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Abstract. Pain was a complex and subjective experience that involved sensory, emotional, and cognitive aspects
simultaneously. The responses of phasic and tonic receptors to painful stimuli exhibited different patterns and could
be observed through facial expressions as a form of nonverbal communication. This study aimed to implement a
MobileNetV3-LSTM model to classify phasic, tonic, and normal receptor responses using human facial expression
images. The objective was to obtain the most optimal model for classifying facial expressions exposed to pain
stimuli targeting phasic or tonic receptors. The methods involved the development and evaluation of three models:
MobileNetV3Large, MobileNetV3Small, and their respective hybrid versions combined with LSTM, to examine
the effect of incorporating temporal information on classification performance. According to results 10, the hybrid
MobileNetV3Large-LSTM model performed the best, with an F1-score of 94%, accuracy of 93%, precision of
96%, and recall of 93% on the 12 test data. Meanwhile, the MobileNetV3Small-LSTM model reached 74%
accuracy, 80% precision, 74% recall, and a 74% F1-score. The standalone MobileNetV3Large model only obtained
68% accuracy and an Fl-score of 0.59, while MobileNetV3Small without LSTM achieved 75% accuracy and an
Fl-score of 0.56. These results suggest that the inclusion of LSTM layers greatly enhanced the accuracy in the
model. This research added to the development of facial expression classification methodologies to recognize pain

and complemented the body of knowledge on hybrid model utilization in deep learning.
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1. INTRODUCTION

Pain is a multi-dimensional subjective human phenomenon. Apart from containing sensory
information, pain has emotional as well as cognitive content [1, 2]. These contents are in con-
stant interaction with one another and determine the manner in which an individual perceives
pain [3]. Because of this multi-dimensionality, pain is very difficult to quantify objectively.
This remains the primary challenge in clinical practice as well as in research in medical science
[4, 5, 6].

Phasic and tonic receptors have characteristic patterns of reaction to stimuli. Phasic receptors
are rapid in their reaction but their activity promptly abolishes when the stimulus is withdrawn
[7, 8]. Tonic receptors are slow in their reaction but their activity continues with time [7, 9].
Awareness of this characteristic is significant in establishing the type of pain that the patient is
in [10, 11]. Such knowledge is especially useful in diagnosing diseases like neuropathy where
receptor responses are strong clinical indicators [12, 13].

Facial expression is one of the most important forms of nonverbal communication. Small
changes in facial muscles often reflect emotional or physical states [14, 15]. In the case of pain,
facial expression provides highly relevant diagnostic information. Detecting pain through facial
expression allows assessment even when patients struggle to express their pain verbally [19, 20].
This is important for children, elderly patients, and people with neurological or communication
problems.

Facial expressions are often detected manually using techniques like the Facial Action Cod-
ing System (FACS). These methods have high accuracy but require long processing time. They
also demand professional training, which limits their practical use in a clinical setting [31]. Ina
hospital where decisions must be made quickly, manual coding is not efficient [21]. Therefore,
automated systems for facial expression recognition are urgently needed.

The rise of deep learning technology offers a solution to these limitations [16, 20, 21, 22].

Direct feature learning from unprocessed photos or videos is possible with deep learning models
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[21, 22]. They remove the need for handcrafted features and improve generalization ability. In
healthcare, these systems promise better accuracy and consistency compared to manual methods
[25, 26, 27]. Real-time classification systems based on deep learning can support faster and
more reliable decision-making [23, 24].

Several deep learning approaches have been developed for pain detection. When it comes
to extracting spatial characteristics from photos, Convolutional Neural Networks (CNNs) excel
[10]. Modeling temporal dynamics is a common use of recurrent neural networks (RNNs),
particularly Long Short-Term Memory (LSTM) [11]. Hybrid architectures combining CNNs
with LSTM provide a more complete understanding of visual information over time [35]. Such
designs are suitable for video-based analysis of facial expression.

MobileNet is one of the most popular CNN families for lightweight image classification.
MobileNetV?2 introduces depthwise separable convolutions and inverted residuals, which make
the model faster and more efficient [17]. MobileNetV2 combined with LSTM has been tested in
several domains [18]. These models achieve strong accuracy while keeping computational de-
mands low. However, the ability to balance lightweight design and deep feature representation
is still under discussion.

MobileNetV3 is introduced as an improved version of MobileNetV2. It integrates squeeze-
and-excitation modules and optimized nonlinear functions [28]. The architecture is more light-
weight than V2 while maintaining strong representational capacity [28]. Because of this, it is
better suited for use in clinical settings with limited resources and in real-time [28, 36]. How-
ever, limited studies explore its potential when combined with temporal models such as LSTM.

The main problem of conventional CNN models is their inability to capture both spatial
and temporal information simultaneously [37, 39]. Pain-related facial expressions evolve over
time and require temporal context to be classified correctly [29]. Models that ignore temporal
dynamics often lose accuracy in distinguishing phasic from tonic responses [38]. This limitation
creates significant barriers for clinical application. Therefore, hybrid models that merge CNN-
based spatial analysis with LSTM-based temporal analysis are needed.

Recent literature shows increasing interest in CNN-LSTM hybrids for emotion recognition,

action recognition, and medical diagnosis. In pain detection research, several models adopt
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MobileNetV2 or ResNet as the spatial backbone [30, 32, 33]. While these models achieve
promising results, they are not always optimal for real-time medical settings. The computational
load remains high and inference time can be slow. This makes the search for more efficient
architectures highly relevant.

Our study addresses this research gap by proposing a hybrid model using MobileNetV3 and
LSTM. MobileNetV3 extracts compact but discriminative spatial features from facial images.
LSTM captures the temporal evolution of these features across video frames. Together, the
hybrid architecture can classify phasic pain, tonic pain, and non-pain states. This combination
is designed to provide both efficiency and accuracy for clinical application.

This work’s innovation is in employing MobileNetV3 as a backbone for hybrid pain classi-
fication. Unlike MobileNetV2, MobileNetV3 is more lightweight and has improved attention
mechanisms [34]. This allows the model to maintain performance even with limited resources.
By integrating this with LSTM, the system is able to encode both static and dynamic attributes
in facial expression. We expect this strategy to improve phasic and tonic pain response classifi-
cation.

This paper contributes three main points. Firstly, we offer a pain detection framework that is a
combination between time analysis and lightweight spatial extraction. Secondly, we apply Mo-
bileNetV3 in the clinical setting, where computational efficiency is the main priority. Thirdly,
we contribute to the building of more objective pain detection systems in poorly communicating
patients. All these are towards the broader objective to advance automatic health diagnostics.

Pain remains a qualitative and complex issue in medical measurement. Recognition of facial
expression is one promising way to objectively measure pain. Optimal and accurate methods
to this task are provided by deep learning. However, most existing models are incapable of
extracting time-aware as well as spatial features optimally. A MobileNetV3-LSTM cascade

model to classify pain in real time is introduced in this work to fill that gap.

2. MATERIALS AND METHODS

2.1. Data. This research utilized a supplementary dataset released by Fernandes-Magalhies
et al. (2022) [40], containing facial expression images of the subjects who were provided stim-

ulus and non-stimulus to their pain receptors. The dataset included a cumulative number of
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2,424 facial images, which were marked as 379 phasic receptor responses, 725 tonic receptor
responses, and 1,320 neutral expressions. The dataset was split into training and validation

datasets in a proportion of 90:10.

2.2. Data Preprocessing. Prior to commencing the modeling, extensive preprocessing was
done to the image datasets in order to improve the accuracy of models as well as gain optimal
performance. These transformations were executed to make the pixel information suitable to

match the model’s architecture as well as improve all-around computational efficiency.

2.2.1. Image Resizing. The original resolution of each image in the dataset is 1920 x 1080
pixels. To enhance computational efficiency and minimize the risk of overfitting, each image is
resized to 224 x 224 pixels. This resizing process uses bilinear interpolation, a widely adopted
resampling method that estimates new pixel intensities by computing a weighted average of the
four surrounding pixels.

The estimated pixel value at a new location is obtained by linearly interpolating along both
the horizontal and vertical axes. The interpolation uses weights denoted as 1, 1 — 1, &, and
1 — &, which are determined by the fractional distance of the new pixel position relative to its

nearest four neighbors. The bilinear interpolation is mathematically represented in Equation (1):

V(u,v) = (1=¢)(1=n)-9(mn)+c(1—-n)-¢(m+1,n)

+n(1=&)-¢(mn+1)+En-¢(m+1,n+1)

€]

In this equation, J(u,v) represents the interpolated pixel intensity at the new spatial location
(u,v) in the resized image. The function ¢ (m,n) refers to the original pixel value at location
(m,n) in the input image. Likewise, ¢ (m+ 1,n), ¢(m,n+ 1), and ¢(m+ 1,n+ 1) denote the
intensities of the three neighboring pixels required to estimate the target value. The parameters
& and 7 indicate the horizontal and vertical fractional distances from the reference pixel (m,n),

respectively.

2.2.2. Image Pixel Normalization. Each image consisted of color intensity values ranging
from O to 255. To facilitate the model training process and enhance computational stability, the

pixel values were normalized by rescaling the range to between —1 and 1 [41]. Mathematically,
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this normalization process was expressed in Equation (2):

X

2) Xnorm = m -1

Where xporm represents the pixel value after normalization, and x denotes the original pixel

value.

2.2.3. Image Augmentation. Image augmentation was a technique used to increase data di-
versity so that the model could learn a broader range of variations during the training process.
In this study, the image augmentation methods applied included rotation, shifting, zooming,
horizontal flipping, and shearing.

Rotation. The rotation operation transforms pixel locations based on a rotation matrix applied
to each coordinate point. A random angular adjustment of 20° is introduced using Equations (3)

and (4):

® b = (= Ga) -€08(9) = (A= Gp) sin(9) +

€ Ay = (A= Ga) -sin(B) + (A, — Gp) - cos(¥) + g

Where ¥ represents the rotation angle in radians, while ({q, {g) refers to the coordinates of the
image center. The values A, and A are the transformed horizontal and vertical positions of a
given pixel (4,,A,) after rotation.

Shift. Pixel shifting is performed to translate an image spatially, enhancing the model’s sensi-
tivity to positional variations. Horizontal and vertical displacements of 15% are applied as in

Equations (5) and (6):

®) Xi=X1+pn0

(6) X =X2+py-€

Where (X1, 2) are the original coordinates, (x|, x5 ) are the new coordinates after shifting, pj,
and p, represent the horizontal and vertical shift proportions, and 8, € denote the image width

and height, respectively.
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Zoom. Zooming involves scaling pixel positions relative to the image center, effectively enlarg-

ing or shrinking specific regions. A zoom ratio of 20% is applied using Equations (7) and (8):

o @, = (0 = %) - (1+7) + %

8) o, = (0, —%)-(1+7)+%

Where @, and w, are the original coordinates, ¥, and 7, denote the central reference point, and
7 is the zoom factor. The new coordinates after zooming are represented as (@, @;).

Horizontal Flip. This augmentation technique mirrors the image along the vertical axis, flip-
ping each pixel horizontally without affecting its intensity. The transformation is defined in

Equations (9) and (10):

9 ¢ =A-1)—¢

(10) ¢y =@y

Where (@, ¢,) are the original pixel coordinates, ¢; is the mirrored horizontal position, and A
is the image width.
Shear. Shearing introduces angular distortion by offsetting pixels in horizontal and/or vertical

directions. A 5% shear factor is applied using Equations (11) and (12):

(11 K, =Ky, +0p- K

(12) K, =K + 0, Ky

Where (k,, k) are the original pixel coordinates, (k, k) are the transformed coordinates, and

oy, O, represent horizontal and vertical shear coefficients, respectively.

2.3. Data Modeling Using MobileNetV3-LSTM. The MobileNetV3-LSTM architecture

consisted of several main layers as described below.

2.3.1. Input Layer. The input layer accepted image data as a matrix, according to the specified

dimensions for subsequent processing.
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2.3.2. Convolutional Layer. The convolutional layer extracted spatial features from the image
using filters (kernels) that moved across the input. The architecture had one or more convolu-
tional layers succeeded by fully linked layers, yielding a linear transformation of the input data
contingent upon the spatial attributes of the information.

In the MobileNetV3-LSTM architecture, two main types of activation functions were used:
the Rectified Linear Unit (ReLU) and the Hard-Swish (H-Swish). The ReLLU function served
to eliminate negative values in the image by replacing them with zero [42]. The ReL.U function

was defined in Equation (13):

(13) fx) =

Where x represented a numerical value indicating the intensity or features extracted from the
image, and f(x) denoted the output of the ReLU activation function. The graphical representa-

tion of ReLU is illustrated in Figure 1.

f)=x

flx)=0

FIGURE 1. ReLU activation function graph.

Although ReL U offered advantages in computational efficiency and its ability to handle the
vanishing gradient problem, it had a notable limitation known as the “Dying ReLU Problem,”
where neurons could become inactive if negative values occurred too frequently during training.

As an alternative to improve computational efficiency in the MobileNetV3 architecture, the
Hard-Swish (H-Swish) activation function was implemented in several layers. This function
was an approximated version of the more complex Swish activation function but was lighter to
compute as it only involved linear and ReLU-like operations [43]. Its mathematical formulation

was given in Equation (14):
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ReLU6(x+3)

(14) flx)=x 6

Where the ReLLUG6 function was defined as:

(15) ReLU6(x) = min (max(0,x),6)

2.3.3. Flatten Layer. The flatten layer functioned to convert the multi-dimensional represen-
tation from the previous layer into a one-dimensional tensor [44]. The primary purpose of this
layer was to flatten the spatial data so it could be processed by the subsequent fully connected
layer, which required input in the form of a vector. An example of flattening is illustrated in

Figure 2.

Pooled Feature Map

9 8 Flattening

>

N | DO 0| \O

FIGURE 2. Flatten Layer.

2.3.4. Pooling Layer. Pooling was a non-linear down-sampling process used in Convolutional
Neural Network (CNN) architectures to reduce the spatial dimensions of the feature maps pro-
duced by the convolutional layer. This study employed both max pooling and average pooling
to obtain a more compact representation by emphasizing key features, reducing computational
complexity, and providing invariance to positional variations of features [45]. An illustration of

pooling mechanisms is shown in Figure 3.
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FIGURE 3. Example of Max Pooling and Average Pooling.
2.3.5. LSTM Layer. In the CNN-LSTM architecture, the CNN extracted essential features

from an image, while the LSTM replaced the role of the fully connected layer by performing

classification based on the extracted features. The LSTM structure is presented in Figure 4.
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FIGURE 4. LSTM Structure.

Figure 4 shows the LSTM model structure in the MobileNetV3 architecture. This structure
included the forget gate, input gate, and output gate. These gates functioned to either allow or

restrict access to the LSTM memory. Each memory cell in the LSTM contained three sigmoid
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layers and one tanh layer, which worked together to regulate the flow of information within the

model [46].

2.3.6. Dropout Layer. The dropout layer was a regularization technique used to reduce over-
fitting in neural networks. This approach functioned by randomly deactivating certain neurons

during training, hence inhibiting intricate co-adaptations to the training input [47].

2.3.7. Fully Connected Layer. The fully connected layer interlinks each neuron in one layer
with every neuron in the subsequent layer. This layer resembled a multilayer perceptron, where
the flattened matrix was passed through to perform classification on the image. Additionally,
this layer merged all nodes into a single dimension and was commonly referred to as a dense

layer [48].

2.3.8. Output Layer. This layer acted as the conclusive component within the network ar-
chitecture, tasked with producing the final forecast of the model. The activation mechanism
employed at this stage was the softmax function, which is particularly suitable for scenarios in-
volving multiclass classification. The mathematical formulation of the softmax transformation
is presented in Equation (16):

E
Zle el

Where 7n; denotes the unnormalized logit or pre-activation value associated with the 7-th

(16) 6(Ne) =

class, and k corresponds to the total number of distinct categories in the classification task. The
function ¢(-) yields a normalized probability distribution over all possible classes, ensuring that

the output satisfies 0 < g(n¢) < land Y5, (1) = 1.

2.4. Transfer Learning. The transfer learning process was divided into two stages, namely
freezing the hidden layers and unfreezing them. The purpose of this process was to train the out-
put layer first using classification knowledge learned from previous datasets, such as ImageNet,

so that it could classify new data—in this case, facial expression images.

2.5. Optimization Method. This study employed the Adaptive Moment Estimation (Adam)
optimization approach for automatic parameter tweaking. Adam was a versatile algorithm that

calculated distinct learning rates for each parameter, supplanting the conventional stochastic
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gradient descent method. The optimizer updated the model parameters based on Equation (17):

lr
Ve

Where 6; denoted the parameter vector at iteration ¢, [r represented the learning rate, € was a

(17) 91+1 = Gt—

1y

small constant added for numerical stability (usually set to 1 x 10’8), m; was the bias-corrected
first moment (mean of gradients), and v; was the bias-corrected second moment (uncentered
variance of gradients).

The Adam optimizer maintained exponentially decaying averages of past gradients (first mo-

ment m;) and squared gradients (second moment v;), calculated as follows:

(18) my = Bym; 1+ (1—Br)g

(19) v = Bavic1 + (1 - Ba)g?
~ Iy
AW

@1 =

Where ) and B, were decay rates and g, was the gradient at the 7-th iteration.

2.6. Loss Function. The loss function calculated the disparity between the algorithm’s actual
output and the anticipated output. One of the loss functions used for multi-class classification
with imbalanced data was focal loss [49]. Focal loss naturally addressed class imbalance by
down-weighting well-classified examples from the majority class and focusing more on hard-
to-classify minority class samples. This made it effective for improving model performance
under class imbalance conditions. The mathematical formulation of focal loss was given in

Equation (22):
(22) Focal Loss = —a(1 — p;)?log(p;)

Where p; represented the predicted probability for the true class, @ was a weighting factor (rang-

ing between 0 and 1), and ¥ was the focusing parameter optimized through cross-validation.
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Besides focal loss, class weights were also applied in this study to further address the class

imbalance.

2.7. Model Evaluation. In this study, the model was evaluated using several metrics: preci-
sion, recall, and F1-score.

Precision. Precision measured the model’s ability to correctly identify positive predictions. It
was calculated using Equation (23):

i TP
23) Precision = ————
TP+FP
Recall. Recall measured the model’s ability to detect all actual positive instances. In this study,
the positives referred to the phasic receptor response, tonic receptor response, and neutral state.

Recall was computed using Equation (24):

24) Recall = TP?—}——PFN
Fl-score. The Fl-score provided a harmonic mean of precision and recall to evaluate the
model’s overall performance, especially in cases of class imbalance. It was calculated using
Equation (25):

25) F = 2 - Precision - Recall

Precision + Recall

3. MAIN RESULTS

3.1. Modeling Data Using MobileNetV3-LSTM. In this study, two hybrid architectures
were developed—MobileNetV3Large-LSTM and MobileNetV3Small-LSTM—to detect pha-
sic and tonic receptor responses in facial expression images. These hybrid models sought to
combine the feature extraction efficacy of MobileNetV3 with the temporal sequence learning
proficiency of LSTM. The training process was visualized using key metrics, particularly the

training loss and validation loss, as shown in Figure 5.
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(A) MobileNetV3Large-LSTM (B) MobileNetV3Small-LSTM

FIGURE 5. Training and validation loss graphs using (a) MobileNetV3Large-
LSTM and (b) MobileNetV3Small-LSTM.

As illustrated in Figure 5, both models experienced a smooth training process. The training
and validation loss graphs showed a decreasing trend, which indicated that the models effec-
tively learned from the input data over time. No sign of overfitting was detected since the vali-
dation loss mirrored the decline of the training loss throughout the training phase. Among the
two, MobileNetV3Large-LSTM reached optimal performance earlier, specifically at the 83rd
iteration, while MobileNetV3Small-LSTM achieved it by the 90th iteration, demonstrating a
slightly slower convergence.

The performance of each model was further evaluated by predicting the validation dataset
and comparing the predicted labels with the actual labels. The confusion matrices summarizing

this classification performance are presented in Tables 1 and 2.

TABLE 1. Confusion Matrix — MobileNetV3Large-LSTM (Validation Data)

Actual Class Phasic Tonic Neutral

Phasic 3 18 17
Tonic 0 82 0
Neutral 0 0 120
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TABLE 2. Confusion Matrix — MobileNetV3Small-LSTM (Validation Data)

Actual Class Phasic Tonic Neutral

Phasic 8 8 22
Tonic 1 78 3
Neutral 19 2 99

Based on Table 1, MobileNetV3Large-LSTM performed exceptionally well in classifying
tonic and neutral expressions. The model correctly identified all 82 tonic samples and all 120
neutral samples without error. However, it struggled with the phasic class, correctly predicting
only 3 samples while misclassifying the rest.

Meanwhile, Table 2 indicated that MobileNetV3Small-LSTM also faced challenges in iden-
tifying phasic expressions. Out of 38 phasic samples, only 8 were correctly predicted, while 8
were misclassified as tonic and 22 as neutral. This suggested that the model had difficulty dis-
tinguishing phasic expressions from neutral ones—likely due to the similarity in visual features

between these classes.

3.2. Model Evaluation. To further evaluate the models, precision, recall, and F1-score met-
rics were calculated based on the confusion matrices. The results are summarized in Tables 3

and 4.

TABLE 3. Performance Metrics — MobileNetV3Large-LSTM (Validation Data)

Class Precision Recall F1-score
Phasic 0.88 1.00 0.93
Tonic 1.00 0.08 0.15
Neutral 0.82 1.00 0.90

Overall Accuracy 0.85




16 AGAM, PRAVITASARI, HENDRAWATI, JAYA, SUPARMAN

TABLE 4. Performance Metrics — MobileNetV3Small-LSTM (Validation Data)

Class Precision Recall F1-score
Phasic 0.80 0.82 0.81
Tonic 0.29 0.21 0.24
Neutral 0.89 0.95 0.92
Overall Accuracy 0.77

The results showed that MobileNetV3Large-LSTM achieved the best performance with an
overall Fl-score of 0.85 and high precision and recall for neutral and phasic classes. It achieved
perfect precision on the tonic class and perfect recall for both phasic and neutral. On the other
hand, MobileNetV3Small-LSTM achieved a lower Fl-score of 0.77, with its best results ap-
pearing in the neutral class.

To deal with class imbalance, focal loss was employed using the parameters o« = 0.25 and
v = 2. This effectively improved the balance of evaluation scores across classes by emphasizing
the learning from hard-to-classify samples.

Additionally, a performance comparison was conducted between the hybrid models
(MobileNetV3-LSTM) and the original MobileNetV3 architecture without LSTM layers. The

comparative results are shown in Table 5.

TABLE 5. Comparison of Facial Expression Recognition Methods

Method Accuracy Fl-score
MobileNetV3Large-LSTM 0.85 0.66
MobileNetV3Large 0.68 0.59
MobileNetV3Small-LSTM 0.77 0.66

MobileNetV3Small 0.75 0.56
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From Table 5, it was evident that MobileNetV3Large-LSTM outperformed other models in
both accuracy and F1-score. The inclusion of the LSTM layer enhanced the model’s capability
to capture temporal dynamics in facial expressions, resulting in better classification perfor-

mance.

3.3. Model Prediction Results. The trained models were also used to predict classes in the
test dataset. Each video was processed frame by frame, and the model provided classification

results for each frame. The confusion matrices for the test data predictions are presented in

Tables 6 and 7.

TABLE 6. Confusion Matrix — MobileNetV3Large-LSTM (Test Data)

Actual Class Phasic Tonic Neutral

Phasic 20 2 2
Tonic 1 23 0
Neutral 0 0 24

TABLE 7. Confusion Matrix — MobileNetV3Small-LSTM (Test Data)

Actual Class Phasic Tonic Neutral

Phasic 22 2 0
Tonic 12 12 0
Neutral 5 0 19

From Table 6, MobileNetV3Large-LSTM demonstrated high accuracy in classifying neutral
and tonic expressions, showing model consistency. However, a small number of phasic frames
were misclassified. In contrast, Table 7 showed that MobileNetV3Small-LSTM made more
classification errors, especially in the tonic class, where many frames were incorrectly predicted
as phasic.

To evaluate the models further, the precision, recall, and F1-score were calculated for the test

data, as shown in Tables 8 and 9.
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TABLE 8. Performance Metrics — MobileNetV3Large-LSTM (Test Data)

Class Precision Recall F1-score
Phasic 0.952 0.833  0.889
Tonic 0.920 0.958  0.939
Neutral 1.000 1.000  1.000
Overall Accuracy 0.931

TABLE 9. Performance Metrics — MobileNetV3Small-LSTM (Test Data)

Class Precision Recall F1-score
Phasic 0.564 0917  0.698
Tonic 0.857 0.500  0.632
Neutral 1.000 0.792  0.884
Overall Accuracy 0.736

Based on the results, MobileNetV3Large-LSTM achieved superior performance, with a test
accuracy of 93.1% and strong F1-scores across all classes. In comparison, MobileNetV3Small-
LSTM achieved a lower accuracy of 73.6%, with considerable errors in predicting tonic and
phasic expressions. The low precision for the phasic class (0.564) and low recall for the tonic
class (0.500) highlighted the limitations of the smaller architecture in learning complex spa-
tiotemporal patterns.

In conclusion, the MobileNetV3Large-LSTM hybrid structure was found as the most opti-
mal classification model for facial expression categories under phasic and tonic responses, as

balanced performance in all applied metrics was provided.

4. DISCUSSION

MobileNetV3-LSTM hybrid model learning process exhibits very encouraging results in fa-
cial expression classification. Throughout the learning phase, loss curves for the training as well

as validation subsets exhibit steadily descending trends indicative of good learning as well as
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good generalization capacity for the model. There is no indication of overfitting in the model,
indicating that it can learn well to the training dataset while maintaining good performance in
new data.

Comparing the two versions tried, MobileNetV3Large-LSTM will always have superior per-
formance to MobileNetV3Small-LSTM. MobileNetV3Large-LSTM is more accurate in classi-
fication and will converge more rapidly, which is consistent with previous findings that larger
architectures capture more complex patterns in sequential facial data [5S0]. This is indicative
that large architectures with increased representational capacity are in a position to capture
more complex patterns in facial expression data when working with time features.

The confusion matrix output provides more detailed insight into the classification accuracy
of the models. MobileNetV3Large-LSTM is optimal in classifying tonic as well as neutral
faces. The model is completely precise in recognizing all instances of these classes without
any misclassifications, showing consistency in recognizing steady as well as subtle emotional
cues. However, this model is still weak in the phasic class, which is changing as well as pos-
sibly less stable in facial patterns. MobileNetV3Small-LSTM, on the other hand, has frequent
misclassifications, particularly for phasic faces. Such misclassifications can arise from the high
similarity between the visual cues in phasic as well as neutral faces, which creates confusion as
well as classification ambiguity.

Employment of accuracy, recall, and F1-score in performance assessment again highlights
differences between the two models, in line with standard evaluation practices in facial expres-
sion recognition [51, 52]. MobileNetV3Large-LSTM has the highest Fl-score in all classes
in general, justifying balanced performance in all classes. Its accuracy is very high in the
tonic class to indicate low false-positive instances, while maximum recall is observed in the
phasic as well as neutral classes, to show that most instances are selected by the model.
MobileNetV3Small-LSTM, in comparison, has relatively low performance, however, signifi-
cant power is noted in the detection of neutral expressions. This outcome again highlights the
significance of model complexity in handling fine differences in facial expression classes.

A comparison to the baseline reference MobileNetV 3 architecture, not employing the LSTM

layer, shows their substantial performance gain due to the incorporation of temporal analysis.
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Employing the LSTM module enables the network to identify temporal dependencies as well
as intrinsic patterns in sequences that are characteristic for facial expressions, most notably
those that are characterized by dynamic transitions like phasic responses. Overall accuracy as
well as F1-score are the highest for the MobileNetV3Large-LSTM hybrid, thereby proving that
employing the use of temporal modeling is significant in order to improve CNN performance in
this application.

The performance in predicting the test dataset also offers validation to the superior perfor-
mance in the MobileNetV3Large-LSTM architecture. Its accuracy in classification is always
good, especially for the neutral class as well as the tonic class. Despite still misclassifying from
time to time when identifying phasic expression, accuracy remains still significantly higher
than in the small variant. MobileNetV3Small-LSTM, in comparison, has more frequent mis-
classifications, especially in the tonic class, which points to insufficiency in identifying subtle
class-specific features.

Quantitative evaluation with the standard metrics of classification on the testset provides fur-
ther corroboration. MobileNetV3Large-LSTM’s very good accuracy is 93.1%. All the relevant
metrics—precision, recall, Fl1-score—are equally high, as a consequence indicating that not
only are predictions extremely precise, classification is also very reliable and consistent overall.
MobileNetV3Small-LSTM has poorer overall accuracy as well as marked imbalance in class-
wise performance. Recall on the model’s part is extremely poor in the case of the tonic class,
and this is aggravated by low precision while recognizing phasic expressions. These are points
of weakness that are characteristic of low capacity to recognize fine differences between rather
similar facial expressions.

The best-performing model for facial expression classification based on tonic, phasic, and
neutral responses is the MobileNetV3Large-LSTM combination architecture. Its ability to uti-
lize both time and spatial information makes this architecture most appropriate for this task. Its
time modeling capacity in the LSTM section is most helpful in enabling the network to better
capture the order of facial muscle movement, which is significant in discriminating dynamic

movements such as phasic responses.
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The benefit in using a hybrid deep learning architecture is all the more significant when
comparing models that incorporate and models that don’t incorporate temporal modeling. While
CNNs like MobileNetV3 are master at pulling spatial information from images, they can’t learn
to recognize how facial features change over time. By implementing an LSTM layer, the model
is given this memory mechanism that can accept sequences, which makes the model much more
efficient in real-world use cases in which expressions change over time rather than in the form
of disjointed snapshots.

Computationally, the MobileNetV3Large-LSTM is an effective solution for facial expression
recognition systems in real-time. Its effectiveness in doing well on both the training and the
test sets thus has great potential for use in emotion-aware human-computer interaction, track-
ing of mental health, as well as affective computing systems. There are numerous directions
for future research that can potentially involve expanding the dataset to enhance its recogni-
tion ability for phasic expressions, possibly through the implementation of complex temporal
attention mechanisms.

Systematically, this study also re-asserts that time-awareness as well as model complexity
are significant factors in accounting for improved facial expression recognition performance.
MobileNetV3Large-LSTM is found to be the most robust as well as most accurate solution
among all the experimented configurations, offering a balanced yet high-performance organi-
zation for recognizing diverse facial expression patterns. The unifying framework that incorpo-
rates CNN as well as LSTM represents a sound platform for future study as well as practical

application in emotional computing.

5. CONCLUSIONS

This study presents the classification performance of the hybrid MobileNetV3-LSTM model
in facial expression classification across phasic as well as tonic receptor responses. The model
can effectively extract both spatial as well as time-based features from facial images by integrat-
ing a Long Short-Term Memory (LSTM) layer with MobileNetV3. The LSTM component is
essential in dealing with the dynamic patterns of expression in time, thereby realizing superior
classification performance in comparison to the control MobileNetV3 model that does not use

LSTM.
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The performance obtained from experiments indicates that the MobileNetV3Large-LSTM
is the best-performing among all models, with accuracy, precision, recall, and Fl-score val-
ues of 93%, 96%, 93%, and 94% respectively. Comparatively, MobileNetV3Small-LSTM has
low performance, with accuracy and F1-score values of 74% respectively. This indicates that
increased complexity in the model is desirable for classification performance.

These findings contribute to theory for hybrid deep learning models for emotion recogni-
tion detection as well as receptor responses. The ability of the model to classify phasic versus
tonic responses based on facial images alone offers hope that the model is adaptable to clin-
ically practical use in affective computing, clinical diagnosis, and adaptive human-computer
interaction.

In conclusion, the proposed hybrid MobileNetV3-LSTM model presents a robust and promis-
ing solution for analyzing facial expressions with temporal dependencies, making it a valuable

tool for future advancements in emotion-aware technologies.
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