show that none of the explanatory 

variables have a statistically significant effect at the 5% significance level. However, several 

interesting tendencies can be observed. The coefficient for the percentage of the population aged 

25–29 years (X is positive, at 0.702239, with a p-value of 0.1056, indicating a tendency that an 

increase in the proportion of individuals in this productive age group may lead to a higher number 

of HIV cases, although the effect is not statistically significant. The percentage of the population 

with a low education level (X₂) has a small and insignificant coefficient (p = 0.6867), suggesting 

that low education is not necessarily a major factor contributing to the increase in HIV cases within 

the study area. The percentage of couples of reproductive ages (PUS) using condoms (X₃) has a 

positive coefficient of 0.175126 with a p-value of 0.0962, which is close to the 10% significance 

threshold. This finding indicates that areas with higher condom use actually report more HIV cases, 

possibly due to greater awareness and better reporting resulting from more intensive prevention 

programs. The health education participation variable (X₄) and the community health insurance 

coverage variable (X₅) both show no significant effect on the number of HIV cases (p > 0.05). 

Overall, the Poisson component for Y1 suggests that while none of the factors are statistically 

significant, the positive indication from the condom use variable (X₃) deserves further attention 

and investigation in future studies. 
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Table 7  Poisson parameter estimation for Y2 

Parameter Estimate Standard Error z-value p-value 

Intercept 1.5761 4.2264 0.3729 0.7092 

X1 0.0267 0.5672 0.0470 0.9625 

X2 -0.0094 0.0379 -0.2479 0.8042 

X3 0.0709 0.0816 0.8690 0.3849 

X4 0.0716 0.5812 0.1233 0.9019 

X5 -0.0425 0.0182 -2.3382 0.0194 

 

In Table 7 for the dependent variable representing the number of people living with AIDS (Y₂), 

most explanatory variables do not show statistically significant effects, except for one factor that 

exhibits a clear and meaningful influence. The community health insurance variable (X₅) has a 

negative coefficient of –0.042518 with a p-value of 0.0194, which is statistically significant at the 

5% level. This finding indicates that an increase in the proportion of the population covered by 

community health insurance is associated with a decrease in the number of AIDS cases. In other 

words, the health insurance program likely provides better access to HIV/AIDS prevention and 

treatment services, thereby helping to reduce disease progression. Meanwhile, the variables 

representing the population aged 25–29 years (X₁), low education level (X₂), condom use among 

couples of reproductive ages (X₃), and participation in health education programs (X₄) do not have 

significant effects on AIDS cases (p > 0.05). Thus, these results suggest that community health 

insurance (X₅) plays an important role in controlling AIDS cases, while the other explanatory 

variables have not shown a statistically meaningful relationship in the Poisson component of the 

model. 

Table 8  Estimation Parameter Zero-Inflation for Y1 

Parameter Estimate Standard Error z-value p-value 

Intercept -306.9160 216.9058 -1.4150 0.1571 

X1 57.5542 71.2383 0.8079 0.4191 

X2 -5.1381 33.3300 -0.1542 0.8775 

X3 -92.4985 196.0869 -0.4717 0.6371 

X4 209.6302 46.4640 4.5117 0.0000 

X5 0.0591 14.2102 0.0042 0.9967 
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The estimation results presented in Table 8 illustrate how independent factors influence the 

likelihood of zero inflation, that is, areas with no HIV cases at all. The findings show that health 

education participation (X₄) is the only variable that has a statistically significant effect on the 

zero-inflation component, with a positive coefficient of 209.6302 and a p-value < 0.001. This 

indicates that the higher the percentage of the population participating in health education 

programs, the greater the probability that a region will have zero HIV cases. In other words, health 

education has proven to be effective in reducing the emergence of new HIV cases by promoting 

public awareness and preventive behavior. Meanwhile, other variables population aged 25-29 

years (X₁), low education level (X₂), condom use (X₃), and community health insurance coverage 

(X₅) do not show significant effects (p > 0.05). Therefore, it can be concluded that health education 

plays a major role in explaining the probability of HIV-free regions, whereas other demographic 

and socioeconomic factors do not make a statistically significant contribution to zero inflation in 

Y₁. 

Table 9  Estimation Parameter Zero-Inflation for Y2 

Parameter Estimate Standard Error z-value p-value 

Intercept 5621.2511    341.5423       16.4584        0.0000    

X1 -702.4752     89.4648       -7.8520        0.0000    

X2 6.7695     65.1372        0.1039        0.9172       

X3 -171.4635    288.4713       -0.5944        0.5523       

X4 -777.5620    447.1320       -1.7390        0.0820      

X5 -9.6843     11.9313       -0.8117        0.4170       

Based on Table 9, the estimation results for the zero-inflation component of the dependent variable 

representing the number of people living with AIDS (Y₂) indicate that the population aged 25-29 

years (X₁) is a significant factor affecting the probability of excess zeros. The coefficient value of 

–702.4752 with p < 0.001 shows that as the proportion of people aged 25-29 increases, the 

likelihood that a region will have zero AIDS cases decreases. This finding suggests that the 25-29 

age group is particularly vulnerable to HIV/AIDS transmission. Additionally, the health education 

variable (X₄) shows a p-value of 0.0820, which is close to the 10% significance level, indicating 

that health education programs may also reduce the likelihood of zero inflation. In other words, 

they may help promote case detection and reporting in areas that previously had no recorded AIDS 

cases. Other variables, such as low education level (X₂), condom use (X₃), and community health 
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insurance coverage (X₅) do not have a significant effect on the zero-inflation component.  

In summary, these results indicate that the 25-29 age group plays a dominant role in determining 

the distribution of AIDS cases, while health education activities potentially influence case 

detection through increased awareness and reporting. Based on the estimation results of both the 

Poisson and Zero-Inflation components, the final model is obtained as follows: 

log (𝜆1) = −6.3896 + 0.7022𝑋1 + 0.0145𝑋2 + 0.1751𝑋3 + 0.0657𝑋4 + 0.0295𝑋5 

log (𝜆2)  = 1.5761 + 0.0267𝑋1 − 0.0094𝑋2 + 0.0709𝑋3 + 0.0716𝑋4 − 0.0425𝑋5 

log (
𝜋1

1 − 𝜋1
) = −306.9160 + 57.5542𝑋1 − 5.1381𝑋2 − 92.4985𝑋3 + 209.6302𝑋4

+ 0.0591𝑋5 

log (
𝜋2

1 − 𝜋2
) = 5621.2511 − 702.4752𝑋1 + 6.7695𝑋2 − 171.4635𝑋3 − 777.5620𝑋4

− 9.6843𝑋5 

Based on the obtained model, the interpretation of the Bivariate Zero-Inflated Poisson (BZIP) 

model parameters is as follows: 

(a) Poisson Component for Y₁ (HIV Cases) 

No explanatory variable is statistically significant at the 5% level. However, the condom use 

variable (X₃) has a p-value = 0.0962 (approaching significance) with a positive coefficient of 

0.1751. This indicates that an increase in condom use tends to coincide with an increase in the 

number of reported HIV cases. This finding may be interpreted as showing that regions with 

higher awareness of condom use also tend to have better reporting systems, resulting in more 

HIV cases being identified rather than actual increases in transmission. 

(b) (Poisson Component for Y₂ (AIDS Cases) 

The community health insurance variable (X₅) has a significant negative effect (p = 0.0194). 

This means that as the proportion of the population covered by health insurance increases, the 

number of AIDS cases decreases. Access to health services facilitates early detection and 

treatment, preventing the progression from HIV infection to AIDS. 

(c) Zero-Inflation Component for Y₁ (HIV Cases) 

The health education participation variable (X₄) is highly significant (p < 0.001) with a 

positive coefficient of 209.6302. This suggests that the higher the level of public participation 

in health education activities, the greater the probability that a region will have no HIV cases 
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(increased zero inflation). In other words, health education programs are effective in 

preventing new HIV infections through improved public awareness. 

(d) Zero-Inflation Component for Y₂ (AIDS Cases)  

The population aged 25-29 years (X₁) variable shows a significant negative effect (p < 0.001) 

with a coefficient of –702.4752, indicating that as the proportion of people aged 25-29 

increases, the likelihood that a region will be free of AIDS cases decreases. This age group 

represents the productive population, which is generally more socially active and therefore at 

a higher risk of HIV/AIDS transmission. Additionally, the health education variable (X₄) has 

a p-value of 0.0820, which approaches the 10% significance level, indicating that education 

programs may help reduce AIDS risk by improving awareness and encouraging early 

detection and reporting of cases.  

 

After thirty iterations using the Expectation–Maximization (EM) algorithm, the Bivariate Zero-

Inflated Poisson (BZIP) model produced an Akaike Information Criterion (AIC) value of 

180.3489, indicating that the resulting model is highly efficient. This efficiency reflects the 

model’s strong ability to accommodate the large number of zero values (excess zeros) present in 

the HIV and AIDS data. Consequently, the BZIP model demonstrates a good level of fit to the 

observed counts of individuals living with HIV and AIDS. For comparison (Table 10), several 

previous studies reported higher AIC values, indicating less optimal model performance. [19] 

applied BZIP regression using the Newton–Raphson numerical method and obtained an AIC value 

of 340.6977. [20] implemented the Geographically Weighted BZIP Regression (GWBZIPR) 

model, also with the Newton–Raphson method and achieved an AIC of 320.3074. Another study, 

referred to as [10], reported an AIC of 910.2177, which is substantially higher, indicating poor 

performance in handling overdispersion and zero inflation. [21] employed the BZIP Inverse 

Gaussian (BZIPIG) Regression with the BHHH algorithm, yielding an AIC of 317.96. Among all 

these models, the BZIP model in the present study produced the lowest AIC (180.3489), 

demonstrating the best performance. This result confirms that the proposed BZIP model efficiently 

captures the underlying data structure, achieving a balance between predictive accuracy and model 

simplicity, making it a highly effective approach for modelling bivariate count data with excess 

zeros. 
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Table 10 AIC Comparison Among Competing Models 

Model Type Estimation Method AIC Value 

Bivariate Zero-Inflated Poisson (BZIP) Regression EM Algorithm 180.3489 

Bivariate Zero-Inflated Poisson (BZIP) Regression Newton–Raphson 340.6977 

Geographically Weighted BZIP (GWBZIP) Regression Newton–Raphson 320.3074 

Bivariate Poisson Inverse Gaussian (BPIG) Regression Newton–Raphson 910.2177 

BZIP Inverse Gaussian (BZIPIG) Regression BHHH Algorithm 317.9600 

 

3.7 Conclusions and suggestions 

Based on the analysis using the Bivariate Zero-Inflated Poisson (BZIP) model, it can be concluded 

that the factors influencing the number of people living with HIV and AIDS exhibit different 

characteristics. The health education variable (X₄) was found to have a significant positive effect 

in increasing the probability of regions being free of HIV cases, while the community health 

insurance variable (X₅) showed a significant negative effect on the number of AIDS cases, 

indicating that access to healthcare services plays an essential role in suppressing disease 

progression. In addition, the 25-29 age group (X₁) was identified as the most vulnerable group to 

the spread of AIDS. Overall, the findings of this study highlight that enhancing health education 

and expanding community health insurance coverage are effective strategies for controlling HIV 

and AIDS at the regional level. It is recommended that health education programs be strengthened 

and continuously expanded to raise public awareness about HIV prevention, particularly among 

the productive age group (25-29 years), which has the highest risk of infection. Furthermore, the 

coverage of community health insurance should be increased to ensure that individuals living with 

HIV have adequate access to treatment and counseling services, thereby preventing the progression 

to AIDS. The government and relevant institutions are also encouraged to implement integrated 

policies that combine education, healthcare services, and social support, in order to create a more 

effective and sustainable approach to HIV and AIDS control in the community. Finally, the BZIP 

model applied in this study demonstrates the best performance, as evidenced by the lowest AIC 

value compared to all previously tested models, confirming its superiority in modeling bivariate 

count data with excess zeros. 
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