Auvailable online at http://scik.org
Commun. Math. Biol. Neurosci. 2026, 2026:7
https://doi.org/10.28919/cmbn/9656

ISSN: 2052-2541

PLANT AND DISEASE CLASSIFICATION WITH EXPLAINABLE Al IN WEB-

BASED APPLICATION

DEDE FAUZI', MAHMUD ISNAN?"
!Department of Digital Business, Syedza Saintika University, Padang, West Sumatera 25132, Indonesia

2Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta 11480, Indonesia

Copyright © 2026 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: The application of deep learning for plant and disease recognition has become increasingly popular; however,
most studies address these tasks separately due to limitations in dataset availability for model training and testing. This
study aims to overcome such constraints by developing a multi-output classification framework that simultaneously
predicts both plant species and associated diseases. Three state-of-the-art architectures were employed: NASNetMobile,
a CNN-based model; a hybrid CNN-LSTM; and a CNN integrated with an Attention mechanism. A combined dataset of
over 15.678 images was compiled from multiple public sources, covering 10 plant species and 27 disease classes with
diverse real-world conditions. The training process was done using two different approaches: with and without data
augmentation. Model performance was evaluated using accuracy, precision, recall, and F1-score. The results show that
NASNetMobile without data augmentation achieved the highest performance, with an F1-score of 99.79% for plant
classification and 98.54% for disease classification, outperforming CNN-LSTM (98.86% and 95.2%) and CNN-
Attention (98.65% and 93.3%). These findings demonstrate that lightweight yet robust architectures such as
NASNetMobile can effectively bridge the gap between laboratory-trained models and field-ready agricultural
applications, supporting the advancement of precision agriculture. To enhance interpretability, Local Interpretable Model-
Agnostic Explanations (LIME) and Eigen-CAM were applied, providing intuitive visualizations that help users
understand model predictions. The best-performing model was deployed in a web-based proof-of-concept application,
developed using Streamlit. This work provides one of the first multi-output explainable frameworks for plant and disease
classification deployable in a web-based system.
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1. INTRODUCTION

Artificial intelligence (Al) and deep learning have received growing attention in agriculture,
particularly for tasks such as plant disease classification, crop yield prediction, and agronomic
decision support [1], [2], [3]. Among various approaches, convolutional neural networks (CNNs)
have consistently proven effective in detecting and diagnosing plant diseases from leaf images
with high accuracy [4], [5], [6]. Recent advances have further integrated architectures such as
EfficientNet, ResNet, and Vision Transformers to improve classification performance, especially
when dealing with diverse datasets [7], [8], [9].

Despite these advancements, many existing studies still rely heavily on controlled datasets such
as PlantVillage, which lack variability in background, illumination, and leaf damage [6], [10], [11].
Consequently, models trained under such conditions often fail to generalize to real-world
environments, where images are captured under natural and more complex conditions [12], [13].
Moreover, while CNN-based methods achieve high performance, they struggle to capture
sequential and spatial dependencies in disease progression, limiting their robustness in multi-class
classification tasks [14], [15].

To address these limitations, researchers have begun to explore hybrid and attention-based
architecture. CNN-LSTM models, for example, integrate spatial and sequential learning to capture
patterns of disease spread across leaf structures [13], [16]. Similarly, attention mechanisms and
multimodal transformers have been applied to improve model focus on disease-relevant regions,
thereby enhancing both classification performance and interpretability [8], [12], [17]. However,
such models often require high computational resources, making them less practical for
lightweight applications deployable in agricultural fields [18], [19].

In this study, we propose a comprehensive framework for multi-class plant disease
classification using three approaches: (i) NASNetMobile, a lightweight and efficient CNN
architecture; (i) CNN-LSTM, which combines spatial and sequential feature learning; and (iii)
CNN with Attention Mechanism, which enhances model focus on critical leaf regions. In addition
to classification performance, this study emphasizes interpretability by applying Explainable Al
(XAI) methods such as LIME and Eigen-CAM to better understand how the models learn and

make predictions.
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2. MATERIALS AND METHODS

2.1. DATASET

The dataset used in this study was compiled from several open-access repositories containing
plant disease images, including PlantVillage, Kaggle Plant Pathology Challenge 2020, and other
public collections [5], [10], [11]. A total of 15.678 images were collected, representing 10 plant
species and 27 disease classes under diverse real-world conditions such as varying lighting,
complex backgrounds, and partial leaf damage.

The dataset includes images of leaves from Bitter gourd, Bottle gourd, Cauliflower, Eggplant,
Cucumber, Tomato, Bean, Cowpea, Radish, and Betel leaf. Each plant species contains multiple
disease categories, including Downy mildew, Mosaic virus, Anthracnose, Leaf spot, Fusarium wilt,
Verticillium wilt, and Bacterial blight, among others. Table 1 presents the detailed distribution of
plant species, disease types, and the number of images per class. These data were curated and
verified manually to ensure class balance and remove duplicates or low-quality images before
model training.

2.2. DATA PREPROCESSING

After collecting and merging all datasets from multiple open-access sources into a unified
dataset, all images were resized to 224 x 224 pixels to ensure consistency across model inputs [4].
Data augmentation techniques such as random rotation, horizontal and vertical flipping, brightness
adjustment, and contrast modification were applied to increase image diversity and reduce the risk
of overfitting [11], [20]. The dataset was then split into 75% for training, 15% for validation, and
15% for testing. Finally, all pixel values were normalized into the [0,1] range to stabilize model
training and accelerate convergence.

Table 1. Distribution of dataset used in this study

Plant Disease Number of Images
Downy Mildew 570
Bitter gourd Mosaic Virus 600
Fusarium Wilt 502
Anthracnose, 601
Bottle gourd
Downy Mildew 684
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) Black Rot 560

Cauliflower i
Downy Mildew 512
Verticillium Wilt 730
Eggplant | Cercospora Leaf Spot 723
Begomovirus 720
Anthracnose Lesions 535

Cucumber i
Downy Mildew 564
Bacterial Spot 589
Tomato | Leaf Curl Virus 612
Spotted Wilt 654
Blight 510
Bean | Mosaic Virus 562
Rust 568
Bacterial Wilt 581
Cowpea | Mosaic Virus 579
Septoria Leaf Spot 577
Black Leaf Spot 526
| Downy Mildew 601

Radish
Mosaic Virus 548
Flea Beetle 513
Leaf Rot 269
Betel Leaf

Leaf Spot 688

2.3. MODEL ARCHITECTURES

The overall framework of the study is summarized in Fig. 1. It illustrates the sequential process
beginning with dataset acquisition, image preprocessing (resizing, normalization, and
augmentation), model training using three architectures (NASNetMobile, CNN-LSTM, and CNN-
Attention), evaluation through accuracy and Fl-score metrics, application of Explainable Al

(Eigen-CAM and LIME), and final deployment into a Streamlit-based web interface.
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Fig. 1. General pipeline of the proposed study

2.3.1. NASNETMOBILE

NASNetMobile is a lightweight variant of the Neural Architecture Search Network (NASNet),
which automatically searches for the optimal convolutional cell structures to balance accuracy and
computational cost [6]. The network consists of normal cells and reduction cells, which are stacked
to build the final architecture. In this study, NASNetMobile was fine-tuned with an input size of
224 x 224, a dropout rate of 0.5, ReLU activation, and the Adam optimizer with a learning rate of
0.001. The model’s classification head was adapted to output predictions for both plant species
and disease categories.

After the feature extraction stage, a Global Average Pooling (GAP) layer was applied to reduce
the dimensionality of the feature maps while preserving spatial information. This pooling strategy
minimizes the number of trainable parameters and helps prevent overfitting compared to fully
connected layers. From the GAP layer, the network branches into two parallel dense layers
corresponding to multi-output classification: the first head predicts plant species, while the second
head predicts disease categories. Each output head uses a softmax activation function to generate
probability distributions across their respective classes. Fig. 2 illustrates the architecture of the
NASNetMobile model used in this study.
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Fig. 2. lllustrates the architecture of the NASNetMobile model used in this study

The NASNetMobile architecture shown in Fig. 2 employs normal and reduction cells
optimized through Neural Architecture Search (NAS). It uses convolutional layers with skip
connections and batch normalization, followed by a global average pooling and a dense output
layer. This model serves as the baseline for performance comparison due to its lightweight
structure and high transfer-learning capability from ImageNet.
2.3.2. CNN-LSTM

The CNN-LSTM model combines convolutional layers for spatial feature extraction with
LSTM layers to capture temporal or sequential dependencies across extracted feature maps [21].
CNN layers learn local features such as leaf texture and disease spots, while the LSTM component
models the sequence of extracted features, enhancing the recognition of diseases that exhibit
irregular distribution patterns across the leaf surface. The model used convolutional layers with
kernel size 3 x 3, max-pooling layers, followed by LSTM layers with 128 units, and a fully
connected classification layer with softmax activation. Fig. 3 presents the hybrid CNN-LSTM
architecture used to capture both spatial and sequential features from plant disease images. The
convolutional layers extract spatial features from image regions, while the LSTM layers learn
temporal dependencies within flattened feature maps. This design aims to improve classification

robustness in heterogeneous image conditions.
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Fig. 3. CNN-LSTM architecture
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2.3.3. CNN WITH ATTENTION MECHANISM

The third model incorporates an attention module into the CNN backbone to enhance the
network’s focus on disease-relevant regions [6], [8], [12]. The CNN extracts feature maps, which
are then weighted by the attention mechanism to highlight critical areas of the leaf image while
suppressing irrelevant background noise. This approach improves interpretability and ensures the
classifier prioritizes regions with visible disease symptoms. The architecture includes
convolutional layers, an attention module, global average pooling and a dense output layer. Fig. 4
depicts the CNN-Attention architecture.
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Fig.4. CNN-Attention architecture

The CNN-Attention model, as illustrated in Fig. 4, integrates a channel and spatial attention
mechanism to dynamically emphasize relevant feature maps during training. The attention block
enhances discriminative feature extraction, particularly for subtle disease symptoms that are
visually similar across different leaf samples.
2.4. TRAINING AND EVALUATION

The models were trained using TensorFlow and Keras with GPU acceleration. The main
training parameters included the ReLU activation function, Adam optimizer with a learning rate
of 0.001, batch size of 32, dropout rate of 0.5, and a maximum of 10 epochs with an early stopping
mechanism to prevent overfitting [22], [23].

Performances of all models were evaluated using four metrics: accuracy, precision, recall, and
F1-score, calculated separately for plant classification and disease classification. The metrics are

defined as follows:

(TP + TN)
Accuracy = o IN ¥ FP + FN)
o TP
Precision = m
TP
Recall =

(TP + FN)
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(2 X Precision X Recall)

F1-S =
core (Precision + Recall)

where TP = true positives, TN = true negatives, FP = false positives, and FN = false negatives.
These metrics provided a comprehensive assessment of the model’s generalization ability across
multiple tasks [4], [5].

2.5. PROTOTYPE APPLICATION

To ensure the practical applicability of the research findings in real agricultural contexts, the
best-performing model, NASNetMobile, was deployed into a web-based prototype application
developed using the Streamlit framework. The application was designed to enable real-time plant
and disease identification through a simple and intuitive interface accessible to non-technical users
such as farmers and agricultural practitioners.

The prototype allows users to upload a plant leaf image in JPG or JPEG format via the Upload
button. Once the image is selected, clicking the Process button initiates the analysis. The system
then simultaneously performs two classification tasks: 1) Identification of plant species, and 2)
detection of the corresponding plant disease.

In addition to the classification outputs, the application provides Explainable Al (XAl)
visualizations using the Eigen-CAM method, which highlights the most influential regions of the
leaf image that contributed to the model’s decision. This enables users to not only obtain diagnostic
results but also to understand the reasoning behind the model’s predictions in a transparent manner.

All computations were performed on a local server (localhost) using the pretrained
NASNetMobile model. The application architecture consists of three main components:

1. Frontend (user interface): built with Streamlit, displaying image upload functionality,

classification results, and XAl visualizations.

2. Backend (Al processing module): Python scripts responsible for loading the trained
NASNetMobile model, performing inference, and generating both classification outputs
and heatmaps.

3. Visualization module: integrates the Eigen-CAM algorithm to visualize the key regions of
the leaf image influencing the model’s decisions.

This prototype demonstrates that lightweight deep learning architectures such as

NASNetMobile can be efficiently implemented in web-based systems without requiring extensive

computational infrastructure. The approach provides a foundation for developing accessible, Al-
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driven plant disease diagnostic tools, which can be further expanded into cloud or mobile-based

platforms to support precision agriculture in rural regions.

3. MAIN RESULTS
3.1. MODEL PERFORMANCE

The experimental results demonstrated that the NASNetMobile model achieved the best
overall performance among the evaluated architectures. As shown in Table 2, NASNetMobile
obtained an accuracy of 99.79% for plant classification and 98.57% for disease classification,
surpassing both CNN-LSTM and CNN-Attention models. The CNN-LSTM achieved 98.86% and
94.99% accuracy for plant and disease classification, respectively, while CNN-Attention obtained
98.65% and 93.64%.

Table 2. Comparison of model performance for plant and disease classification

Model Task Accuracy Precision | Recall | Fl-Score
CNN-Attention Plant 0.9865 0.9868 0.9865 0.9865
Disease 0.9364 0.9356 0.9364 0.933
CNN-Attention Plant 0.9882 0.9884 0.9882 0.9882
+Augmented Disease 0.944 0.9512 0.944 0.9395
CNN-LSTM Plant 0.9886 0.9887 0.9886 0.9886
Disease 0.9499 0.9524 0.9499 0.9502
CNN-LSTM +Augmented | Plant 0.9789 0.9808 0.9789 0.9791
Disease 0.9297 0.9316 0.9297 0.9262
NASNetMobile Plant 0.9979 0.9979 0.9979 0.9979
Disease 0.9857 0.986 0.9857 0.9854
NASNetMobile Plant 0.9941 0.9942 0.9941 0.9941
+Augmented Disease 0.9718 0.9742 0.9718 0.972

Data augmentation showed varied effects across architectures: it slightly improved CNN-
Attention (disease accuracy increased to 94.40%) but reduced the performance of CNN-LSTM
(92.97%) and NASNetMobile (97.18%). These results suggest that the pretrained NASNetMobile
model exhibits superior robustness and generalization across the dataset, especially under diverse

image conditions.
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3.2. CONFUSION MATRIX ANALYSIS

Fig. 5 presents the confusion matrices for the best-performing NASNetMobile model in both
plant and disease classification tasks. For plant classification, almost all species were correctly
identified, with only minor misclassifications observed between visually similar plants such as
Bean and Cowpea. For disease classification, the model demonstrated high accuracy across most
categories, with slight confusion between visually overlapping diseases such as Anthracnose and
Leaf Spot. Notably, certain diseases such as Downy mildew, Mosaic virus, and Radish flea beetle
were classified with near-perfect accuracy, confirming the reliability of the model in identifying
distinct disease symptoms.
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Fig. 5. Confusion matrices of NASNetMobile for plant (a) and disease (b) classifications
Fig. 6 illustrates the confusion matrices for the CNN-Attention model. While this architecture
successfully identified most plant species, its disease classification accuracy was lower than that
of NASNetMobile and CNN-LSTM. Misclassifications were observed for diseases with subtle
color variations, suggesting that the attention mechanism, while helpful for spatial focus, may

require further tuning to handle high inter-class similarity in plant disease images.
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Fig. 6. Confusion matrices of CNN-Attention for plant (a) and disease (b) classifications
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The confusion matrices of the CNN-LSTM model are displayed in Fig. 7. The model achieved

strong performance but showed slightly higher confusion compared to NASNetMobile,

particularly between visually similar leaf textures such as Bean and Cowpea. In disease prediction,

the CNN-LSTM occasionally misclassified Leaf Spot as Anthracnose, likely due to overlapping

lesion patterns across classes.
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3.3. TRAINING PERFORMANCE

Fig. 8 illustrates the training and validation curves for NASNetMobile. The accuracy of plant
classification reached near-perfect values early in the training, while disease classification
accuracy gradually improved and stabilized above 95%. Both training and validation losses

decreased consistently and showed close alignment, indicating that the model achieved optimal

convergence without signs of overfitting.
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The training and validation curves of the CNN-LSTM model are displayed on Fig. 9. The
model reached relatively high accuracy during training; however, a slight gap between training
and validation accuracy suggests moderate overfitting. This behavior may result from the model’s
higher parameter count and its sequential structure, which requires more data to capture long-range

dependencies effectively. Nonetheless, the performance remained acceptable, confirming the
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Fig. 8. Training and validation curves for NASNetMobile
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Fig. 10 shows the training and validation accuracy and loss curves for the CNN-Attention
model. The results indicate that this model achieved rapid convergence during early epochs, but
exhibited minor fluctuations in validation loss. This pattern reflects the dynamic weighting
mechanism of the attention module, which improves focus on relevant image regions but may
introduce slight instability during optimization. Despite this, the final validation accuracy
remained high, confirming that the attention mechanism enhanced feature extraction for plant

disease classification.
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Fig. 10. Training and validation curves for CNN-Attention

3.4. EXPLAINABLE Al (XAI) VISUALIZATION

Interpretability of the model’s predictions was achieved using two Explainable Al techniques:
Local Interpretable Model-Agnostic Explanations (LIME) and Eigen-CAM. As shown in Fig. 11,
Eigen-CAM produced global heatmaps highlighting major leaf regions contributing to the
classification decision, whereas LIME generated localized segment-based visualizations
pinpointing the most influential regions. The complementary use of these two techniques provided
both macro- and micro-level interpretability, enhancing user understanding and trust in model

predictions.
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Fig. 11. Examples of XAl visualizations using LIME and Eigen-CAM

3.5. PROTOTYPE APPLICATION DEPLOYMENT
To validate the real-world applicability of the model, the best-performing NASNetMobile was
deployed as an interactive web-based prototype developed using Streamlit (Fig. 12). Users can
upload a leaf image and instantly obtain:
1. Plant species classification.
2. Disease classification with confidence score.
3. Visualization of decision regions via Eigen-CAM.
This prototype demonstrates the feasibility of deploying an end-to-end explainable Al system
for practical agricultural diagnostics, bridging the gap between laboratory-trained models and

field-level decision support.
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v~ RimboAi - Plant & Disease Prediction Using NasnetMobile

Pilh gambar (JPG/PNG), bisa lebih dari satu

® Drag and drop files here

™ MCT9C-LIPG

Proses

Uploaded Images Prediction Results EIGEN-CAM (Ori « Heat « Overlay)

Plant: Radish (1.000)
Disease: Radish Downey mildew {0.939) , ’

Fig. 12. Al-web application built using best model

4. DISCUSSION

The comparative analysis of three deep learning architectures NASNetMobile, CNN-LSTM,
and CNN-Attention revealed that NASNetMobile consistently delivered superior classification
performance for both plant species and disease detection. This result aligns with prior studies
demonstrating that lightweight, search-optimized architectures can balance high accuracy and
computational efficiency, making them particularly suitable for real-world agricultural [24], [25].

The exceptional performance of NASNetMobile can be attributed to its ability to automatically
discover optimal convolutional cell structures through Neural Architecture Search (NAS). This
process enhances the model’s representational capacity while minimizing overfitting, which is an
essential advantage for field conditions where image variability is high. In contrast, the CNN-

LSTM and CNN-Attention models, despite their theoretical strengths in capturing temporal and
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spatial dependencies, required higher computational costs and exhibited lower generalization when
faced with heterogeneous image backgrounds and lighting conditions.

The results also highlight the importance of dataset diversity and the challenges associated
with plant disease classification in uncontrolled environments. Although data augmentation
techniques increased sample variability, they did not always improve accuracy across all
architectures. This suggests that pretrained models like NASNetMobile, which leverage large-
scale ImageNet features, already possess strong generalization capabilities even without additional
augmentation.

The explainability analysis using Eigen-CAM and LIME provided valuable insights into the
internal reasoning of the models. Eigen-CAM offered a global understanding of discriminative
regions, identifying broader leaf areas affected by disease, while LIME produced localized
explanations that emphasized specific lesions or spots. This dual-layer interpretability is critical
for building user trust and promoting the practical adoption of Al-based systems by farmers,
agronomists, and agricultural extension workers. The use of explainable Al further supports
transparency and accountability, which is a key aspects in deploying decision-support tools in
sensitive domains like agriculture.

The successful deployment of NASNetMobile in a Streamlit-based web application
demonstrates the potential of integrating high-performance Al models into accessible platforms.
By enabling real-time classification and visualization through an intuitive interface, the prototype
bridges the gap between research and practice. Similar approaches have been reported to accelerate
technology transfer and improve precision agriculture outcomes by empowering non-expert users
to make timely and evidence-based decisions [7], [26].

Nevertheless, some limitations remain. The current dataset, although diverse, still exhibits
class imbalance and limited real-field variability, which could reduce robustness in unseen
conditions. Additionally, the system focuses exclusively on image-based diagnosis without
incorporating environmental or temporal data. These aspects can be addressed in future work by
integrating multimodal data sources (e.g., weather conditions, soil data, or temporal disease
progression) and exploring transformer-based architectures or federated learning frameworks for
continual model improvement.

Overall, the findings of this study contribute to advancing the field of explainable deep learning

for plant protection by combining high accuracy, model transparency, and deployment feasibility.
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This integrated approach strengthens the bridge between artificial intelligence research and
practical agricultural solutions, supporting the broader goal of sustainable and data-driven crop

management.

5. CONCLUSION

This study evaluated and compared three deep learning architectures such as NASNetMobile,
CNN-LSTM, and CNN-Attention for multi-class plant disease classification. The results showed
that NASNetMobile achieved the best performance with 99.79% accuracy in plant classification
and 98.57% in disease classification, outperforming CNN-LSTM (98.86% and 94.99%) and CNN-
Attention (98.65% and 93.64%). NASNet Mobile demonstrated the advantage of being both
lightweight and highly accurate, making it suitable for web-based deployment. CNN-LSTM also
performed competitively, but required longer training time and exhibited minor risks of overfitting.
Meanwhile, CNN-Attention produced the lowest performance, suggesting that attention
mechanisms may require larger and more balanced datasets to reach optimal effectiveness.

These findings highlight NASNet as a strong candidate to bridge the gap between laboratory-
trained models and real-world agricultural applications. The best-performing model was integrated
into the Al web application, developed with Streamlit, enabling real-time disease detection
accompanied by interpretability visualizations through Eigen-CAM. This integration has
significant implications for precision agriculture, supporting farmers with more accurate and

explainable decision-making tools.
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