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Abstract: The application of deep learning for plant and disease recognition has become increasingly popular; however, 

most studies address these tasks separately due to limitations in dataset availability for model training and testing. This 

study aims to overcome such constraints by developing a multi-output classification framework that simultaneously 

predicts both plant species and associated diseases. Three state-of-the-art architectures were employed: NASNetMobile, 

a CNN-based model; a hybrid CNN-LSTM; and a CNN integrated with an Attention mechanism. A combined dataset of 

over 15.678 images was compiled from multiple public sources, covering 10 plant species and 27 disease classes with 

diverse real-world conditions. The training process was done using two different approaches: with and without data 

augmentation. Model performance was evaluated using accuracy, precision, recall, and F1-score. The results show that 

NASNetMobile without data augmentation achieved the highest performance, with an F1-score of 99.79% for plant 

classification and 98.54% for disease classification, outperforming CNN-LSTM (98.86% and 95.2%) and CNN-

Attention (98.65% and 93.3%). These findings demonstrate that lightweight yet robust architectures such as 

NASNetMobile can effectively bridge the gap between laboratory-trained models and field-ready agricultural 

applications, supporting the advancement of precision agriculture. To enhance interpretability, Local Interpretable Model-

Agnostic Explanations (LIME) and Eigen-CAM were applied, providing intuitive visualizations that help users 

understand model predictions. The best-performing model was deployed in a web-based proof-of-concept application, 

developed using Streamlit. This work provides one of the first multi-output explainable frameworks for plant and disease 

classification deployable in a web-based system. 

Keywords: multi-crop classification; NASNetMobile; CNN-LSTM; explainable ai; Streamlit application. 

2020 AMS Subject Classification: 68T07. 



2 

DEDE FAUZI, MAHMUD ISNAN 

1. INTRODUCTION 

Artificial intelligence (AI) and deep learning have received growing attention in agriculture, 

particularly for tasks such as plant disease classification, crop yield prediction, and agronomic 

decision support [1], [2], [3]. Among various approaches, convolutional neural networks (CNNs) 

have consistently proven effective in detecting and diagnosing plant diseases from leaf images 

with high accuracy [4], [5], [6]. Recent advances have further integrated architectures such as 

EfficientNet, ResNet, and Vision Transformers to improve classification performance, especially 

when dealing with diverse datasets [7], [8], [9].  

Despite these advancements, many existing studies still rely heavily on controlled datasets such 

as PlantVillage, which lack variability in background, illumination, and leaf damage [6], [10], [11]. 

Consequently, models trained under such conditions often fail to generalize to real-world 

environments, where images are captured under natural and more complex conditions [12], [13]. 

Moreover, while CNN-based methods achieve high performance, they struggle to capture 

sequential and spatial dependencies in disease progression, limiting their robustness in multi-class 

classification tasks [14], [15]. 

To address these limitations, researchers have begun to explore hybrid and attention-based 

architecture. CNN-LSTM models, for example, integrate spatial and sequential learning to capture 

patterns of disease spread across leaf structures [13], [16]. Similarly, attention mechanisms and 

multimodal transformers have been applied to improve model focus on disease-relevant regions, 

thereby enhancing both classification performance and interpretability [8], [12], [17]. However, 

such models often require high computational resources, making them less practical for 

lightweight applications deployable in agricultural fields [18], [19]. 

In this study, we propose a comprehensive framework for multi-class plant disease 

classification using three approaches: (i) NASNetMobile, a lightweight and efficient CNN 

architecture; (ii) CNN-LSTM, which combines spatial and sequential feature learning; and (iii) 

CNN with Attention Mechanism, which enhances model focus on critical leaf regions. In addition 

to classification performance, this study emphasizes interpretability by applying Explainable AI 

(XAI) methods such as LIME and Eigen-CAM to better understand how the models learn and 

make predictions. 
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2. MATERIALS AND METHODS 

2.1. DATASET 

The dataset used in this study was compiled from several open-access repositories containing 

plant disease images, including PlantVillage, Kaggle Plant Pathology Challenge 2020, and other 

public collections [5], [10], [11]. A total of 15.678 images were collected, representing 10 plant 

species and 27 disease classes under diverse real-world conditions such as varying lighting, 

complex backgrounds, and partial leaf damage. 

The dataset includes images of leaves from Bitter gourd, Bottle gourd, Cauliflower, Eggplant, 

Cucumber, Tomato, Bean, Cowpea, Radish, and Betel leaf. Each plant species contains multiple 

disease categories, including Downy mildew, Mosaic virus, Anthracnose, Leaf spot, Fusarium wilt, 

Verticillium wilt, and Bacterial blight, among others. Table 1 presents the detailed distribution of 

plant species, disease types, and the number of images per class. These data were curated and 

verified manually to ensure class balance and remove duplicates or low-quality images before 

model training. 

2.2. DATA PREPROCESSING 

After collecting and merging all datasets from multiple open-access sources into a unified 

dataset, all images were resized to 224 × 224 pixels to ensure consistency across model inputs [4]. 

Data augmentation techniques such as random rotation, horizontal and vertical flipping, brightness 

adjustment, and contrast modification were applied to increase image diversity and reduce the risk 

of overfitting [11], [20]. The dataset was then split into 75% for training, 15% for validation, and 

15% for testing. Finally, all pixel values were normalized into the [0,1] range to stabilize model 

training and accelerate convergence. 

Table 1. Distribution of dataset used in this study 

Plant Disease Number of Images 

Bitter gourd 

Downy Mildew 570 

Mosaic Virus 600 

Fusarium Wilt 502 

Bottle gourd 
Anthracnose, 601 

Downy Mildew 684 
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Cauliflower 
Black Rot 560 

Downy Mildew 512 

Eggplant 

Verticillium Wilt 730 

Cercospora Leaf Spot 723 

Begomovirus 720 

Cucumber 
Anthracnose Lesions 535 

Downy Mildew 564 

Tomato 

Bacterial Spot 589 

Leaf Curl Virus 612 

Spotted Wilt 654 

Bean 

Blight 510 

Mosaic Virus 562 

Rust 568 

Cowpea 

Bacterial Wilt 581 

Mosaic Virus 579 

Septoria Leaf Spot 577 

Radish 

Black Leaf Spot 526 

Downy Mildew 601 

Mosaic Virus 548 

Flea Beetle 513 

Betel Leaf 
Leaf Rot 269 

Leaf Spot 688 

 

2.3. MODEL ARCHITECTURES  

The overall framework of the study is summarized in Fig. 1. It illustrates the sequential process 

beginning with dataset acquisition, image preprocessing (resizing, normalization, and 

augmentation), model training using three architectures (NASNetMobile, CNN-LSTM, and CNN-

Attention), evaluation through accuracy and F1-score metrics, application of Explainable AI 

(Eigen-CAM and LIME), and final deployment into a Streamlit-based web interface. 
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Fig. 1. General pipeline of the proposed study 

 

2.3.1. NASNETMOBILE 

NASNetMobile is a lightweight variant of the Neural Architecture Search Network (NASNet), 

which automatically searches for the optimal convolutional cell structures to balance accuracy and 

computational cost [6]. The network consists of normal cells and reduction cells, which are stacked 

to build the final architecture. In this study, NASNetMobile was fine-tuned with an input size of 

224 × 224, a dropout rate of 0.5, ReLU activation, and the Adam optimizer with a learning rate of 

0.001. The model’s classification head was adapted to output predictions for both plant species 

and disease categories. 

After the feature extraction stage, a Global Average Pooling (GAP) layer was applied to reduce 

the dimensionality of the feature maps while preserving spatial information. This pooling strategy 

minimizes the number of trainable parameters and helps prevent overfitting compared to fully 

connected layers. From the GAP layer, the network branches into two parallel dense layers 

corresponding to multi-output classification: the first head predicts plant species, while the second 

head predicts disease categories. Each output head uses a softmax activation function to generate 

probability distributions across their respective classes. Fig. 2 illustrates the architecture of the 

NASNetMobile model used in this study. 
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Fig. 2. Illustrates the architecture of the NASNetMobile model used in this study 

The NASNetMobile architecture shown in Fig. 2 employs normal and reduction cells 

optimized through Neural Architecture Search (NAS). It uses convolutional layers with skip 

connections and batch normalization, followed by a global average pooling and a dense output 

layer. This model serves as the baseline for performance comparison due to its lightweight 

structure and high transfer-learning capability from ImageNet. 

2.3.2. CNN-LSTM 

The CNN-LSTM model combines convolutional layers for spatial feature extraction with 

LSTM layers to capture temporal or sequential dependencies across extracted feature maps [21]. 

CNN layers learn local features such as leaf texture and disease spots, while the LSTM component 

models the sequence of extracted features, enhancing the recognition of diseases that exhibit 

irregular distribution patterns across the leaf surface. The model used convolutional layers with 

kernel size 3 × 3, max-pooling layers, followed by LSTM layers with 128 units, and a fully 

connected classification layer with softmax activation. Fig. 3 presents the hybrid CNN-LSTM 

architecture used to capture both spatial and sequential features from plant disease images. The 

convolutional layers extract spatial features from image regions, while the LSTM layers learn 

temporal dependencies within flattened feature maps. This design aims to improve classification 

robustness in heterogeneous image conditions. 

 

Fig. 3. CNN-LSTM architecture 



7 

PLANT AND DISEASE CLASSIFICATION 

2.3.3. CNN WITH ATTENTION MECHANISM 

The third model incorporates an attention module into the CNN backbone to enhance the 

network’s focus on disease-relevant regions [6], [8], [12]. The CNN extracts feature maps, which 

are then weighted by the attention mechanism to highlight critical areas of the leaf image while 

suppressing irrelevant background noise. This approach improves interpretability and ensures the 

classifier prioritizes regions with visible disease symptoms. The architecture includes 

convolutional layers, an attention module, global average pooling and a dense output layer. Fig. 4 

depicts the CNN-Attention architecture. 

 

Fig.4. CNN-Attention architecture 

The CNN-Attention model, as illustrated in Fig. 4, integrates a channel and spatial attention 

mechanism to dynamically emphasize relevant feature maps during training. The attention block 

enhances discriminative feature extraction, particularly for subtle disease symptoms that are 

visually similar across different leaf samples. 

2.4. TRAINING AND EVALUATION 

The models were trained using TensorFlow and Keras with GPU acceleration. The main 

training parameters included the ReLU activation function, Adam optimizer with a learning rate 

of 0.001, batch size of 32, dropout rate of 0.5, and a maximum of 10 epochs with an early stopping 

mechanism to prevent overfitting [22], [23]. 

Performances of all models were evaluated using four metrics: accuracy, precision, recall, and 

F1-score, calculated separately for plant classification and disease classification. The metrics are 

defined as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 +  𝑇𝑁)

(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 +  𝐹𝑃)
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 +  𝐹𝑁)
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𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
(2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
 

where TP = true positives, TN = true negatives, FP = false positives, and FN = false negatives. 

These metrics provided a comprehensive assessment of the model’s generalization ability across 

multiple tasks [4], [5]. 

2.5. PROTOTYPE APPLICATION 

To ensure the practical applicability of the research findings in real agricultural contexts, the 

best-performing model, NASNetMobile, was deployed into a web-based prototype application 

developed using the Streamlit framework. The application was designed to enable real-time plant 

and disease identification through a simple and intuitive interface accessible to non-technical users 

such as farmers and agricultural practitioners. 

The prototype allows users to upload a plant leaf image in JPG or JPEG format via the Upload 

button. Once the image is selected, clicking the Process button initiates the analysis. The system 

then simultaneously performs two classification tasks: 1) Identification of plant species, and 2) 

detection of the corresponding plant disease. 

In addition to the classification outputs, the application provides Explainable AI (XAI) 

visualizations using the Eigen-CAM method, which highlights the most influential regions of the 

leaf image that contributed to the model’s decision. This enables users to not only obtain diagnostic 

results but also to understand the reasoning behind the model’s predictions in a transparent manner. 

All computations were performed on a local server (localhost) using the pretrained 

NASNetMobile model. The application architecture consists of three main components: 

1. Frontend (user interface): built with Streamlit, displaying image upload functionality, 

classification results, and XAI visualizations. 

2. Backend (AI processing module): Python scripts responsible for loading the trained 

NASNetMobile model, performing inference, and generating both classification outputs 

and heatmaps. 

3. Visualization module: integrates the Eigen-CAM algorithm to visualize the key regions of 

the leaf image influencing the model’s decisions. 

This prototype demonstrates that lightweight deep learning architectures such as 

NASNetMobile can be efficiently implemented in web-based systems without requiring extensive 

computational infrastructure. The approach provides a foundation for developing accessible, AI-
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driven plant disease diagnostic tools, which can be further expanded into cloud or mobile-based 

platforms to support precision agriculture in rural regions. 

 

3. MAIN RESULTS 

3.1. MODEL PERFORMANCE 

The experimental results demonstrated that the NASNetMobile model achieved the best 

overall performance among the evaluated architectures. As shown in Table 2, NASNetMobile 

obtained an accuracy of 99.79% for plant classification and 98.57% for disease classification, 

surpassing both CNN-LSTM and CNN-Attention models. The CNN-LSTM achieved 98.86% and 

94.99% accuracy for plant and disease classification, respectively, while CNN-Attention obtained 

98.65% and 93.64%. 

Table 2. Comparison of model performance for plant and disease classification 

Model Task Accuracy Precision Recall F1-Score 

CNN-Attention Plant 0.9865 0.9868 0.9865 0.9865 

Disease 0.9364 0.9356 0.9364 0.933 

CNN-Attention 

+Augmented 

Plant 0.9882 0.9884 0.9882 0.9882 

Disease 0.944 0.9512 0.944 0.9395 

CNN-LSTM Plant 0.9886 0.9887 0.9886 0.9886 

Disease 0.9499 0.9524 0.9499 0.9502 

CNN-LSTM +Augmented Plant 0.9789 0.9808 0.9789 0.9791 

Disease 0.9297 0.9316 0.9297 0.9262 

NASNetMobile Plant 0.9979 0.9979 0.9979 0.9979 

Disease 0.9857 0.986 0.9857 0.9854 

NASNetMobile 

+Augmented 

Plant 0.9941 0.9942 0.9941 0.9941 

Disease 0.9718 0.9742 0.9718 0.972 

 

Data augmentation showed varied effects across architectures: it slightly improved CNN-

Attention (disease accuracy increased to 94.40%) but reduced the performance of CNN-LSTM 

(92.97%) and NASNetMobile (97.18%). These results suggest that the pretrained NASNetMobile 

model exhibits superior robustness and generalization across the dataset, especially under diverse 

image conditions. 
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3.2. CONFUSION MATRIX ANALYSIS 

Fig. 5 presents the confusion matrices for the best-performing NASNetMobile model in both 

plant and disease classification tasks. For plant classification, almost all species were correctly 

identified, with only minor misclassifications observed between visually similar plants such as 

Bean and Cowpea. For disease classification, the model demonstrated high accuracy across most 

categories, with slight confusion between visually overlapping diseases such as Anthracnose and 

Leaf Spot. Notably, certain diseases such as Downy mildew, Mosaic virus, and Radish flea beetle 

were classified with near-perfect accuracy, confirming the reliability of the model in identifying 

distinct disease symptoms. 

 

(a) 
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(b) 

Fig. 5. Confusion matrices of NASNetMobile for plant (a) and disease (b) classifications 

Fig. 6 illustrates the confusion matrices for the CNN-Attention model. While this architecture 

successfully identified most plant species, its disease classification accuracy was lower than that 

of NASNetMobile and CNN-LSTM. Misclassifications were observed for diseases with subtle 

color variations, suggesting that the attention mechanism, while helpful for spatial focus, may 

require further tuning to handle high inter-class similarity in plant disease images. 
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(a) 

 

(b) 

Fig. 6. Confusion matrices of CNN-Attention for plant (a) and disease (b) classifications 
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The confusion matrices of the CNN-LSTM model are displayed in Fig. 7. The model achieved 

strong performance but showed slightly higher confusion compared to NASNetMobile, 

particularly between visually similar leaf textures such as Bean and Cowpea. In disease prediction, 

the CNN-LSTM occasionally misclassified Leaf Spot as Anthracnose, likely due to overlapping 

lesion patterns across classes. 

 

(a) 

 

Fig. 7. Confusion matrices of CNN+LSTM for plant (a) and disease (b) classifications 
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3.3. TRAINING PERFORMANCE 

Fig. 8 illustrates the training and validation curves for NASNetMobile. The accuracy of plant 

classification reached near-perfect values early in the training, while disease classification 

accuracy gradually improved and stabilized above 95%. Both training and validation losses 

decreased consistently and showed close alignment, indicating that the model achieved optimal 

convergence without signs of overfitting. 

 

Fig. 8. Training and validation curves for NASNetMobile 

The training and validation curves of the CNN-LSTM model are displayed on Fig. 9. The 

model reached relatively high accuracy during training; however, a slight gap between training 

and validation accuracy suggests moderate overfitting. This behavior may result from the model’s 

higher parameter count and its sequential structure, which requires more data to capture long-range 

dependencies effectively. Nonetheless, the performance remained acceptable, confirming the 

model’s ability to learn temporal and spatial features jointly. 

 

Fig. 9. Training and validation curves for CNN-LSTM 
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Fig. 10 shows the training and validation accuracy and loss curves for the CNN-Attention 

model. The results indicate that this model achieved rapid convergence during early epochs, but 

exhibited minor fluctuations in validation loss. This pattern reflects the dynamic weighting 

mechanism of the attention module, which improves focus on relevant image regions but may 

introduce slight instability during optimization. Despite this, the final validation accuracy 

remained high, confirming that the attention mechanism enhanced feature extraction for plant 

disease classification. 

 

Fig. 10. Training and validation curves for CNN-Attention 

 

3.4. EXPLAINABLE AI (XAI) VISUALIZATION 

Interpretability of the model’s predictions was achieved using two Explainable AI techniques: 

Local Interpretable Model-Agnostic Explanations (LIME) and Eigen-CAM. As shown in Fig. 11, 

Eigen-CAM produced global heatmaps highlighting major leaf regions contributing to the 

classification decision, whereas LIME generated localized segment-based visualizations 

pinpointing the most influential regions. The complementary use of these two techniques provided 

both macro- and micro-level interpretability, enhancing user understanding and trust in model 

predictions. 
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 Original Heatmap Overlay 

EIGEN-

CAM 

   

LIME 

   

Fig. 11. Examples of XAI visualizations using LIME and Eigen-CAM 

 

3.5. PROTOTYPE APPLICATION DEPLOYMENT 

To validate the real-world applicability of the model, the best-performing NASNetMobile was 

deployed as an interactive web-based prototype developed using Streamlit (Fig. 12). Users can 

upload a leaf image and instantly obtain: 

1. Plant species classification. 

2. Disease classification with confidence score. 

3. Visualization of decision regions via Eigen-CAM. 

This prototype demonstrates the feasibility of deploying an end-to-end explainable AI system 

for practical agricultural diagnostics, bridging the gap between laboratory-trained models and 

field-level decision support. 
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Fig. 12. AI-web application built using best model 

4. DISCUSSION 

The comparative analysis of three deep learning architectures NASNetMobile, CNN-LSTM, 

and CNN-Attention revealed that NASNetMobile consistently delivered superior classification 

performance for both plant species and disease detection. This result aligns with prior studies 

demonstrating that lightweight, search-optimized architectures can balance high accuracy and 

computational efficiency, making them particularly suitable for real-world agricultural [24], [25].  

The exceptional performance of NASNetMobile can be attributed to its ability to automatically 

discover optimal convolutional cell structures through Neural Architecture Search (NAS). This 

process enhances the model’s representational capacity while minimizing overfitting, which is an 

essential advantage for field conditions where image variability is high. In contrast, the CNN-

LSTM and CNN-Attention models, despite their theoretical strengths in capturing temporal and 
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spatial dependencies, required higher computational costs and exhibited lower generalization when 

faced with heterogeneous image backgrounds and lighting conditions. 

The results also highlight the importance of dataset diversity and the challenges associated 

with plant disease classification in uncontrolled environments. Although data augmentation 

techniques increased sample variability, they did not always improve accuracy across all 

architectures. This suggests that pretrained models like NASNetMobile, which leverage large-

scale ImageNet features, already possess strong generalization capabilities even without additional 

augmentation. 

The explainability analysis using Eigen-CAM and LIME provided valuable insights into the 

internal reasoning of the models. Eigen-CAM offered a global understanding of discriminative 

regions, identifying broader leaf areas affected by disease, while LIME produced localized 

explanations that emphasized specific lesions or spots. This dual-layer interpretability is critical 

for building user trust and promoting the practical adoption of AI-based systems by farmers, 

agronomists, and agricultural extension workers. The use of explainable AI further supports 

transparency and accountability, which is a key aspects in deploying decision-support tools in 

sensitive domains like agriculture. 

The successful deployment of NASNetMobile in a Streamlit-based web application 

demonstrates the potential of integrating high-performance AI models into accessible platforms. 

By enabling real-time classification and visualization through an intuitive interface, the prototype 

bridges the gap between research and practice. Similar approaches have been reported to accelerate 

technology transfer and improve precision agriculture outcomes by empowering non-expert users 

to make timely and evidence-based decisions [7], [26].  

Nevertheless, some limitations remain. The current dataset, although diverse, still exhibits 

class imbalance and limited real-field variability, which could reduce robustness in unseen 

conditions. Additionally, the system focuses exclusively on image-based diagnosis without 

incorporating environmental or temporal data. These aspects can be addressed in future work by 

integrating multimodal data sources (e.g., weather conditions, soil data, or temporal disease 

progression) and exploring transformer-based architectures or federated learning frameworks for 

continual model improvement. 

Overall, the findings of this study contribute to advancing the field of explainable deep learning 

for plant protection by combining high accuracy, model transparency, and deployment feasibility. 
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This integrated approach strengthens the bridge between artificial intelligence research and 

practical agricultural solutions, supporting the broader goal of sustainable and data-driven crop 

management. 

5. CONCLUSION 

This study evaluated and compared three deep learning architectures such as NASNetMobile, 

CNN-LSTM, and CNN-Attention for multi-class plant disease classification. The results showed 

that NASNetMobile achieved the best performance with 99.79% accuracy in plant classification 

and 98.57% in disease classification, outperforming CNN-LSTM (98.86% and 94.99%) and CNN-

Attention (98.65% and 93.64%). NASNet Mobile demonstrated the advantage of being both 

lightweight and highly accurate, making it suitable for web-based deployment. CNN-LSTM also 

performed competitively, but required longer training time and exhibited minor risks of overfitting. 

Meanwhile, CNN-Attention produced the lowest performance, suggesting that attention 

mechanisms may require larger and more balanced datasets to reach optimal effectiveness. 

These findings highlight NASNet as a strong candidate to bridge the gap between laboratory-

trained models and real-world agricultural applications. The best-performing model was integrated 

into the AI web application, developed with Streamlit, enabling real-time disease detection 

accompanied by interpretability visualizations through Eigen-CAM. This integration has 

significant implications for precision agriculture, supporting farmers with more accurate and 

explainable decision-making tools. 
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